MATHEMATICS

Time Allowed: 3 Hours]
Tamil \& English Version)
[Maximum Marks: 100

PART -I

$(14 \times 1=14)$
Note: Answer all the Questions. Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer:

1. $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is
(A) 8
(B) 20
(C) 12
(D) 16
2. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(A) 2025
(B) 5220
(C) 5025
(D) 2520
3. If a, b, c are in A.P., then $\frac{a-b}{b-c}$ is equal to
(A) $\frac{a}{b}$
(B) $\frac{b}{c}$
(C) $\frac{a}{c}$
(D) 1
4. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is
(A) 3
(B) 5
(C) 6
(D) 8
5. $\frac{a^{3}}{a-b}+\frac{b^{3}}{b-a}$ is equal to
(A) $a^{2}+a b+b^{2}$
(B) $a^{2}-a b+b^{2}$
(C) $a^{2}-b^{2}$
(D) $a^{3}+b^{3}$
6. In figure if $P R$ is tangent to the circle at P and O is the centre of the circle, then
$\angle P O Q$ is
(A) 120°
(B) 100°
(C) 110°
(D) 90°
7. In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$. If $\triangle L M N \sim \triangle P Q R$ then the value of $\angle R$ is
(A) 40°
(B) 70°
(C) 30°
(D) 110°
8. The point of intersection of $3 x-y=4$ and $x+y=8$ is
(A) $(5,3)$
(B) $(2,4)$
(C) $(3,5)$
(D) $(4,4)$
9. The x intercept of the line $2 x-y=10$ is
(A) 5
(B) 10
(C) -10
(D) Not defined
10. A tower is 60 m high. Its shadow is x metres shorter when the sun's altitude is 45° than when it has been 30°, then x is equal to
(A) 41.92 m
(B) 43.92 m
(C) 43 m
(D) 45.6 m
11. In a hollow cylinder, the sum of the external and internal radii is 14 cm and the width is 4 cm . If its height is 20 cm , the volume of the material in it is
(A) $5600 \pi \mathrm{~cm}^{3}$
(B) $1120 \pi \mathrm{~cm}^{3}$
(C) $56 \pi \mathrm{~cm}^{3}$
(D) $3600 \pi \mathrm{~cm}^{3}$
12. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is
(A) $1: 2: 3$
(B) $2: 1: 3$
(C) $1: 3: 2$
(D) $3: 1: 2$
13. Which of the following is incorrect?
(A) $P(A)>1$
(B) $0 \leq P(A) \leq 1$
(C) $P(\varnothing)=0$
(D) $P(A)+P(\bar{A})=1$
14. The probability of getting 53 Mondays in a leap year is
(A) $\frac{2}{7}$
(B) $\frac{1}{7}$
(C) $\frac{2}{53}$
(D) $\frac{1}{53}$

Note: Answer any 10 questions. Question No. 28 is compulsory

15. Find $A \times B$ and $B \times A$ if $A=\{2,-2,3\}$ and $B=\{1,-4\}$
16. Define: "RELATION"
17. Is $7 \times 5 \times 3 \times 2+3$ a composite number? Justify your answer
18. Write an A.P. whose first term is 7 and common difference is -5 .
19. Find the excluded values of the expression $\frac{y}{y^{2}-25}$
20. Find the square root of $\frac{144 a^{8} b^{12} c^{16}}{81 f^{12} g^{4} h^{14}}$
21. If $\triangle A B C$ is similar to $\triangle D E F$ such that $B C=3 \mathrm{~cm}, E F=4 \mathrm{~cm}$ and area of $\triangle A B C=54 \mathrm{~cm}^{2}$. Find the area of $\triangle D E F$
22. State Ceva's Theorem
23. Find the equation of a line through the pair of points $(2,3)$ and $(-7,-1)$
24. A tower stands vertically on the ground. From a point on the ground, which is $48 m$ away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.
25. If the base area of a hemispherical solid is 1386 square meters, then find its total surface area?
26. Find the volume of a cylinder whose height is 2 m and whose base area is $250 \mathrm{~m}^{2}$
27. Two coins are tossed together. What is the probability of getting different faces on the coins?
28. Find the angle of inclination of the straight line whose equation is $\sqrt{3} x-y+2=0$.

PART - III

$(10 \times 5=50)$

Note: Answer any 10 questions. Question No. 42 is compulsory

29. Let $A=\{x \in \mathrm{~N} / 1<x<4\}, B=\{x \in \mathrm{~W} \mid 0 \leq x<2\}$ and $C=\{x \in \mathrm{~N} \mid x<3\}$. Then verify that $A \times(B \cap C)=(A \times B) \cap(A \times C)$
30. Find the HCF of $396,504,636$.
31. Two A.P.'s have the same common difference. The first term of one A.P. is 2 and that of the other is 7 . Show that the difference between their $10^{\text {th }}$ terms is the same as the difference between their $21^{\text {st }}$ terms, which is the same as the difference between any two corresponding terms
32. Find the LCM of the following polynomials $a^{2}+4 a-12, a^{2}-5 a+6$ whose GCD is $a-2$
33. Find the values of ' k ' for which the quadratic equation $k x^{2}-(8 k+4) x+81=0$ has real and equal roots?
34. Prove that when a straight line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the sides in the same ratio.
35. Show that the angle bisectors of a triangle are concurrent
36. Find the area of the quadrilateral formed by the points $(6,9),(7,4),(4,2)$ and $(3,7)$
37. A line makes positive intercepts on coordinate axes whose sum is 7 and it passes through $(-3,8)$. Find its equation.
38. From the top of the tower 60 m high, the angles of the depression of the top and bottom of a vertical lamp post are observed to be 38° and 60° respectively. Find the height of the lamp post. $\left(\tan 38^{\circ}=0.7813, \sqrt{3}=1.732\right)$
39. The volume of a solid right circular cone is $11088 \mathrm{~cm}^{3}$. If its height is 24 cm , then find the radius of the cone.
40. As shown in the figure a cubical block of side 7 cm is surmounted by a hemisphere. Find the surface area of the solid.

41. Two dice are rolled. Find the probability that the sum of outcomes is (i) equal to 4 (ii) greater than 10 (iii) less than 13
42. If $m-n x+28 x^{2}+12 x^{3}+9 x^{4}$ is a perfect square, then find the values of m and n.
PART - IV $\quad(2 \times 8=16)$

Note: Answer the following questions

43. a) Construct a $\triangle P Q R$ in which $Q R=5 \mathrm{~cm}, \angle P=40^{\circ}$ and the median $P G$ from P to $Q R$ is 4.4 cm . Find the length of the altitude from P to $Q R$.
[OR]
b) Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate - segment theorem.
44. a) Graph the quadratic equation of $x^{2}-9=0$ and state its nature of solutions.
b) Draw the graph of $y=x^{2}+x-2$ and hence solve $x^{2}+x-2=0$.
