

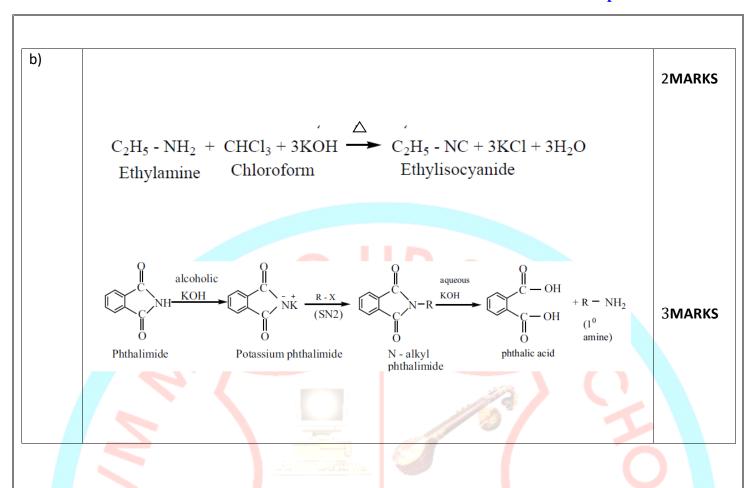
JVM MATRIC.HR.SEC.SCHOOL, R.PUDUPPALAYAM, RASIPURAM, NAMAKKAL(DT)

PUBLIC EXAMINATION-2021-22

CLASS : XII 94420 09663, 93608 20805, 98423 28258 MARKS : 70

SUB JECT: CHEMISTRY TENTATIVE ANSWER KEY-13.05.2022

.NO	ANSWER		MARKS
	TYPE A	ТҮРЕ В	
1.	c)1S ² 2S ² 2P ⁶ 3S ² 3P ³	c) Glycine	_
2.	a)Al ₂ O ₃ .NH ₂ O	a)Methanal	_
3.	d)30 minutes	a) Basic	_
4.	c)Sn/HCl	d) FeO	
5.	a)Methanal	c) Hydrolysis of sucrose in presence of dil.HCl	
6.	c) [Fe(co) ₅]	c) Sn/HCl	
7.	a) <i>HPO</i> ₄ ²⁻	d) Charge carried by one mole of electrons	EACH ON
8.	a) Basic	a) Al ₂ O ₃ .NH ₂ O	1MARK
9.	c) Hydrolysis <mark>of suc</mark> rose in presence of dil.HCl		
10.	c) Nucle <mark>ophilic ad</mark> dition	a) HPO_4^{2-}	
11.	c) +3	c) [Fe(co)₅]	
12.	d) Charge carried by one mole of electrons	c) +3	
13.	c) Glycine	c) 1S ² 2S ² 2P ⁶ 3S ² 3P ³	
14.	d) FeO	a) Liquid in gas	
15.	a) Liquid in gas	c) Nucleophilic additi <mark>o</mark> n	
		4-COMPULSORY)	6X2=12
16.	MINERALS	ORES	
	A naturally occurring	Minerals that contains a	
	substance <mark>o</mark> btained by	nig <mark>h percentage of m</mark> eta <mark>l,</mark>	
	mining whi <mark>ch c</mark> ontains the	from which it can be	
	metal in free state or in extracted conveniently and the form of compounds economically are called		
	like oxides, sulphides etc ores . Ores can be used for		
	is called a mineral . the extraction of metals on		2MARKS
	1/1/1/2	a large scale readily and	ZIVIANN
		economically.	
	·	All ores are minerals	
		t contains a high	
		percentage of metals	
		Ores of Aluminium -	
		Bauxite	
		Al ₂ O ₃ .2H ₂ O	
7			
7.	The electronic configuration of Fe is [Ar] $3d^6 4s^2$ $Fe^{2+}=$ [Ar] $3d^6$		1MARK
	$Fe^{3+}=[Ar] 3d^5$		
	Half filled d shell which is highly stable.	So Fe^{3+} is more stable than Fe^{2+}	1MARK
8.	The number of ligand donor atoms b	onded to a central metal ion in a	
	complex is called the co ordination n		


	(OR)		
	The number of nearest neighbours that surrounding a particle in a crystal		
<u></u>	is called the coordination number.	2MARKS	
19.	In covalent crystals, the constituents (atom only) are bound together in a three		
	dimensional network entirely by covalent bonds.	2MARKS	
	Example:Diamond, silicon carbide		
20.	i)Decompostion of dinitrogen pentoxide		
	$N_2O_{5(g)} \rightarrow 2NO_{2(g)} + \frac{1}{2}O_{2(g)}$		
	(ii) Decompostion of thionyl chloride		
	$SO_2Cl_2(I) \rightarrow SO_2(g) + Cl_2(g)$		
	(iii) Decomposition of the H_2O_2 in aqueous solution.		
	$H_2O_{2(aq)} \rightarrow H_2O_{(l)} + \frac{1}{2}O_{2(g)}$		
	(iv) Isomerisation of cyclopropane to propene		
21.	i.Arrhenius theory does not explain the behaviour of acids and bases in non	1MARK	
-1.	aqueous solvents such as acetone, Tetrahydrofuran etc	TIAIVIVIV	
	ii. This theory does not account for the basicity of the substances like ammonia	1 MARK	
	(NH ₃) which do not possess hydroxyl group.		
22.	This migration of sol particles under the influence of electric field is called		
	electrophoresis or cataphoresis. If the sol particles migrate to the cathode, then they		
	posses positive (+) charges, and if the sol particles migrate to the anode then they have		
	negative charges(-). Thus from the direction of migration of sol particles we can	2MARKS	
	determine the charge of the sol particles.		
	Platinum electrodic decreased water		
	Andrew Andrew		
23.	a)2-methyl –propane-2-ol b)Phenyl methanol	1+1MAR	
24.	NaN ₃ LiAlH ₄		
	$CH_3 Br \longrightarrow CH_3 N_3 \longrightarrow CH_3 NH_2 + N_2$	2MARKS	
	Methyl azide(A) methylamine(B)		
	TO TO DIE	7	
	PART-III(Q.NO-33-COMPULSORY)	6X3=18	
25.	i)Each halogen combines with other halogens to form a series of compounds	2MARKS	
	called inter halogen compounds.	4 4 4 4 5 14	
26	EXAMPLES:CIF, CIF ₃ , IF ₅ , IF ₇ , IF ₃ , BrCl, ICl ₃ , BrF, BrF ₃ , BrF ₅ , BrCl, ICl ₃ , ICl, IBr(Any one)	1 MARK	
26.	i)They are hard and show electrical and thermal conductivity (ii) They have high melting points higher than those of pure metals	3MARKS	
	(iii) Transition metal hydrides are used as powerful reducing agents	SIVIARKS	
	(iv) Metallic carbides are chemically inert.		
27.	k=Ae-Ea/RT		
	A the frequency factor, R the gas constant,	1MARK	
	Ea the activation energy of the reaction and, T the absolute temperature (in K)	2MARKS	
28.	If the interionic attraction between the oppositely charged ions of solutes		
۷۵.	increases, the conductance will decrease.		
	Solvent of higher dielectric constant show high conductance in solution.		
	\bullet C 1		
	Conductance is inversely proportional to the Viscosity of the medium. i.e., conductivity increases with the decrease in viscosity.		

	 If the temperature of the electrolytic solution increases, conductance also increases. Increase in temperature increases the kinetic energy of the ions and decreases the attractive force between the oppositely charged ions and hence conductivity increases. Molar conductance of a solution increases with increase in dilution. This is because, for a strong electrolyte, inter ionic forces of attraction decrease with dilution. For a weak electrolyte, degree of dissociation increases with dilution. 	3MARKS	
29.	i)In a homogeneous catalysed reaction, the reactants, products and catalyst are present in the same phase.	2MARKS	
	ii) $2SO_{2(g)} + O_{(g)} + [NO]_{(g)} \longrightarrow 2SO_{3g)} + [NO]_{(g)}$		
30.	i) $2CH_3-CH_2-OH \xrightarrow{H_2SO_4} CH_3-CH_2-O-CH_2-CH_3 \qquad (OR)$ ethanol diethylether	3MARKS	
	ii)CH ₃ -O-CH ₂ -ONa+CH ₃ CH ₂ Br $\xrightarrow{\Delta}$ CH ₃ -CH ₂ -O-CH ₂ -CH ₃		
31.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3MARKS	
32.	i)Sugar differing in configuration at an asymmetric centre is known as epimers.		
	ii)glucose and mannose are epimers at C2 carbon and glucose and galactose are epimers at C4 carbon.	1MARK	
33.	a)NH ₃ -Ammine b)Ag ⁺ c)diamminesilver(I)ion	3MARKS	
	PART-IV	5X5=25	
34.a)(i)	(i) i)It used for ore having high specific gravity is separated from the gangue that has low specific gravity by simply washing with running water. ii)Ore is crushed to finely powder form and treated with rapidly flowing current of water. During this process lighter gangue particles are washed away by the running water. Example: Hematite and tinstone		
(ii)	i)The impure nickel is heated in a stream of carbon monoxide at around 350 K. The nickel reacts with the CO to form a highly volatile nickel tetracarbonyl. The solid impurities are left behind. Ni (s) + 4 CO (g) $\stackrel{350K}{\longrightarrow}$ Ni(CO)4 (g) ii)On heating the nickel tetracarbonyl around 460 K, the complex decomposes to give pure metal. Ni(CO)4 (g) $\stackrel{460K}{\longrightarrow}$ Ni (s) + 4 CO (g)	$1\frac{1}{2}$ MARKS $1\frac{1}{2}$ MARKS	
b) (i)	(OR) Heavier post-transition metals, the outer s electrons (ns) have a tendency to remain	2MARKS	
	inert and show reluctance to take part in the bonding.		
(ii)	i) Boric acid is used in the manufacture of pottery glases, enamels and pigmentsii) It is used as an antiseptic and as an eye lotion.iii) It is also used as a food preservative	3MARKS	

	2. It is used in welding (oxyacetylene welding)	2MARKS
(ii)	 3. Liquid oxygen is used as fuel in rockets etc ▶ Bleaching powder is produced by passing chlorine gas through dry slaked lime (calcium hydroxide). ▶ Ca(OH)₂ + Cl₂ → CaOCl₂ + H₂O 	
	(OR)	
b)	1.Most of the elements exhibit, two types of valence namely primary valence and secondary valence and each element tend to satisfy both the valences. In modern terminology, the primary valence is referred as the oxidation state of the metal atom and the secondary valence as the coordination number. For example, according to Werner, the primary and secondary valences of cobalt are 3 and 6 respectively. 2. The primary valence of a metal ion is positive in most of the cases and zero in certain cases. They are always satisfied by negative ions. For example in the complex CoCl ₃ .6NH ₃ , The primary valence of Co is +3 and is satisfied by 3Cl- ions 4.According to Werner, there are two spheres of attraction around a metal atom/ion in a complex. The immer sphere is known as coordination sphere and the groups present in this sphere are loosely bound to the metal. The outer sphere is called ionisation sphere. The groups present in this sphere are loosely bound to the central metal ion and hence can be separated into ions upon dissolving the complex in a suitable solvent. 5. The primary valences are ondirectional while the secondary valences are directional. The geometry of the complex is determined by the spacial arrangement of the groups which satisfy the secondary valence. For example, if a metal ion has a secondary valence of six, it has an octahedral geometry. If the secondary valence is 4, it has either tetrahedral or square planar geometry. iii.The secondary valence of cobalt is 6 and is satisfied by six neutral ammonia molecules, whereas in CoCl ₃ .5NH ₃ the secondary valence of cobalt is 6 and is satisfied by six neutral ammonia molecules, whereas in CoCl ₃ .5NH ₃ the secondary valence of cobalt is satisfied by five neutral ammonia molecules and a Cl- ion	5MARKS

36.a)	S.no	Crystalline solids	Amorphous solids	
		Long range orderly	Short range, random	
	1	arrangement of constituents	arrangement of constituents.	
	2	Definite shape	Irregular shape	
		Generally crystalline	mregular shape	
	3	solids are anisotropic in nature.	They are isotropic like liquids	
	4	They are true solids	They are considered as pseudo solids (or) super cooled liquids	5MARKS
	5	Definite Heat of fusion	Definite Heat of fusion is not definite	
	6	They have sharp melting points.	Gradually soften over a range of temperature and so can be moulded.	
	7	Eg: Nacl ; diamond	Eg: Rubber, plastics, glass	
,	A	(ANY FIVE POINTS)	49	
		(OR)		
b) (i)		defi <mark>n</mark> ed as the negative loga he hy <mark>d</mark> ronium ions prese <mark>nt i</mark>	arithm of base 10 of the molar	2MARKS
		0.0000000000000000000000000000000000000	in the solution. (OR)	
	I	$OH = -\log_{10}[H_3O^+].$		
(ii)	i)Thus, the dissoci	ation of a weak acid (CH ₃ C(OOH) is suppressed in the presence	
	of a salt (CH ₃ COONa) containing an ion common to the weak electrolyte. It is			
	called the common ion effect.		3MARKS	
	ii)			
	CH ₃ CC	$OOH(aq) \rightleftharpoons H^{+}(aq) + CH$	3COO (aq)	
	However, t	he ad <mark>ded salt, sodium ace</mark> ta	te, completely dissociates to	
	produce Na	a+ andCH 3 COO- ion		
	7	$CH_3COONa(aq) \rightarrow 1$	Na ⁺ (aq)+CH ₃ COO ⁻ (aq)	7
37.a)	. ////	C' UDI IDD	MINISTRA	
	Let us cons	sider an electrochemical cell	for which the overall redox	
	reaction is,		DISO.	
		$yB \subseteq lC + mD$	MITY	FNAADVC
		ion quotient Q for the above	reaction is given below	5MARKS
	Q =	$= \frac{[C]^{l} [D]^{m}}{[A]^{x} [B]^{y}} \dots (9.28)$		
		lready learnt that,		
		$= \Delta G^{\circ} + RT \ln Q \dots (9.29)$ free energy can be related to		
		free energy can be related to 9.24) and (9.25)]	o the cen enn as ionows [
	Equation (7.27) anu (7.23)]		
		E_{cell} ; $\Delta G^{\circ} = -nFE_{cell}^{\circ}$		
		these values and Q from (9.28) in t		
	(9.29) ⇒	$- nFE_{cell} = - nFE_{cell}^{o} + RT \ln \frac{[C]^{l}[D]}{[A]^{s}} $ [B]	<u> "</u> (9.30)	
JVM MA	TRIC.HR.SEC.SCHOOL,F	R.PUDUPPALAYAM		

	Divide the whole equation (9.30) by (-nF)			
	$(9.25) \Rightarrow E_{cell} = E_{cell}^* - \frac{RT}{nF} \ln \frac{[C]'[D]^m}{[A]^x [B]^y}$			
	(or) $E_{cell} = E_{cell}^* - \frac{2.303RT}{nF} \log \frac{[C]^t[D]^m}{[A]^t [B]^t}$ (9.31)			
	The above equation (9.31) is called the Nernst equation			
	At 25°C (298K), the above equation (9.31) becomes,			
	$E_{cell} = E_{cell}^{\circ} - \frac{2.303 \times 8.314 \times 298}{n(96500)} log \frac{[C]'[D]^m}{[A]^x [B]'}$			
	$E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{n} \log \frac{[C]^{l}[D]^{m}}{[A]^{k} [B]^{l}} \dots (9.32)$ $\begin{bmatrix} \therefore R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \\ T = 298 \text{ K}. \end{bmatrix}$			
	$E_{coll} = E_{coll} = \frac{1}{n} \log \frac{1}{[A]^x [B]^y} = \frac{1}{[A]^x [B]^y} = \frac{1}{n} \log \frac{1}{n} \log \frac{1}{[A]^x [B]^y} = \frac{1}{n} \log $			
	TO HR CA			
b)	ARIO IIII.OEO			
,	i)For a chemical reaction, catalyst is needed in very small quantity. Generally, a			
	pinch of catalyst is enough for a reaction in bulk.			
	2. There may be some physical changes, but the catalyst remains unchanged in			
	mass and chemical composition in a chemical reaction.			
	3. A catalyst itself cannot initiate a reaction. It means it can not start a reaction			
	which is not taking place. But, if the reaction is taking place in a slow rate it can			
	increase its rate.			
	4. A solid catalyst will be more effective if it is taken in a finely divided form.			
	5. A catalyst can catalys <mark>e</mark> a particular type of reaction, hence they are said to be	5MARKS		
	specific in nature.			
	6. In an equilibrium reaction, presence of catalyst reduces the time for attainment)		
	of equilibrium and hence it does not affect the position of equilibrium and the			
	value of equilibrium constant.			
	7. A catalyst is highly effective at a particular temperature called as optimum			
	temperature. 8. Presence of a catalyst generally does not change the nature of products For			
	example. $2SO_2 + 2O_2 \rightarrow SO_3$ This reaction is slow in the absence of a catalyst, but			
	fast in the presence of Pt catalyst. (Any five points)			
38.a)	i)Formic acid contains both an aldehyde as well as an acid group. Hence, like			
30.47	other aldehydes, formic acid can easily be oxidised and therefore acts as a strong			
	reducing agent			
	ii)Aldehyde group Carboxylic acid group			
		2MARKS		
	O A O EDNITY			
	H - C - OH H - C - OH			
		1 MARKS		
	i)Formic acid reduces Tollens reagent (ammonical silver nitrate solution) to			
	metallicsilver.			
	$HCOO^- + 2Ag^+ + 3OH^- \longrightarrow 2Ag + CO_3^2 + 2H_2O$			
	(Tollens reagent) Silver mirror.	1 MARKS		
	ii) Formic acid reduces Fehlings solution. It reduces blue coloured cupric ions			
	to red coloured cuprous ions.			
	$HCOO^- + 2Cu^{2+} + 5OH^- \longrightarrow Cu_2O + CO3^{2-} + 3H_2O$			
	(Fehlings solution) red precipitate			
	(OR)			

PREPARED BY:

R.PRAKASH.M.Sc,B.Ed.

PG ASSISTANT IN CHEMISTRY

9629031954