12 MATHEMATICS

(5 Mark question and answer for slow learners Only)

1) A bridge has a parabolic arch that is 10 m high at the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre on either sides.		Equation of Parabola $\begin{aligned} x^{2} & =-4 a y \\ \mathrm{a} & =\frac{225}{40} \\ \text { height } & =\mathbf{8 . 4} \mathbf{~ m} \end{aligned}$
2) At a water fountain, water attains a maximum height of $4 m$ at horizontal distance of $05 . \mathrm{m}$ from its origin. If the path of water is a parabola, find the height of water at a horizontal distance of 075.m from the point of origin.		Equation of Parabola $\begin{aligned} x^{2} & =-4 a y \\ \mathrm{a} & =\frac{0.25}{16} \\ \text { height } & =\mathbf{3} \mathbf{~ m} \end{aligned}$
3) Assume that water issuing from the end of a horizontal pipe, 75 m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position $25 . \mathrm{m}$ below the line of the pipe, the flow of water has curved outward $3 m$ beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?		Equation of Parabola $\begin{aligned} x^{2} & =-4 a y \\ \mathrm{a} & =\frac{9}{10} \\ \text { height } & =3 \sqrt{3} \mathrm{~m} \end{aligned}$
4) On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of $4 m$ when it is $6 m$ away from the point of projection. Finally it reaches the ground $12 m$ away from the starting point. Find the angle of projection.		Equation of Parabola $\begin{aligned} & x^{2}=-4 a y \\ & a=\frac{9}{4} \\ & \text { Angle }=\tan ^{-1}\left(\frac{4}{3}\right) \end{aligned}$
5) Parabolic cable of a 60 m portion of the roadbed of a suspension bridge are positioned as shown below. Vertical Cables are to be spaced every 6 m along this portion of the roadbed. Calculate the lengths of first two of these vertical cables from the vertex.		Equation of Parabola $\begin{gathered} x^{2}=4 a y \\ 4 \mathrm{a}=\frac{900}{13} \\ \text { length }=5.08 \mathrm{~m} \end{gathered}$

6) A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16 m and the height at the edges of the road must be sufficient for a truck 4 m high to clear if the highest point of the opening is to be 5 m approximately. how wide must the opening be ?
7) A rod of length $12 . m$ moves with its ends always touching the coordinate axes. The locus of a point P on the rod, which is $03 . \mathrm{m}$ from the end in contact with x-axis is an ellipse. Find the eccentricity.
8) A semielliptical archway over a one-way road has a height of $3 m$ and a width of 12 m . The truck has a width of 3 m and a height of 27.m. Will the truck clear the opening of the archway?
9) If the equation of the ellipse is $\frac{(x-11)^{2}}{484}+\frac{y^{2}}{64}=1$ (x and y are measured in centimeters) where to the nearest centimeter, should the patient's kidney stone be placed so that the reflected sound hits the kidney stone?
10) Cross section of a Nuclear cooling tower is in the shape of a hyperbola with equation $\frac{x^{2}}{30^{2}}-\frac{y^{2}}{44^{2}}=1$ The tower is 150 m tall and the distance from the top of the tower to the centre of the hyperbola is half the distance from the base of the tower to the centre of the hyperbola. Find the diameter of the top and base of the tower.

Equation of Ellipse

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
b^{2}=25 \\
\mathrm{a}=13.33 \\
\text { Wide }=\mathbf{2 6 . 7} \mathbf{~ m}
\end{gathered}
$$

Equation of Ellipse

$$
\frac{x^{2}}{0.9^{2}}+\frac{y^{2}}{0.3^{2}}=1
$$

eccentricity $e=\frac{2 \sqrt{2}}{3}$
Equation of Ellipse

$$
\frac{x^{2}}{6^{2}}+\frac{y^{2}}{3^{2}}=1
$$

height $=2.9 \mathbf{~ m}$

-

$$
a^{2}=484
$$

$$
b^{2}=64
$$

$$
a e=\sqrt{a^{2}-b^{2}}
$$

$$
a e=\sqrt{420}=20.5 \mathrm{~cm}
$$

Equation of hyperbola

$$
\frac{x^{2}}{30^{2}}-\frac{y^{2}}{44^{2}}=1
$$

top diameter $=90.82 \mathrm{~m}$ base diameter $=148.98 \mathrm{~m}$
11) Two coast guard stations are located 600 km apart at points $A()$,00 and $B()$,0600 . A distress signal from a ship at P is received at slightly different times by two stations. It is determined that the ship is 200 km farther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the ship.
en
15) A ladder 17 meter long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of $5 \mathrm{~m} / \mathrm{s}$ when the base of the ladder is 8 meters from the wall. (i) How fast is the top of the ladder moving down the wall ? (ii) At what rate, the area of the triangle formed by the ladder, wall and the floor is changing.
(s)
16) A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5 km from a straight shore line. How fast is the beam moving along the shore line when it makes an angle of 45° with the shore?

$x=10, \frac{d x}{d t}=80 \mathrm{~km} / \mathbf{h r}$ the point P. Car A is driving north along the first road, and car B is driving east along the second road. At a particular time car A is 10 km to the north of P and traveling at $80 \mathrm{~km} / \mathrm{hr}$, while car B is 15 km to the east of P and traveling at $100 \mathrm{~km} / \mathrm{hr}$. How fast is the distance between the two cars changing?

$$
\frac{d x}{d t}=5 \quad \& \quad x=8
$$

$$
y=15, \frac{d y}{d t}=\frac{-8}{3}
$$

Area changes
$\frac{d A}{d t}=\frac{1}{2}\left[x \frac{d y}{d t}+y \frac{d x}{d t}\right]=26.83$
$\frac{d \theta}{d t}=\frac{2 \pi}{10}=\frac{\pi}{5} \quad \& \quad \theta=45^{\circ}$
$\tan \theta=\frac{x}{5} \Rightarrow x=5 \tan \theta$
Beam changes at

$$
\frac{d x}{d t}=2 \pi \mathrm{~km} / \mathrm{sec}
$$

$$
y=15, \frac{d y}{d t}=100 \mathbf{k m} / \mathbf{h r}
$$

$$
z^{2}=x^{2}+y^{2} \Rightarrow z=5 \sqrt{13}
$$

distance changes

$$
\frac{d z}{d t}=127.6 \mathrm{~km} / \mathbf{h r}
$$

18) A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and car is 0.8 km to the east. The police determine with a radar that the distance between them and the car is increasing at $20 \mathrm{~km} / \mathrm{hr}$. If the jeep is moving at $60 \mathrm{~km} / \mathrm{hr}$ at the instant of measurement, what is the speed of the car?

$$
\begin{gathered}
\mathrm{x}=0.6, \quad y=0.8 \\
\frac{d z}{d t}=20 \mathrm{~km} / \mathbf{h r} \\
z^{2}=x^{2}+y^{2} \Rightarrow z=1
\end{gathered}
$$

speed of the car

$$
\frac{d x}{d t}=70 \mathrm{~km} / \mathbf{h r}
$$

19) Find the equation of the tangent and normal to the Lissajous curve given by $x=2 \cos 3 t$ and $y=3 \sin 2 t, t \in R$

$$
m=\frac{(d y / d t)}{(d x / d t)}=\frac{6 \cos 2 t}{-6 \sin 3 t}=\frac{-\cos 2 t}{\sin 3 t}
$$

Tangent

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3 \sin 2 t=\frac{-\cos 2 t}{\sin 3 t}(x-2 \cos 3 t)
\end{aligned}
$$

Normal

$$
y-y_{1}=\frac{-1}{m}\left(x-x_{1}\right)
$$

$$
y-3 \sin 2 t=\frac{\sin 3 t}{\cos 2 t}(x-2 \cos 3 t)
$$

intersecting point

$$
(x, y)=\left(\frac{3}{2}, \frac{9}{4}\right)
$$

slopes $m_{1}=3 ; m_{2}=-3$

$$
\theta=\tan ^{-1}\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

$$
=\tan ^{-1}\left(\frac{3}{4}\right)
$$

$$
y=x^{2} \quad x=y^{2}
$$

$$
\frac{d y}{d x}=2 x \quad \frac{d y}{d x}=\frac{1}{2 y}
$$

$$
\text { at }(0,0) ; \quad \theta=\frac{\pi}{2}
$$

$$
\text { at }(\mathbf{1 , 1}) \quad ; \quad \theta=\tan ^{-1}\left(\frac{3}{4}\right)
$$

22) A garden is to be laid out in a rectangular area and protected by wire fence. What is the largest possible area of the fenced garden with 40 metres of wire.
 the top and bottom of the page are 1.5 cm and the margins at other sides of the is 1 cm . What should be the dimensions of the page so that the area of the paper used is minimum.

23) Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10 cm .

		$\begin{aligned} & \begin{array}{l} x=20 \cos \theta \quad \& \quad y=20 \sin \theta \\ \\ A \\ \\ \\ A \end{array}=(2 x)(2 y) \\ & \frac{d A}{d \theta}=0 \Rightarrow \theta=\frac{\pi}{4} \\ & \therefore L=2 x=10 \sqrt{2} \quad \& B=2 y=10 \sqrt{2} \end{aligned}$
		$\text { area } \quad \begin{aligned} \mathrm{A} & =\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{y} d \mathrm{dx} \\ & =4 \int_{0}^{\mathrm{a}} \mathrm{ydx} \\ & =\boldsymbol{\pi} \boldsymbol{a b} \end{aligned}$

26) Find the area of the region bounded by x - axis, the sine curve $y=\sin x$, the lines $x=0$ and $\boldsymbol{x}=\mathbf{2 \pi}$
27) Find the area of the region bounded between the parabolas $y^{2}=4 x$ and $x^{2}=4 y$
28) Find the area of the region bounded by $y=\cos x, y=\sin x$, the lines $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$
29) Find by integration the area of the region bounded by the lines $5 x-2 y=15, x+y+4=0$ and the x-axis.
area $A=\int_{a}^{b} y d x$
$=\int_{0}^{\pi} \sin x \mathrm{dx}-\int_{\pi}^{2 \pi} \sin x \mathrm{dx}$
$=4$
intersecting points $=(\mathbf{0}, 0),(4,4)$

Area between two curve

$$
\begin{aligned}
A & =\int_{\mathbf{a}}^{b}\left[y_{U}-y_{L}\right] d x \\
& =\frac{16}{3}
\end{aligned}
$$

Area between two curves

$$
\begin{aligned}
& A=\int_{a}^{b}\left[y_{U}-y_{L}\right] d x \\
= & \int_{\pi / 4}^{5 \pi / 4}[\sin x-\cos x] d x \\
= & 2 \sqrt{2}
\end{aligned}
$$

Lines intersect at $=(1,-5)$
Lines meet the x -axis at

$$
=(3,0),(-4,0)
$$

Area

$$
\begin{aligned}
A & =\left|\int_{-4}^{1} y d x\right|+\left|\int_{1}^{3} y d x\right| \\
& =\frac{35}{2}
\end{aligned}
$$

30) Using integration find the area of the region bounded by triangle $A B C$, whose vertices A, B and C are $(-1,1),(3,2)$ and $(0,5)$ respectively.
31) Using integration, find the area of the region which is bounded by x-axis, the tangent and normal to the circle $\boldsymbol{x}^{2}+y^{2}=\mathbf{4}$ drawn at $(1, \sqrt{3})$
32) Find the area of the region bounded by the parabola $y^{2}=x$ and the line $y=x-2$
33) Find the area of the region common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$

Equation of straight lines

$$
\begin{aligned}
& y=4 x+5 \\
& y=-x+5 \\
& y=\frac{1}{4}(x+5)
\end{aligned}
$$

Area
$A=\int_{-1}^{0}(4 x+5) d x+\int_{0}^{3}(-x+5) d x-\frac{1}{4} \int_{0}^{\pi}(x+5) d x$

$$
=\frac{15}{2}
$$

Tangent equation $x+y \sqrt{3}=4$
Normal equation $y=\sqrt{3} x$
Area
$\mathrm{A}=\int_{0}^{1} y \mathrm{dx}+\int_{1}^{4} y \mathrm{dx}=2 \sqrt{3}$
limit on y-axis $y=\mathbf{- 1 , 2}$
Area between two curves

$$
\begin{aligned}
A & =\int_{c}^{d}\left[x_{R}-x_{\mathrm{L}}\right] d y \\
& =\int_{-1}^{2}\left[y+2-y^{2}\right] d y=\frac{9}{2}
\end{aligned}
$$

Intersecting points $=(2,2 \sqrt{3}),(2,-2 \sqrt{3})$
Area between two curves

$$
\begin{aligned}
& A=\int_{c}^{d}\left[x_{R}-x_{L}\right] d y \\
= & \int_{-2 \sqrt{3}}^{2 \sqrt{3}}\left[\sqrt{16-y^{2}}-\frac{y^{2}}{6}\right] d y \\
= & \frac{4}{3}(4 \pi+\sqrt{3})
\end{aligned}
$$

34) The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours?
$\frac{d A}{d t}=k A$

$$
t=0 ; \Rightarrow C=A_{0}
$$

35) Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from $3,00,000$ to $4,00,000$.
$A=C e^{k t} \quad A=3,00,000\left(\frac{4}{3}\right)^{t / 40}$
36) Suppose a person deposits 10,000 Indian rupees in a bank account at the rate of 5% per annum compounded continuously. How much money will be in his bank account 18 months later?
37) Assume that the rate at which radioactive nuclei decay is proportional to the number of such nuclei that are present in a given sample. In a certain sample 10% of the original number of radioactive nuclei have undergone disintegration in a period of 100 years. What percentage of the original radioactive nuclei will remain after 1000 years?
38) A radioactive isotope has an initial mass 200 mg , which two years later is 150 mg . Find the expression for the amount of the isotope remaining at any time. What is its half-life? (half- life means the time taken for the radioactivity of a specified isotope to fall to half its original value)

39) Water at temperature $\mathbf{1 0 0} \mathbf{C}$ cools in 10 minutes to $\mathbf{8 0} \boldsymbol{C}$ in a room temperature of $\mathbf{2 5} \boldsymbol{C}$. Find (i) The temperature of water after 20 minutes (ii) The time when the temperature is $40^{\circ} \mathrm{C}$	$\frac{d T}{d t}=k(T-25)$ $T=25+C e^{k t}$	$\begin{aligned} & t=0 \Rightarrow C=75 \\ & t=20 \mathrm{~min} \Rightarrow T=65.33^{\circ} \mathrm{C} \\ & T=40^{\circ} C \Rightarrow t=51.89 \mathrm{~min} \end{aligned}$
40) A pot of boiling water at $100^{\circ} \mathrm{C}$ is removed from a stove at time $t=0$ and left to cool in the kitchen. After 5 minutes, the water temperature has decreased to $80^{\circ} \mathrm{C}$, and another 5 minutes later it has dropped to $65^{\circ} \mathrm{C}$. Determine the temperature of the kitchen.	$\begin{aligned} \frac{d T}{d t} & =k(T-S) \\ T & =S+C e^{k t} \end{aligned}$	$\begin{aligned} & t=0 \Rightarrow C=100-S \\ & t=5 \Rightarrow e^{5 k}=\frac{80-S}{100-S} \end{aligned}$ Kitchen temperature $S=20^{\circ} \mathrm{C}$
41) In murder investigation, a corpse was found by detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be $70^{\circ} F$. Two hours later, the detective measured the body temperature again and found it to be $60^{\circ} \mathrm{F}$. If the room temperature is $50^{\circ} \mathrm{F}$ and assuming that the body temperature of the person before death was $98.6^{\circ} \mathrm{F}$, at what time did the murder occur?	$\frac{d T}{d t}=k(T-50)$ $T=50+C e^{k t}$	$\begin{aligned} & t=0 ; \Rightarrow C=20 \\ & t=2 \Rightarrow k=\frac{1}{2} \log \left(\frac{1}{2}\right) \end{aligned}$ The person died at 5:30 pm
42) A tank contains 1000 litres of water in which 100 grams of salt is dissolved. Brine (Brine is a high-concentration solution of salt (usually sodium chloride) in water) runs in a rate of 10 litres per minute, and each litre contains 5 grams of dissolved salt. The mixture of the tank is kept uniform by stirring. Brine runs out at 10 litres per minute. Find the amount of salt at any time t.	$\begin{gathered} \frac{d x}{d t}=I N-O U T \\ \frac{d x}{d t}=50-0.01 x \\ x=5000+C e^{-0.01 t} \end{gathered}$	$t=0 ; C=-4900$ Amount of salt at t $x=5000-4900 e^{-0.01 t}$

43) A tank initially contains 50 liters of pure water. Starting at time $t=$ 0 a brine containing with 2 grams of dissolved salt per liter flows into the tank at the rate of 3 liters per minute. The mixture is kept uniform by stirring and the well-stirred mixture simultaneously flows out of the tank at the same rate. Find the amount of salt present in the tank at any time $\mathrm{t}>0$.	$\begin{aligned} & \frac{d x}{d t}=I N-O U T \\ & \frac{d x}{d t}=6-\frac{3}{50} x \\ & x=100+C e^{\frac{-3 t}{50}} \end{aligned}$							$t=0 ; C=-100$ Amount of salt at \mathbf{t} $x=100-100 e^{-\frac{3 t}{50}}$
44) Verify (i) Closure property (ii) commutative property (iii) Associative property (iv) Existence of Identity (v) Existence of Inverse for the operation $+_{5}$ on Z_{5} using table corresponding to addition modulo 5.	$+{ }_{5}$ 0 1 2 3 4	0 $\mathbf{0}$ $\mathbf{1}$ 2	1 1 2 3 4 0	2 2 3 4 0 1	3 3 4 0 1 2	4 4 0 1 2 3		Closure Property - true ii) Commutative Property - true iii) Associative Property-true iv) Identity - exist $e=0$ v) Inverse exist inverse of $0=0$ inverse of $1=4$ inverse of $2=3$ inverse of $3=2$ inverse of $4=1$
45) Verify (i) Closure property (ii) commutative property (iii) Associative property (iv) Existence of Identity (v) Existence of Inverse for the operation \times_{11} on a subset $A=\{1,3,4,5,9\}$ of the set of remainders $\{0,1,2,3,4,56,7,8,9,10\}$	$\times 11$ 1 3 4 5 9	9		$\mathbf{3}$ 3 9 1 4 5	4 4 1 5 9	5 5 4 9 3 1	9 9 5 3 1 4	i) Closure Property - true ii) Commutative Property - true iii) Associative Property-true iv) Identity - exist $\mathrm{e}=1$ v) Inverse exist inverse of $1=1$ inverse of $3=4$ inverse of $4=3$ inverse of $5=9$ inverse of $9=5$

46) Let $M=\left\{\left(\begin{array}{ll}x & x \\ x & x\end{array}\right): x \in R-\{0\}\right\}$ and let * be the matrix multiplication. Determine whether M is closed under *. If so examine the (i) Commutative property (ii) Associative property (iii) Existence of Identity
(iv) Existence of inverse property for the operation * on M.
47) Let A be $Q \backslash\{1\}$. Define * on A by $x^{*} y=x+y-x y$. Is * binary on A? If so, examine the the (i) Commutative property (ii) Associative property (iii) Existence of Identity (iv) Existence of inverse property for the operation * on A.
48) A random variable X has the following probability mass
function

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\boldsymbol{f}(\boldsymbol{x})$	\boldsymbol{k}	$2 \boldsymbol{k}$	$\mathbf{6 k}$	$\mathbf{5 k}$	$\mathbf{6 k}$	$\mathbf{1 0 k}$

then find (i) $P(2<X<6) \quad$ (ii) $P(2 \leq X<5)$
(iii) $\quad P(X \leq 4)$ iv $\quad P(3<X)$

i) Closure Property - true

ii) Commutative Property - true

iii) Associative Property- true
iv)Identity - exist

$$
E=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) \in M
$$

i) Closure Property - true
ii) Commutative Property

- true

iii) Associative Property

- true
$\sum p_{i}=1$
$\mathrm{k}=\frac{1}{30}$
i) $P(2<X<6)=\frac{17}{30}$
i) $\sum p_{i}=1$

$$
k=\frac{1}{6}
$$

v) Inverse Property - Inverse exist

$$
=\left(\begin{array}{cc}
\frac{1}{4 x} & \frac{1}{4 x} \\
\frac{1}{4 x} & \frac{1}{4 x}
\end{array}\right) \in M
$$

iv) Identity - exist

$$
e=0
$$

v) Inverse property - inverse exist inverse of x is $=\frac{-x}{1-x} \in A$
ii) $P(2 \leq X<5)=\frac{13}{30}$
iii) $P(X \leq 4)=\frac{14}{30}$
iv) $P(3<X)=\frac{21}{30}$
(ii) $P(2 \leq X<5)=\frac{17}{36}$
(iii) $P(3>X)=\frac{5}{6}$
$\widehat{\boldsymbol{a}}=\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath}$
$\widehat{b}=\cos \beta \hat{\imath}+\sin \beta \hat{\jmath}$
$\widehat{\boldsymbol{a}} \cdot \widehat{\mathbf{b}}=\boldsymbol{\operatorname { c o s }}(\boldsymbol{\alpha}-\boldsymbol{\beta})$
$\widehat{\boldsymbol{a}} \cdot \hat{\mathbf{b}}=\operatorname{Cos} \alpha \operatorname{Cos} \beta+\operatorname{Sin} \alpha \operatorname{Sin} \beta$
$\operatorname{Cos}(\alpha-\beta)=\operatorname{Cos} \alpha \operatorname{Cos} \beta+\operatorname{Sin} \alpha \operatorname{Sin} \beta$

51) Prove by vector method that $\operatorname{Cos}(\alpha+\beta)=\operatorname{Cos} \alpha \operatorname{Cos} \beta-\operatorname{Sin} \alpha \operatorname{Sin} \beta$		$\begin{aligned} & \widehat{a}=\cos \alpha \hat{\imath}-\sin \alpha \hat{\jmath} \\ & \widehat{b}=\cos \beta \hat{\imath}+\sin \beta \hat{\jmath} \\ & \widehat{a} \cdot \widehat{b}=\cos (\alpha+\beta) \\ & \widehat{a} \cdot \widehat{b}=\operatorname{Cos} \alpha \operatorname{Cos} \beta-\operatorname{Sin} \alpha \operatorname{Sin} \beta \\ & \quad \operatorname{Cos}(\alpha+\beta)=\operatorname{Cos} \alpha \operatorname{Cos} \beta-\operatorname{Sin} \alpha \operatorname{Sin} \beta \end{aligned}$
52) Prove by vector method that $\operatorname{Sin}(\alpha-\beta)=\operatorname{Sin} \alpha \operatorname{Cos} \beta-\operatorname{Cos} \alpha \operatorname{Sin} \beta$		$\begin{aligned} & \widehat{a}=\cos \alpha \hat{\imath}+\sin \alpha \hat{\jmath} \\ & \widehat{b}=\cos \beta \hat{\imath}+\sin \beta \hat{\jmath} \\ & \widehat{b} \times \widehat{a}=\widehat{k} \operatorname{Sin}(\alpha-\beta) \\ & \widehat{b} \times \widehat{a}=\widehat{k}(\operatorname{Sin} \alpha \operatorname{Cos} \beta-\operatorname{Cos} \alpha \operatorname{Sin} \beta) \\ & \quad \operatorname{Sin}(\alpha-\beta)=\operatorname{Sin} \alpha \operatorname{Cos} \beta-\operatorname{Cos} \alpha \operatorname{Sin} \beta \end{aligned}$
53) Prove by vector method that $\operatorname{Sin}(\alpha+\beta)=\operatorname{Sin} \alpha \operatorname{Cos} \beta+\operatorname{Cos} \alpha \operatorname{Sin} \beta$		$\begin{aligned} & \widehat{a}=\cos \alpha \hat{\imath}-\sin \alpha \hat{\jmath} \\ & \widehat{b}=\cos \beta \hat{\imath}+\sin \beta \hat{\jmath} \\ & \quad \widehat{b} \times \widehat{a}=\widehat{k} \operatorname{Sin}(\alpha+\beta) \\ & \widehat{b} \times \widehat{a}=\widehat{k}(\operatorname{Sin} \alpha \operatorname{Cos} \beta+\operatorname{Cos} \alpha \operatorname{Sin} \beta) \\ & \quad \operatorname{Sin}(\alpha+\beta)=\operatorname{Sin} \alpha \operatorname{Cos} \beta+\operatorname{Cos} \alpha \operatorname{Sin} \beta \end{aligned}$
54) Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.		$\begin{gathered} \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=0 \\ \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=0 \\ \text { Adding } \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\mathbf{0} \\ \overrightarrow{C O} \cdot \overrightarrow{A B}=\mathbf{0} \end{gathered}$
55) Show that the point $1, \frac{-1}{2}+\frac{i \sqrt{3}}{2}$ and $\frac{-1}{2}-\frac{i \sqrt{3}}{2}$ are the vertices of an equilateral triangle.		$\begin{aligned} & z_{1}=1 ; z_{2}=\frac{-1}{2}+\frac{i \sqrt{3}}{2} ; z_{3}=\frac{-1}{2}-\frac{i \sqrt{3}}{2} \\ &\left\|z_{1}-z_{2}\right\|=\sqrt{3} \\ &\left\|z_{1}-z_{2}\right\|=\sqrt{3} \\ &\left\|z_{1}-z_{2}\right\|=\sqrt{3} \end{aligned}$ sides are equal . Hence equilateral traiangle.

50) Show that $\left(\frac{19+9 i}{5-3 i}\right)^{15}-\left(\frac{8+i}{1+2 i}\right)^{15}$ is purely imaginary.	$\begin{gathered} \frac{19+9 i}{5-3 i}=2+3 i \\ \frac{8+i}{1+2 i}=2-3 i \end{gathered}$	$\begin{aligned} & z=(2+3 i)^{15}-(2-3 i)^{15} \\ & \bar{z}=(2-3 i)^{15}-(2+3 i)^{15} \\ & \bar{z}=-z \text { purely imaginary } \end{aligned}$
57) Show that $\left(\frac{19-7 i}{9+i}\right)^{12}+\left(\frac{20-5 i}{7-6 i}\right)^{12}$ is purely real.	$\begin{aligned} & \frac{19-7 i}{9+i}=2-i \\ & \frac{20-5 i}{7-6 i}=2+i \end{aligned}$	$\begin{aligned} & z=(2-i)^{12}+(2+i)^{12} \\ & \bar{z}=(2+i)^{12}+(2-i)^{12} \\ & \bar{z}=z \text { purely real } \end{aligned}$
58) Solve the equation $6 x^{4}-5 x^{3}-38 x^{2}-5 x+6=0$ if one of the root is $\frac{1}{3}$		Solutions are $=\frac{1}{3}, 3, \frac{-1}{2},-\mathbf{2}$
59) Solve: $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0$	$\begin{array}{l\|lllll} 2 & \begin{array}{lcccc} 6 & -35 & 62 & -35 & 6 \\ 0 & 12 & -46 & 32 & -6 \\ \hline & 6 & -23 & 16 & -3 \end{array} & 0 \\ 1 & 2 & 3 & -10 & 3 & \\ \hline & 6 & -20 & 6 & 0 & \\ 3 & 0 & 18 & -6 & \\ \cline { 2 - 4 } & 6 & -2 & 0 & \\ 1 / 3 & 0 & 2 & & \\ \cline { 2 - 3 } & 6 & 0 & & & \end{array}$	Solutions are $=2, \frac{1}{2}, 3, \frac{1}{3}$

Prepared By Mr.A.Irudayaraj, Don Bosco HSS, Gandhinagar, Vellore 6 (94436 87520)

