OBJECTIVE TYPE QUESTIONS

Choose the correct or most suitable answer:

- (1) The rank of the matrix $\begin{vmatrix} 2 & -2 & 4 \end{vmatrix}$ is
 - (1) 1(2) 2
- (2) The rank of the diagonal (1) 0(2) 2
- (3) If $A = [2 \ 0 \ 1]$, then rank of AA^{T} is (1) 1(2) 2
- (4) If $A = \begin{bmatrix} 2 \end{bmatrix}$, then the rank of AA^T is
 - $(1) \ 3(2) \ 0$
- (5) If the rank of the matrix $\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda \end{bmatrix}$ is 2, then λ is (1) 1(2) 2 (3) 3 (4) any real number
- (6) If A is a scalar matrix with scalar $k \neq 0$, of order 3, then A^{-1} is
 - $(1)\frac{1}{k^2}I$ $(2)\frac{1}{k^3}I$ $(3)\frac{1}{k}I$

- (7) If the matrix $\begin{bmatrix} -1 & 3 & 2 \\ 1 & k & -3 \\ 1 & 4 & 5 \end{bmatrix}$ has an inverse then the values of k
 - (1) k is any real number (2) k = -4 (3) $k \ne -4$ (4) $k \ne 4$
- (8) If $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$, then (adj A) $A = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$

$$(1)\begin{bmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{5} \end{bmatrix} \qquad (2)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad (3)\begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix} \qquad (4)\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$(2)\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(3)$$
$$\begin{bmatrix} 5 & 0 \\ 0 & -5 \end{bmatrix}$$

$$(4)$$
$$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

- (9) If A is a square matrix of order n then | adj A | is
- (2) $|A|^n$
- (4) |A|

- (10) The inverse of the matrix 0 1 0 is
 - $(1)\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (2)\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (3)\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} (4)\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- (11) If A is a matrix of order 3, then det (kA)
 - (1) $k^3 \det(A)$
- (2) $k^2 \det(A)$ (3) $k \det(A)$
- (12) If I is the unit matrix of order n, where $k \neq 0$ is a constant, then adj(kI) =
 - (1) k^n (adj I)
- (2) k (adj I)
- (3) k^2 (adj (I)) (4) k^{n-1} (adj I)
- (13) If A and B are any two matrices such that AB = O and A is non-singular,
 - (1) B = O (2) B is singular
- (3) B is non-singular (4) B = A
- (14) If $A = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}$, then A^{12} is

- (15) Inverse of $\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$ is

- $(1)\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} \qquad (2)\begin{bmatrix} -2 & 5 \\ 1 & -3 \end{bmatrix} \qquad (3)\begin{bmatrix} 3 & -1 \\ -5 & -3 \end{bmatrix} \qquad (4)\begin{bmatrix} -3 & 5 \\ 1 & -2 \end{bmatrix}$
- (16) In a system of 3 linear non-homogeneous equation with three unknowns, if $\Delta = 0$ and $\Delta_x = 0$, $\Delta_y \neq 0$ and $\Delta_z = 0$ then the system has
 - (1) unique solution
- (2) two solutions
- (3) infinitely many solutions
- (4) no solutions
- (17) The system of equations ax + y + z = 0; x + by + z = 0; x + y + cz = 0has a non-trivial solution then $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$
 - (1) 1(2) 2
- (3) 1

www.Padasalai.Net

(18) If
$$ae^x + be^y = c$$
; $pe^x + qe^y = d$ and $\Delta_1 = \begin{vmatrix} a & b \\ p & q \end{vmatrix}$; $\Delta_2 = \begin{vmatrix} c & b \\ d & q \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a & c \\ p & d \end{vmatrix}$ then the value of (x, y) is
$$(1) \left(\frac{\Delta_2}{\Delta_1}, \frac{\Delta_3}{\Delta_1} \right) \qquad (2) \left(\log \frac{\Delta_2}{\Delta_1}, \log \frac{\Delta_3}{\Delta_1} \right)$$

(3)
$$\left(\log \frac{\Delta_1}{\Delta_3}, \log \frac{\Delta_1}{\Delta_2}\right)$$
 (4) $\left(\log \frac{\Delta_1}{\Delta_2}, \log \frac{\Delta_1}{\Delta_3}\right)$

(19) If the equation
$$-2x + y + z = l$$
$$x - 2y + z = m$$
$$x + y - 2z = n$$

such that l + m + n = 0, then the system has

- (1) a non-zero unique solution
- (2) trivial solution
- (3) Infinitely many solution
- (4) No Solution
- (20) If \overrightarrow{a} is a non-zero vector and m is a non-zero scalar then \overrightarrow{ma} is a unit

(1)
$$m = \pm 1$$

(2)
$$a = |m|$$

(2)
$$a = |m|$$
 (3) $a = \frac{1}{|m|}$ (4) $a = 1$

- (21) If \overrightarrow{a} and \overrightarrow{b} are two unit vectors and θ is the angle between them, then $(\overrightarrow{a} + \overrightarrow{b})$ is a unit vector if

(1)
$$\theta = \frac{\pi}{3}$$

$$(2) \theta = \frac{\pi}{4} \qquad (3) \theta = \frac{\pi}{2}$$

(3)
$$\theta = \frac{\pi}{2}$$

(4)
$$\theta = \frac{2\pi}{3}$$

(22) If \overrightarrow{a} and \overrightarrow{b} include an angle 120° and their magnitude are 2 and $\sqrt{3}$ then \overrightarrow{a} . \overrightarrow{b} is equal to

$$(1)\sqrt{3}$$

$$(2) - \sqrt{3}$$

$$(4) - \frac{\sqrt{3}}{2}$$

- (23) If $\overrightarrow{u} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})$, then
 - (1) u is a unit vector

(2)
$$\overrightarrow{u} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

(3)
$$\overrightarrow{u} = \overrightarrow{0}$$

$$(4) \overrightarrow{u} \neq \overrightarrow{0}$$

- (24) If $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, $|\overrightarrow{c}| = 5$ then the angle between \overrightarrow{a} and \overrightarrow{b} is
- $(2)\frac{2\pi}{3}$ $(3)\frac{5\pi}{3}$
- (25) The vectors $2\overrightarrow{i} + 3\overrightarrow{j} + 4\overrightarrow{k}$ and $\overrightarrow{ai} + \overrightarrow{bj} + \overrightarrow{ck}$ are perpendicular
 - (1) a = 2, b = 3, c = -4
- (3) a = 4, b = 4, c = -5
- (26) The area of the parallelogram having a diagonal $3\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$ and a side $\overrightarrow{i} - 3\overrightarrow{i} + 4\overrightarrow{k}$ is
 - (1) $10\sqrt{3}$
- (2) $6\sqrt{30}$ (3) $\frac{3}{2}\sqrt{30}$
- $(4)\ 3\sqrt{30}$

- (27) If $|\overrightarrow{a} + \overrightarrow{b}| = |\overrightarrow{a} \overrightarrow{b}|$ then
 - (1) \overrightarrow{a} is parallel to \overrightarrow{b}
 - (2) \overrightarrow{a} is perpendicular to \overrightarrow{b}
 - (3) $\begin{vmatrix} \overrightarrow{a} \end{vmatrix} = \begin{vmatrix} \overrightarrow{b} \end{vmatrix}$
 - (4) \overrightarrow{a} and \overrightarrow{b} are unit vectors
 - (28) If \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{p} + \overrightarrow{q} are vectors of magnitude λ then the magnitude of $\left| \overrightarrow{p} - \overrightarrow{q} \right|$ is
- $(2)\sqrt{3}\lambda$
- $(3)\sqrt{2}\lambda$
- (29) If $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{x} \times \overrightarrow{y}$ then
 - $(1) \overrightarrow{r} \overrightarrow{0}$
- (2) $\overrightarrow{v} = \overrightarrow{0}$
- (3) \overrightarrow{x} and \overrightarrow{y} are parallel (4) $\overrightarrow{x} = \overrightarrow{0}$ or $\overrightarrow{y} = \overrightarrow{0}$ or \overrightarrow{x} and \overrightarrow{y} are parallel
- (30) If $\overrightarrow{PR} = 2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{QS} = -\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}$ then the area of the quadrilateral PQRS is
- (1) $5\sqrt{3}$ (2) $10\sqrt{3}$ (3) $\frac{5\sqrt{3}}{2}$

- (31) The projection of \overrightarrow{OP} on a unit vector \overrightarrow{OQ} equals thrice the area of parallelogram OPRQ. Then POQ is
 - (1) $\tan^{-1} \frac{1}{3}$
- (2) $\cos^{-1}\left(\frac{3}{10}\right)$ (3) $\sin^{-1}\left(\frac{3}{\sqrt{10}}\right)$ (4) $\sin^{-1}\left(\frac{1}{3}\right)$
- (32) If the projection of \overrightarrow{a} on \overrightarrow{b} and projection of \overrightarrow{b} on \overrightarrow{a} are equal then the angle between $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ is
 - $(1)\frac{\pi}{2}$
- $(2)\frac{\pi}{3}$ $(3)\frac{\pi}{4}$
- (33) If $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}$ for non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} , $\stackrel{\rightarrow}{c}$ then
 - (1) \overrightarrow{a} parallel to \overrightarrow{b} (2) \overrightarrow{b} parallel to \overrightarrow{c}

 - (3) \overrightarrow{c} parallel to \overrightarrow{a} (4) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$
- (34) If a line makes 45° , 60° with positive direction of axes x and y then the angle it makes with the z axis is
- (2) 90'
- $(3)45^{\circ}$
- (35) If $[\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}] = 64 \text{ then } [\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}] \text{ is}$
- (3) 128
- (36) If $[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}] = 8$ then $[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}]$ is

- (4) 4
- (37) The value of $\begin{bmatrix} \overrightarrow{i} + \overrightarrow{j}, \overrightarrow{j} + \overrightarrow{k}, \overrightarrow{k} + \overrightarrow{i} \end{bmatrix}$ is equal to (1)0(4)4

- (38) The shortest distance of the point (2, 10, 1) from the plane

$$\overrightarrow{r}$$
. $\left(3\overrightarrow{i} - \overrightarrow{j} + 4\overrightarrow{k}\right) = 2\sqrt{26}$ is

- (1) $2\sqrt{26}$ (2) $\sqrt{26}$
- (3) 2
- $(4)\frac{1}{\sqrt{26}}$

(39) The vector $(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d})$ is

- (1) perpendicular to \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d}
- (2) parallel to the vectors $(\overrightarrow{a} \times \overrightarrow{b})$ and $(\overrightarrow{c} \times \overrightarrow{d})$
- (3) parallel to the line of intersection of the plane containing \overrightarrow{a} and \overrightarrow{b} and the plane containing \overrightarrow{c} and \overrightarrow{d}
- (4) perpendicular to the line of intersection of the plane containing \overrightarrow{a} and \overrightarrow{b} and the plane containing \overrightarrow{c} and \overrightarrow{d}
- (40) If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are a right handed triad of mutually perpendicular vectors of magnitude a, b, c then the value of $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ is
 - $(1) a^2 b^2 c^2 (2) 0$
- $(3) \frac{1}{2} abc (4) abc$

(41) If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar and

 $\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} \text{ then}$ $\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}$ is

- (3) 1
- (4)0

(42) $\overrightarrow{r} = \overrightarrow{s} \overrightarrow{i} + t \overrightarrow{j}$ is the equation of

- (1) a straight line joining the points \overrightarrow{i} and \overrightarrow{j}
- (2) xoy plane
- (3) yoz plane

(43) If the magnitude of moment about the point $\overrightarrow{j} + \overrightarrow{k}$ of a force

 $\overrightarrow{i} + a\overrightarrow{j} - \overrightarrow{k}$ acting through the point $\overrightarrow{i} + \overrightarrow{j}$ is $\sqrt{8}$ then the value of a

- (1) 1(2) 2
- (3) 3
- (4) 4

(44) The equation of the line parallel to $\frac{x-3}{1} = \frac{y+3}{5} = \frac{2z-5}{3}$ and passing through the point (1, 3, 5) in vector form is

$$(1) \overrightarrow{r} = (\overrightarrow{i} + 5\overrightarrow{j} + 3\overrightarrow{k}) + t(\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k})$$

(2)
$$\overrightarrow{r} = \overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k} + t(\overrightarrow{i} + 5\overrightarrow{j} + 3\overrightarrow{k})$$

(3)
$$\overrightarrow{r} = (\overrightarrow{i} + 5\overrightarrow{j} + 3\overrightarrow{k}) + t(\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k})$$

(4)
$$\overrightarrow{r} = \overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k} + t\left(\overrightarrow{i} + 5\overrightarrow{j} + \frac{3}{2}\overrightarrow{k}\right)$$

- (45) The point of intersection of the line $\overrightarrow{r} = (\overrightarrow{i} \overrightarrow{k}) + t(3\overrightarrow{i} + 2\overrightarrow{j} + 7\overrightarrow{k})$ and the plane $\overrightarrow{r} \cdot (\overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}) = 8$ is (1) (8, 6, 22) (2) (-8, -6, -22) (3) (4, 3, 11) (4) (-4, -3, -11)
- (46) The equation of the plane passing through the point (2, 1, -1) and the

line of intersection of the planes
$$\vec{r}$$
. $(\vec{i} + 3\vec{j} - \vec{k}) = 0$ and

$$\overrightarrow{r} \cdot (\overrightarrow{j} + 2 \overrightarrow{k}) = 0$$
 is

(1)
$$x + 4y - z = 0$$

(2) $x + 9y + 11z = 0$
(3) $2x + y - z + 5 = 0$
(4) $2x - y + z = 0$

- (47) The work done by the force $\overrightarrow{F} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ acting on a particle, if the particle is displaced from A(3, 3, 3) to the point B(4, 4, 4) is

 (1) 2 units
 (2) 3 units
 (3) 4 units
 (4) 7 units
- (48) If $\overrightarrow{a} = \overrightarrow{i} 2\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 3\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ then a unit vector perpendicular to \overrightarrow{a} and \overrightarrow{b} is

$$(1) \frac{\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}} \qquad (2) \frac{\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$

$$(3) \frac{\overrightarrow{i} + \overrightarrow{j} + 2 \overrightarrow{k}}{\sqrt{3}} \qquad (4) \frac{\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}}{\sqrt{3}}$$

(49) The point of intersection of the lines $\frac{x-6}{-6} = \frac{y+4}{4} = \frac{z-4}{-8}$ and

$$\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{-2} \text{ is}$$
(1) (0, 0, -4) (2) (1, 0, 0) (3) (0, 2, 0) (4)

(50) The point of intersection of the lines

$$\overrightarrow{r} = (-\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}) + t(-2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k})$$
 and

$$\overrightarrow{r} = (2\overrightarrow{i} + 3\overrightarrow{j} + 5\overrightarrow{k}) + s(\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k})$$
 is

- (2) (1, 2, 1) (3) (1, 1, 2)
- (51) The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and

$$\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$$
 is

- $(1)\frac{2}{\sqrt{3}}$ $(2)\frac{1}{\sqrt{6}}$ $(3)\frac{2}{3}$
- $(4)\frac{1}{2\sqrt{6}}$
- (52) The shortest distance between the parallel lines

$$\frac{x-3}{4} = \frac{y-1}{2} = \frac{z-5}{-3}$$
 and $\frac{x-1}{4} = \frac{y-2}{2} = \frac{z-3}{3}$ is

- (53) The following two lines are $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z}{1}$ and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z-1}{2}$
- (2) intersecting (3) skew
- (4) perpendicular
- (54) The centre and radius of the sphere given by

$$x^2 + y^2 + z^2 - 6x + 8y - 10z + 1 = 0$$
 is

- (1) (-3, 4, -5), 49(2) (-6, 8, -10), 1

- (55) The value of $\left[\frac{-1 + i\sqrt{3}}{2} \right]^{100} + \left[\frac{-1 i\sqrt{3}}{2} \right]^{100}$ is
- (56) The modulus and amplititude of the complex number $\left[e^{3-i\pi/4}\right]^3$ are respectively
 - (1) $e^9, \frac{\pi}{2}$

- (2) $e^9, \frac{-\pi}{2}$ (3) $e^6, \frac{-3\pi}{4}$ (4) $e^9, \frac{-3\pi}{4}$
- (57) If (m-5) + i(n+4) is the complex conjugate of (2m+3) + i(3n-2)
 - $(1)\left(-\frac{1}{2}-8\right)$ $(2)\left(-\frac{1}{2},8\right)$ $(3)\left(\frac{1}{2},-8\right)$ $(4)\left(\frac{1}{2},8\right)$

(58) If
$$x^2 + y^2 = 1$$
 then the value of $\frac{1 + x + iy}{1 + x - iy}$ is

- (2) 2x
- (4) x + iy
- (59) The modulus of the complex number $2 + i\sqrt{3}$ is
 - $(1)\sqrt{3}$

- (60) If $A + iB = (a_1 + ib_1)(a_2 + ib_2)(a_3 + ib_3)$ then $A^2 + B^2$ is

 - (1) $a_1^2 + b_1^2 + a_2^2 + b_2^2 + a_3^2 + b_3^2$ (2) $(a_1 + a_2 + a_3)^2 + (b_1 + b_2 + b_3)^2$
 - (3) $(a_1^2 + b_1^2)(a_2^2 + b_2^2)(a_3^2 + b_3^2)$
 - (4) $(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$
- (61) If a = 3 + i and z = 2 3i then the points on the Argand diagram representing az, 3az and -az are
 - (1) Vertices of a right angled triangle
 - (2) Vertices of an equilateral triangle
 - (3) Vertices of an isosceles triangle
 - (4) Collinear
- (62) The points z_1 , z_2 , z_3 , z_4 in the complex plane are the vertices of a parallelogram taken in order if and only if
 - (1) $z_1 + z_4 = z_2 + z_3$
- $(2) z_1 + z_3 = z_2 + z_4$
- $(3) z_1 + z_2 = z_3 + z_4$
- (iv) $z_1 z_2 = z_3 z_4$
- (63) If z represents a complex number then arg $(z) + \arg \left(\frac{z}{z}\right)$ is
- (2) $\pi/2$

- (64) If the amplitude of a complex number is $\pi/2$ then the number is
 - (1) purely imaginary
- (2) purely real

- (4) neither real nor imaginary
- (65) If the point represented by the complex number iz is rotated about the origin through the angle $\frac{\pi}{2}$ in the counter clockwise direction then the complex number representing the new position is
 - (1) iz
- (2) iz
- (4)z
- (66) The polar form of the complex number $(i^{25})^3$ is
 - $(1)\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$

(2) $\cos \pi + i \sin \pi$

(3) $\cos \pi - i \sin \pi$

 $(4) \cos \frac{\pi}{2} - i \sin \frac{\pi}{2}$

- (67) If P represents the variable complex number z and if |2z-1|=2|z|then the locus of P is
 - (1) the straight line $x = \frac{1}{4}$
- (2) the straight line $y = \frac{1}{4}$
- (3) the straight line $z = \frac{1}{2}$
- (4) the circle $x^2 + y^2 4x 1 = 0$

- $(68) \frac{1 + e^{-i\theta}}{1 + e^{i\theta}} =$
 - (1) $\cos \theta + i \sin \theta$

(2) $\cos \theta - i \sin \theta$

(3) $\sin \theta - i \cos \theta$

- (4) $\sin \theta + i \cos \theta$
- (69) If $z_n = \cos \frac{n\pi}{3} + i \sin \frac{n\pi}{3}$ then $z_1 z_2 ... z_6$ is
 - (1) 1
- (2) 1
- (3) i
- (4) i
- (70) If $-\overline{z}$ lies in the third quadrant then z lies in the
 - (1) first quadrant

(2) second quadrant

- (3) third quadrant
- (4) fourth quadrant
- (71) If $x = \cos \theta + i \sin \theta$ the value of $x^n + \frac{1}{\sqrt{n}}$ is
 - (1) $2 \cos n\theta$
- (2) 2 $i \sin n\theta$
- (3) $2 \sin n\theta$
- (4) $2 i \cos n\theta$

- (72) If $a = \cos \alpha i \sin \alpha$, $b = \cos \beta i \sin \beta$
 - $c = \cos \gamma i \sin \gamma$ then $(a^2 c^2 b^2) / abc$ is (1) $\cos 2(\alpha - \beta + \gamma) + i \sin 2(\alpha - \beta + \gamma)$
 - $(2) 2 \cos (\alpha \beta + \gamma)$
 - $(3) 2i\sin(\alpha \beta + \gamma)$
 - (4) $2 \cos (\alpha \beta + \gamma)$
- (73) $z_1 = 4 + 5i$, $z_2 = -3 + 2i$ then $\frac{z_1}{z_2}$ is
 - (1) $\frac{2}{13} \frac{22}{13}i$
- $(2) \frac{2}{13} + \frac{22}{13}i$
- $(3)\frac{-2}{13} \frac{23}{13}i$ $(4)\frac{2}{13} + \frac{22}{13}i$
- (74) The value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is

- (3) 1
- (4) 1

- (1) i (2) -i (75) The conjugate of $i^{13} + i^{14} + i^{15} + i^{16}$ is
 - (1) 1(2) 1
- (4) i

(76) If -i + 2 is one root of the equation $ax^2 - bx + c = 0$, then the other root (1) - i - 2(2) i - 2(3) 2 + i(4) 2i + i(77) The quadratic equation whose roots are $\pm i \sqrt{7}$ is (2) $x^2 - 7 = 0$ $(1) x^2 + 7 = 0$ (4) $x^2 - x - 7 = 0$ (3) $x^2 + x + 7 = 0$ (78) The equation having 4 - 3i and 4 + 3i as roots is $(2) x^2 + 8x - 25 = 0$ $(1) x^2 + 8x + 25 = 0$ (4) $x^2 - 8x - 25 = 0$ $(3) x^2 - 8x + 25 = 0$ (79) If $\frac{1-i}{1+i}$ is a root of the equation $ax^2 + bx + 1 = 0$, where a, b are real then (a, b) is (1)(1,1)(2)(1,-1)(3)(0,1)(4)(1,0)(80) If -i + 3 is a root of $x^2 - 6x + k = 0$ then the value of k is (3) $\sqrt{10}$ $(4)\ 10$ (81) If ω is a cube root of unity then the value of $(1 - \omega + \omega^2)^4 + (1 + \omega - \omega^2)^4$ is (3) - 16(82) If \(\omega \) is the *n*th root of unity then (1) $1 + \omega^2 + \omega^4 + \dots = \omega + \omega^3 + \omega^5 + \dots$ (2) $\omega^n = 0$ (3) $\omega^n = 1$ (4) $\omega = \omega^{n-1}$ (83) If ω is the cube root of unity then the value of $(1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)$ is (2) - 9(4)32(84) The axis of the parabola $y^2 - 2y + 8x - 23 = 0$ is (1) y = -1 (2) x = -3 (3) x = 3(4) y = 1(85) $16x^2 - 3y^2 - 32x - 12y - 44 = 0$ represents (2) a circle (1) an ellipse (3) a parabola (4) a hyperbola (86) The line 4x + 2y = c is a tangent to the parabola $y^2 = 16x$ then c is (2) - 2 (3) 4

(87) The point of intersection of the tangents at $t_1 = t$ and $t_2 = 3t$ to the

(1) $(6t^2, 8t)$ (2) $(8t, 6t^2)$ (3) $(t^2, 4t)$ (4) $(4t, t^2)$

parabola $y^2 = 8x$ is

- (88) The length of the latus rectum of the parabola $y^2 4x + 4y + 8 = 0$ is (1)8(2)6(89) The diretrix of the parabola $y^2 = x + 4$ is (2) $x = -\frac{15}{4}$ (3) $x = -\frac{17}{4}$ (4) $x = \frac{17}{4}$ (1) $x = \frac{15}{4}$ (90) The length of the latus rectum of the parabola whose vertex is (2, -3) and the directrix x = 4 is (1) 2 (2) 4(3)6(4) 8(91) The focus of the parabola $x^2 = 16y$ is (4)(0,-4)(3)(-4,0)(1)(4,0)(2)(0,4)(92) The vertex of the parabola $x^2 = 8y - 1$ is $(1)\left(-\frac{1}{8},0\right)$ $(2)\left(\frac{1}{8},0\right)$ $(3)\left(0,\frac{1}{8}\right)$ $(4)\left(0,-\frac{1}{8}\right)$ (93) The line 2x + 3y + 9 = 0 touches the parabola $y^2 = 8x$ at the point (1) (0, -3) (2) (2, 4) (3) $\left(-6, \frac{9}{2}\right)$ (4) $\left(\frac{9}{2}, -6\right)$
- (94) The tangents at the end of any focal chord to the parabola $y^2 = 12x$ intersect on the line (2) x + 3 = 0 (3) y + 3 = 0(1) x - 3 = 0

- (95) The angle between the two tangents drawn from the point (-4, 4) to $y^2 = 16x$ is
 - (1) 45°
- $(2) 30^{\circ}$
- $(3) 60^{\circ}$
- (96) The eccentricity of the conic $9x^2 + 5y^2 54x 40y + 116 = 0$ is
 - $(1)\frac{1}{3}(2)\frac{2}{3}(3)\frac{4}{9}$
- (97) The length of the semi-major and the length of semi minor axis of the ellipse $\frac{x^2}{144} + \frac{y^2}{169} = 1$ are
 - (1) 26, 12
- (2) 13, 24
- (3) 12, 26
- (4) 13, 12
- (98) The distance between the foci of the ellipse $9x^2 + 5y^2 = 180$ is
 - (1)4
- (2)6
- (3)8

(99) If the length of major and semi-minor axes of an ellipse are 8, 2 and their corresponding equations are y - 6 = 0 and x + 4 = 0 then the equations of the ellipse is

$$(1)\frac{(x+4)^2}{4} + \frac{(y-6)^2}{16} = 1$$

$$(2)\frac{(x+4)^2}{16} + \frac{(y-6)^2}{4} = 1$$

$$(2)\frac{(x+4)^2}{16} + \frac{(y-6)^2}{4} = 1$$

$$(3)\frac{(x+4)^2}{16} - \frac{(y-6)^2}{4} = 1$$

$$(3)\frac{(x+4)^2}{16} - \frac{(y-6)^2}{4} = 1 \qquad (4)\frac{(x+4)^2}{4} - \frac{(y-6)^2}{16} = 1$$

(100) The straight line 2x - y + c = 0 is a tangent to the ellipse $4x^2 + 8y^2 = 32$ if

$$(1) \pm 2\sqrt{3}$$

(1) $\pm 2\sqrt{3}$ (2) ± 6 (3) 36 (4) ± 4 (101) The sum of the distance of any point on the ellipse $4x^2 + 9y^2 = 36$ from $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$ is

(1)4(2)8

(102) The radius of the director circle of the conic $9x^2 + 16y^2 = 144$ is

(2)4

(103) The locus of foot of perpendicular from the focus to a tangent of the curve $16x^2 + 25y^2 = 400$ is

$$(1) x^2 + y^2 = 4$$

(2)
$$x^2$$

(2) $x^2 + y^2 = 25$ (3) $x^2 + y^2 = 16$ (4) $x^2 + y^2 = 9$

(104) The eccentricity of the hyperbola $12y^2 - 4x^2 - 24x + 48y - 127 = 0$ is

(1) 4 (2) 3 (3) 2 (4) 6 (105) The eccentricity of the hyperbola whose latus rectum is equal to half of its conjugate axis is

(1) $\frac{\sqrt{3}}{2}$

 $(2)\frac{5}{3}$ $(3)\frac{3}{2}$

 $(4) \frac{\sqrt{5}}{2}$

(106) The difference between the focal distances of any point on the hyperbola $\frac{x^2}{2} - \frac{y^2}{k^2} = 1$ is 24 and the eccentricity is 2. Then the equation of the

$$(1)\frac{x^2}{144} - \frac{y^2}{432} = 1$$

$$(2)\frac{x^2}{432} - \frac{y^2}{144} = 1$$

$$(3)\frac{x^2}{12} - \frac{y^2}{12\sqrt{3}} = 1$$

$$(4)\frac{x^2}{12\sqrt{3}} - \frac{y^2}{12} = 1$$

(107) The directrices of the hyperbola $x^2 - 4(y - 3)^2 = 16$ are

(1)
$$y = \pm \frac{8}{\sqrt{5}}$$
 (2) $x = \pm \frac{8}{\sqrt{5}}$ (3) $y = \pm \frac{\sqrt{5}}{8}$ (4) $x = \pm \frac{\sqrt{5}}{8}$

(2)
$$x = \pm \frac{8}{\sqrt{5}}$$

(3)
$$y = \pm \frac{\sqrt{5}}{8}$$

(4)
$$x = \pm \frac{\sqrt{5}}{8}$$

- (108) The line 5x 2y + 4k = 0 is a tangent to $4x^2 y^2 = 36$ then k is
 - $(1)\frac{4}{9}(2)\frac{2}{3}(3)\frac{9}{4}$
- (109) The equation of the chord of contact of tangents from (2, 1) to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is
 - (1) 9x 8y 72 = 0 (2) 9x + 8y + 72 = 0
 - (3) 8x 9y 72 = 0 (4) 8x + 9y + 72 = 0
- (110) The angle between the asymptotes to the hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$ is
 - (1) $\pi 2 \tan^{-1} \left(\frac{3}{4} \right)$

(2) $\pi - 2 \tan^{-1} \left(\frac{4}{3} \right)$

(3) $2 \tan^{-1} \frac{3}{4}$

- (4) $2 \tan^{-1} \left(\frac{4}{3} \right)$
- (111) The asymptotes of the hyperbola $36y^2 25x^2 + 900 = 0$ are
 - (1) $y = \pm \frac{6}{5}x$
- (2) $y = \pm \frac{5}{6}x$ (3) $y = \pm \frac{36}{25}x$ (4) $y = \pm \frac{25}{36}x$
- (112) The product of the perpendiculars drawn from the point (8, 0) on the hyperbola to its asymptotes is $\frac{x^2}{64} - \frac{y^2}{36} = 1$ is
- $(2)\frac{576}{25}$ $(3)\frac{6}{25}$
- (113) The locus of the point of intersection of perpendicular tangents to the

hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ is

- (1) $x^2 + y^2 = 25$ (2) $x^2 + y^2 = 4$ (3) $x^2 + y^2 = 3$ (4) $x^2 + y^2 = 7$
- (114) The eccentricity of the hyperbola with asymptotes x + 2y 5 = 0, 2x - y + 5 = 0 is
 - (1) 3
- $(2)\sqrt{2}$
- $(3)\sqrt{3}$
- (115) Length of the semi-transverse axis of the rectangular hyperbola xy = 8 is
 - (1) 2 (2) 4
- (3) 16
- (116) The asymptotes of the rectangular hyperbola $xy = c^2$ are
 - (1) x = c, y = c
- (2) x = 0, y = c (3) x = c, y = 0(4) x = 0, y = 0
- (117) The co-ordinate of the vertices of the rectangular hyperbola xy = 16 are
 - (1) (4, 4), (-4, -4)

(2) (2, 8), (-2, -8)

(3) (4, 0), (-4, 0)

(4) (8, 0), (-8, 0)

- (118) One of the foci of the rectangular hyperbola xy = 18 is
- (2)(3,3)
- (3)(4,4)
- (4)(5,5)
- (119) The length of the latus rectum of the rectangular hyperbola xy = 32 is
 - $(1) 8\sqrt{2}$

- (120) The area of the triangle formed by the tangent at any point on the rectangular hyperbola xy = 72 and its asymptotes is
 - (1) 36(2) 18
- (3)72
- (121) The normal to the rectangular hyperbola xy = 9 at $\left(6, \frac{3}{2}\right)$ meets the curve again at
- $(1)\left(\frac{3}{8}, 24\right)$ $(2)\left(-24, \frac{-3}{8}\right)$ $(3)\left(\frac{-3}{8}, -24\right)$ $(4)\left(24, \frac{3}{8}\right)$

KEY TO OBJECTIVE TYPE QUESTIONS

REI TO OBJECTIVE TITE QUESTIONS									
Q.No	Key	Q.No	Key	Q.No	Key	Q.No	Key	Q.No	Key
1	1	26	4	51	2	76	3	101	3
2	3	27	2	52	1	77	1	102	4
3	1	28	2	53	3	78	3	103	2
4	3	29	4	54	3	79	4	104	3
5	1	30	3	55	3	80	4	105	4
6	3	31	1	56	4	81	3	106	1
7	3	32	1	57	1	82	3	107	2
8	4	33	3	58	4	83	1	108	3
9	3	34	4	59	3	84	4	109	1
10	3	35	2	60	3	85	4	110	3
11	1	36	1	61	4	86	4	111	2
12	4	37	3	62	2	87	1	112	2
13	1	38	3	63	3	88	3	113	1
14	2	39	3	64	1	89	3	114	2
15	1	40	4	65	3	90	4	115	2
16	4	41	1	66	4	91	2	116	4
17	y j	42	92	67	1	92	O 3	117	1
18	2	43	2	68	2	93	4	118	1
19	3	44	4	69	2	94	2	119	4
20	3	45	2	70	4	95	4	120	4
21	4	46	2	71	1	96	2	121	3
22	2	47	2	72	3	97	4		
23	3	48	4	73	3	98	3]	
24	4	49	1	74	1	99	2]	
25	3	50	3	75	3	100	2	1	

OBJECTIVE TYPE QUESTIONS

Choose the correct or most suitable answer:

			-			
(1)	The gradient of	the curve y =	$-2x^3$	+3x	+ 5 at x :	= 2 is

(1) - 20

(2)27

(3) -16

(2) The rate of change of area A of a circle of radius r is

(1) $2\pi r$

(2) $2 \pi r \frac{dr}{dt}$ (3) $\pi r^2 \frac{dr}{dt}$ (4) $\pi \frac{dr}{dt}$

(3) The velocity v of a particle moving along a straight line when at a distance x from the origin is given by $a + bv^2 = x^2$ where a and b are constants. Then the acceleration is

 $(1)^{\frac{b}{a}}$

 $(2)\frac{a}{x}$ $(3)\frac{x}{b}$ $(4)\frac{x}{a}$

(4) A spherical snowball is melting in such a way that its volume is decreasing at a rate of 1 cm³ / min. The rate at which the diameter is decreasing when the diameter is 10 cms is

 $(1) \frac{-1}{50\pi} \text{ cm} / \text{min}$

(2) $\frac{1}{50\pi}$ cm / min

(3) $\frac{-11}{75-}$ cm/min

(4) $\frac{-2}{75\pi}$ cm / min.

(5) The slope of the tangent to the curve $y = 3x^2 + 3\sin x$ at x = 0 is

(1)3

(2)2

(6) The slope of the normal to the curve $y = 3x^2$ at the point whose x coordinate is 2 is

 $(2)\frac{1}{14}$ $(3)\frac{-1}{12}$ $(4)\frac{1}{12}$

(7) The point on the curve $y = 2x^2 - 6x - 4$ at which the tangent is parallel to the x – axis is

 $(1)\left(\frac{5}{2}, \frac{-17}{2}\right)$ $(2)\left(\frac{-5}{2}, \frac{-17}{2}\right)$ $(3)\left(\frac{-5}{2}, \frac{17}{2}\right)$ $(4)\left(\frac{3}{2}, \frac{-17}{2}\right)$

(8) The equation of the tangent to the curve $y = \frac{x^5}{5}$ at the point (-1, -1/5)is

(1) 5y + 3x = 2 (2) 5y - 3x = 2 (3) 3x - 5y = 2 (4) 3x + 3y = 2

- (9) The equation of the normal to the curve $\theta = \frac{1}{t}$ at the point $(-3, -\frac{1}{3})$ is
 - (1) $3 \theta = 27 t 80$
- (2) $5 \theta = 27t 80$
- (3) $3 \theta = 27 t + 80$
- (4) $\theta = \frac{1}{4}$
- (10) The angle between the curves $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and $\frac{x^2}{8} \frac{y^2}{8} = 1$ is
- $(2)\frac{\pi}{3}$ $(3)\frac{\pi}{6}$ $(4)\frac{\pi}{2}$
- (11) The angle between the curve $y = e^{mx}$ and $y = e^{-mx}$ for m > 1 is
 - (1) $\tan^{-1} \left(\frac{2m}{m^2 1} \right)$
- (2) $\tan^{-1} \left(\frac{2m}{1-m^2} \right)$
- (3) $\tan^{-1} \left(\frac{-2m}{1+m^2} \right)$
- (4) $\tan^{-1} \left(\frac{2m}{m^2 + 1} \right)$
- (12) The parametric equations of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ are
 (1) $x = a \sin^3 \theta$; $y = a \cos^3 \theta$ (2) $x = a \cos^3 \theta$; $y = a \sin^3 \theta$

- (3) $x = a^3 \sin \theta$; $y = a^3 \cos \theta$ (4) $x = a^3 \cos \theta$; $y = a^3 \sin \theta$ (13) If the normal to the curve $x^{2/3} + y^{2/3} = a^{2/3}$ makes an angle θ with the x – axis then the slope of the normal is
 - (1) $-\cot\theta$
- (2) $\tan \theta$
- (3) $= \tan \theta$
- (14) If the length of the diagonal of a square is increasing at the rate of 0.1 cm / sec. What is the rate of increase of its area when the side
 - (1) $1.5 \text{ cm}^2/\text{sec}$ (2) $3 \text{ cm}^2/\text{sec}$ (3) $3\sqrt{2} \text{ cm}^2/\text{sec}$ (4) $0.15 \text{ cm}^2/\text{sec}$
- (15) What is the surface area of a sphere when the volume is increasing at the same rate as its radius?
 - (1) 1
- $(2)\frac{1}{2}$ (3) 4π
- (16) For what values of x is the rate of increase of $x^3 2x^2 + 3x + 8$ is twice the rate of increase of x
 - (1) $\left(-\frac{1}{3}, -3\right)$ (2) $\left(\frac{1}{3}, 3\right)$ (3) $\left(-\frac{1}{3}, 3\right)$ (4) $\left(\frac{1}{3}, 1\right)$

- (17) The radius of a cylinder is increasing at the rate of 2cm / sec and its altitude is decreasing at the rate of 3cm / sec. The rate of change of volume when the radius is 3cm and the altitude is 5cm is
 - (1) 23π
- $(2) 33\pi$
- $(3) 43\pi$
- $(4) 53\pi$

change of slope when x = 3 is

(3) 180 units / sec

(1) - 90 units / sec(2) 90 units / sec

	4cm ³ / sec then the the cube is 8 cubic		e of surface area who	en the volume of
	(1) $8 \text{cm}^2/\text{sec}$		$(3) 2 cm^2 / sec$	$(4) 4 \text{ cm}^2 / \text{sec}$
(20)	` '	e tangent to the	curve $y = 8 + 4x -$	
	(1) 8	(2) 4	(3) 0	(4) - 4
(21)	The Angle betwee	n the parabolas y	$y^2 = x$ and $x^2 = y$ at the	e origin is
	$(1) 2 \tan^{-1} \left(\frac{3}{4}\right)$	$(2) \tan^{-1} \left(\frac{4}{3}\right)$	$(3)\frac{\pi}{2}$	$(4)\frac{\pi}{4}$
(22)	For the curve $x = a$ x-axis when t is eq		$\sin t$ the tangent line	is parallel to the
	$(1)-\frac{\pi}{4}$	$(2)\frac{\pi}{4}$	(3) 0	$(4)\frac{\pi}{2}$
(23)	If a normal makes curve at the point	_	positive x-axis then l is drawn is	the slope of the
	$(1) - \cot \theta$	(2) $\tan \theta$	(3) – $\tan \theta$	(4) $\cot \theta$
(24)	The value of 'a'	so that the cur	wes $y = 3e^x$ and $y =$	$=\frac{a}{3}e^{-x}$ intersect
	orthogonally is			
	(1) - 1	(2) 1	$(3)\frac{1}{3}$	(4) 3
(25)	If $s = t^3 - 4t^2 + 7$,	the velocity whe	n the acceleration is	zero is
	$(1) \frac{32}{3} \text{ m/sec}$	$(2) \frac{-16}{3} \text{m/sec}$	(3) $\frac{16}{3}$ m/sec	$(4) \frac{-32}{3} \text{ m/sec}$
(26)	•	e square of its di on is proportiona	ring along a straight stance from a fixed pal to	point on the line.
	(1) s	(2) s^2	(3) s^3	$(4) s^4$
(27)	_	ant for the function	on $y = x^2$ on $[-2, 2]$	040 / 070
	$(1)\frac{2\sqrt{3}}{3}$	(2) 0	(3) 2	(4) -2 240 / 270
		231		

(18) If $y = 6x - x^3$ and x increases at the rate of 5 units per second, the rate of

(19) If the volume of an expanding cube is increasing at the rate of

(4) - 180 units / sec

(28) The 'c' of Lagranges Mean Value Theorem for the function $f(x) = x^2 + 2x - 1$; a = 0, b = 1 is

(1) - 1

(2) 1

(3)0

 $(4)\frac{1}{2}$

(29) The value of c in Rolle's Theorem for the function $f(x) = \cos \frac{x}{2}$ on $[\pi, 3\pi]$ is

(1) 0

 $2) 2\pi$

 $(3)\frac{\pi}{2}$

 $(4)\frac{3\pi}{2}$

(30) The value of 'c' of Lagranges Mean Value Theorem for $f(x) = \sqrt{x}$ when a = 1 and b = 4 is

 $(1)\frac{9}{4}$

 $(2)\frac{3}{2}$ $(3)\frac{1}{2}$

 $(4)\frac{1}{4}$

(31) $\lim_{x \to \infty} \frac{x^2}{e^x}$ is =

(1) 2

(2) 0 (3) ∞

(32) $\lim_{x \to 0} \frac{a^x - b^x}{c^x - d^x}$

 $(1) \infty$

(2) 0

(3) $\log \frac{ab}{cd}$ (4) $\frac{\log (a/b)}{\log (c/d)}$

(33) If f(a) = 2; f'(a) = 1; g(a) = -1; g'(a) = 2 then the value of $\frac{g(x) f(a) - g(a) f(x)}{x - a}$ is $x \rightarrow a$

(1)5

(2) - 5

(3) 3

(34) Which of the following function is increasing in $(0, \infty)$

 $(2)^{\frac{1}{x}}$

(35) The function $f(x) = x^2 - 5x + 4$ is increasing in

 $(1) (-\infty, 1)$

(2)(1,4)

 $(3)(4, \infty)$

(4) everyw' 241 / 270

(36) The function $f(x) = x^2$ is decreasing in

 $(1) (-\infty, \infty) \qquad (2) (-\infty, 0) \qquad (3) (0, \infty)$

 $(4) (-2, \infty)$

- (37) The function $y = \tan x x$ is
 - (1) an increasing function in $\left(0, \frac{\pi}{2}\right)$
 - (2) a decreasing function in $\left(0, \frac{\pi}{2}\right)$
 - (3) increasing in $\left(0, \frac{\pi}{4}\right)$ and decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
 - (4) decreasing in $\left(0, \frac{\pi}{4}\right)$ and increasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
- (38) In a given semi circle of diameter 4 cm a rectangle is to be inscribed. The maximum area of the rectangle is
- (1) 2 (2) 4 (3) 8 (4) 16 (39) The least possible perimeter of a rectangle of area $100m^2$ is
- (1) 10 (2) 20 (3) 40 (4) 60
- (40) If $f(x) = x^2 4x + 5$ on [0, 3] then the absolute maximum value is
 (1) 2
 (2) 3
 (3) 4
 (4) 5
- (41) The curve $y = -e^{-x}$ is
 - (1) concave upward for x > 0 (2) concave downward for x > 0
- (2) everywhere concave upward(4) everywhere concave downward(42) Which of the following curves is concave down?
- (42) Which of the following curves is concave down? (1) $y = -x^2$ (2) $y = x^2$ (3) $y = e^x$ (4) $y = x^2 + 2x - 3$
- (43) The point of inflexion of the curve $y = x^4$ is at
 - (1) x = 0 (2) x = 3 (3) x = 12 (4) nowhere
- (44) The curve $y = ax^3 + bx^2 + cx + d$ has a point of inflexion at x = 1 then

 (1) a + b = 0(2) a + 3b = 0(3) 3a + b = 0(4) 3a + b = 1
- (1) a + b = 0 (2) a + 3b = 0 (3) 3a + b = 0 (4) 3a + b = 1
- (45) If $u = x^y$ then $\frac{\partial u}{\partial x}$ is equal to
- (1) yx^{y-1} (2) $u \log x$ (3) $u \log y$ (4) xy^{x-1}
- (46) If $u = \sin^{-1} \left(\frac{x^4 + y^4}{x^2 + y^2} \right)$ and $f = \sin u$ then f is a homogeneous function of degree

 (1) 0 (2) 1 (3) 2 (4) 4
- (47) If $u = \frac{1}{\sqrt{x^2 + y^2}}$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to
 - $(1)\frac{1}{2}u$ (2)u $(3)\frac{3}{2}u$ (4)-

- (48) The curve $y^2(x-2) = x^2(1+x)$ has
 - (1) an asymptote parallel to x-axis (2) an asymptote parallel to y-axis
 - (3) asymptotes parallel to both axes (4) no asymptotes
- (49) If $x = r \cos \theta$, $y = r \sin \theta$, then $\frac{\partial r}{\partial x}$ is equal to
 - sec θ
- (2) $\sin \theta$
- (4) cosec θ
- (50) Identify the true statements in the following:
 - (i) If a curve is symmetrical about the origin, then it is symmetrical about both axes.
 - (ii) If a curve is symmetrical about both the axes, then it is symmetrical about the origin.
 - (iii) A curve f(x, y) = 0 is symmetrical about the line y = xif f(x, y) = f(y, x).
 - (iv) For the curve f(x, y) = 0, if f(x, y) = f(-y, -x), then it is symmetrical about the origin.
- (2) (i), (iv) (3) (i), (iii)

- (51) If $u = \log\left(\frac{x^2 + y^2}{xy}\right)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is
- (2) u
- (3) 2u
- (52) The percentage error in the 11th root of the number 28 is approximately ____ times the percentage error in 28.
- $(2)\frac{1}{11}$
- (3) 11
- (4)28

- (53) The curve $a^2v^2 = x^2(a^2 x^2)$ has
 - (1) only one loop between x = 0 and x = a
 - (2) two loops between x = 0 and x = a
 - (3) two loops between x = -a and x = a
 - (4) no loop
- (54) An asymptote to the curve $y^2(a+2x) = x^2(3a-x)$ is
 - (1) x = 3a
- (2) x = -a/2 (3) x = a/2
- (55) In which region the curve $y^2(a+x) = x^2(3a-x)$ does not lie?
- (2) 0 < x < 3a (3) $x \le -a$ and x > 3a (4) -a < x < 3a

- (56) If $u = y \sin x$, then $\frac{\partial^2 u}{\partial x \partial y}$ is equal to
 - $(1) \cos x$
- (2) cos y
- $(3) \sin x$ 4) 0
- 243 / 270

- (57) If $u = f\left(\frac{y}{x}\right)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to

- (4) u
- (1) 0 (2) 1 (3) 2u(58) The curve $9y^2 = x^2(4 x^2)$ is symmetrical about
 - (1) *y*-axis (2) *x*-axis
- (4) both the axes
- (59) The curve $ay^2 = x^2 (3a x)$ cuts the y-axis at (1) x = -3a, x = 0 (2) x = 0, x = 3a (3) x = 0, x = a (4) x = 0
- (60) The value of $\int_{0}^{\pi/2} \frac{\cos^{5/3} x}{\cos^{5/3} x + \sin^{5/3} x} dx$ is

- $(4) \pi$

- (61) The value of $\int_{0}^{\pi/2} \frac{\sin x \cos x}{1 + \sin x \cos x} dx$ is

- (62) The value of $\int_{0}^{1} x (1-x)^{4} dx$ is $(1) \frac{1}{12} \qquad (2) \frac{1}{30} \qquad (3) \frac{1}{24}$

- $(4)\frac{1}{20}$

- (63) The value of $\int_{0}^{\pi/2} \left(\frac{\sin x}{2 + \cos x} \right) dx$ is
 - (1) 0
- $-\pi/2$ (2) 2 (3) log 2
- $(4) \log 4$

- (3) 0
- $(4) 3\pi/8$

- (64) The value of $\int_{0}^{\pi} \sin^{4}x \, dx$ is

 (1) $3\pi/16$ (2) 3/16(65) The value of $\int_{0}^{\pi/4} \cos^{3}2x \, dx$ is
- (3)0

(66)	The value of $\int_{0}^{\pi} \sin^{2}\theta$	$n^2 x \cos^3 x dx$ is		
	0			
(67)	(1) π The area bounded is	(2) $\pi/2$ I by the line $y = 1$	(3) $\pi/4$ x, the x-axis, the ord	(4) 0 linates $x = 1$, $x = 2$
	$(1)\frac{3}{2}$	$(2)\frac{5}{2}$	$(3)\frac{1}{2}$	$(4)\frac{7}{2}$
(68)	The area of the re	egion bounded b	y the graph of $y = s$	in x and $y = \cos x$
	between $x = 0$ and			
	$(1)\sqrt{2}+1$	(2) $\sqrt{2} - 1$	(3) $2\sqrt{2} - 2$ $\frac{y^2}{h^2} = 1$ and its auxillar	$(4) 2\sqrt{2} + 2$
(69)	The area between	the ellipse $\frac{x^2}{a^2}$ +	$\frac{y^2}{b^2} = 1$ and its auxilla	ary circle is
	(1) $\pi b(a-b)$	(2) $2\pi a (a - b)$	(3) $\pi a (a-b)$	(4) $2\pi b (a - b)$
(70)	The area bounded	by the parabola	$y^2 = x$ and its latus	rectum is
	$(1)\frac{4}{3}$	$(2)\frac{1}{6}$	$(3)\frac{2}{3}$	$(4)\frac{8}{3}$
(71)	The volume of the	ne solid obtained	d by revolving $\frac{x^2}{9}$ +	$\frac{y^2}{16} = 1$ about the
	minor axis is		. 0 1699 16	
	$(1) 48\pi$	(2) 64π	(3) 32π	(4) 128π
(72)	The volume, whe about <i>x</i> -axis is	in the curve $y = \frac{1}{2}$	$\sqrt{3+x^2} \text{ from } x = 0$	to $x = 4$ is rotated
	(1) 100 π	$(2)\frac{100}{9}\pi$	$(3)\frac{100}{3}\pi$	$(4)\frac{100}{3}$
(73)	The volume generotated about y-ax		egion bounded by y	= x, y = 1, x = 0 is
	$(1)\frac{\pi}{4}$	(2) $\frac{\pi}{2}$	$(3)\frac{\pi}{3}$	$(4)\frac{2\pi}{3}$
(74)	7 7		revolving the are or axes are in the rati	
	(1) b^2 : a^2	(2) $a^2 : b^2$	$(3) a \cdot b$	(4) b: a
(75)	. ,		the triangle with ve	1
	0, 0), (3, 0) and (3		_	
(1) 18π	(2) 2π	(3) 36π	(4) 9π 245 / 27

(87)	The differential equ	uation of all circ	les with centre at t	the origin is
	(1) x dy + y dx = 0		(2) x dy - y dx	=0
	(3) x dx + y dy = 0		(4) x dx - y dy	= 0
(88)	The integrating fac	tor of the differen	ential equation $\frac{dy}{dx}$	+py=Q is
	$(1) \int p dx$	$(2) \int Q dx$	$(3) e^{\int Q dx}$	(4) $e^{\int pdx}$
(89)	The complementar	y function of (D	$(x^2 + 1)y = e^{2x}$ is	
	$(1) (Ax + B)e^x \qquad (2)$	$A \cos x + B \sin x$	$\int a x (3) (Ax + B)e^2$	$(4) (Ax + B)e^{-x}$
(90)	A particular integra	al of $(D^2 - 4D +$	4) $y = e^{2x}$ is	
	$(1)\frac{x^2}{2}e^{2x}$	$(2) xe^{2x}$	$(3) xe^{-2x}$	$(4)\frac{x}{2}e^{-2x}$
(91)	The differential equ	uation of the fan	nily of lines $y = mx$	r is
	$(1)\frac{dy}{dx} = m$	(2) ydx - xdy :	= 0	
	$(3)\frac{d^2y}{dx^2} = 0$	(4) ydx + x dy	= 0	
(92) The degree of the	differential equ	ation $\sqrt{1 + \left(\frac{dy}{dx}\right)}$	$=\frac{d^2y}{dx^2}$
		(2) 2	(3) 3	(4) 6
(93) The degree of the	e differential eq	uation $c = \frac{1 + \left(\frac{d}{d}\right)}{\frac{d^2}{d^2}}$	$\frac{(4) 6}{(x)^3}$ $\frac{(4) 6}{3}$ where c is a
	constant is	(2) 2	(2)	(1) 2
(0.4	(1) 1	(2) 3	(3) – 2	(4) 2
(94				sintegrates at a rate on corresponding to
	the above stateme		_	corresponding to
			$(3)\frac{dp}{dt} = kp$	$(4)\frac{dp}{dt} = -kt$

(95) The differential equation satisfied by all the straight lines in xy plane is

(1) $\frac{dy}{dx} = \text{a constant}$ (2) $\frac{d^2y}{dx^2} = 0$ (3) $y + \frac{dy}{dx} = 0$ (4) $\frac{d^2y}{dx^2} + y = 0$

- (96) If $v = ke^{\lambda x}$ then its differential equation is
- $(1) \frac{dy}{dx} = \lambda y$ $(2) \frac{dy}{dx} = ky$ $(3) \frac{dy}{dx} + ky = 0$ $(4) \frac{dy}{dx} = e^{\lambda x}$
- (97) The differential equation obtained by eliminating a and b from $y = ae^{3x} + be^{-3x}$ is
 - (1) $\frac{d^2y}{dx^2} + ay = 0$ (2) $\frac{d^2y}{dx^2} 9y = 0$ (3) $\frac{d^2y}{dx^2} 9\frac{dy}{dx} = 0$ (4) $\frac{d^2y}{dx^2} + 9x = 0$
- (98) The differential equation formed by eliminating A and B from the relation $y = e^x (A \cos x + B \sin x)$ is
 - $(1) y_2 + y_1 = 0$

- (2) $y_2 y_1 = 0$
- (3) $y_2 2y_1 + 2y = 0$
- (4) $y_2 2y_1 2y = 0$

- (99) If $\frac{dy}{dx} = \frac{x-y}{x+y}$ then
 - (1) $2xy + y^2 + x^2 = c$
- (2) $x^2 + y^2 x + y = c$
- (3) $x^2 + y^2 2xy = c$
- $(4) x^2 y^2 2xy = c$
- (100) If $f'(x) = \sqrt{x}$ and f(1) = 2 then f(x) is

 - $(1) \frac{2}{3}(x\sqrt{x} + 2) \qquad (2) \frac{3}{2}(x\sqrt{x} + 2)$
 - $(3)\frac{2}{3}(x\sqrt{x}+2)$

- $(4)\frac{2}{3}x(\sqrt{x}+2)$
- (101) On putting y = vx, the homogeneous differential equation $x^2dy + y(x+y)dx = 0$ becomes
 - (1) $xdv + (2v + v^2)dx = 0$
- (2) $ydx + (2x + x^2)dy = 0$
- (3) $v^2 dx (x + x^2) dy = 0$
- (4) $vdv + (2x + x^2)dx = 0$
- (102) The integrating factor of the differential equation $\frac{dy}{dx} y \tan x = \cos x$ is
 - (1) sec x
- $(3) e^{\tan x}$
- $(4) \cot x$

- (103) The P.I. of $(3D^2 + D 14)y = 13e^{2x}$ is
 - (1) $26x e^{2x}$
- (2) $13x e^{2x}$ (3) $x e^{2x}$
- (4) $x^2/2 e^{2x}$
- (104) The particular integral of the differential equation $f(D)y = e^{ax}$ where $f(D) = (D - a) g(D), g(a) \neq 0$ is
- $(2)\frac{e^{ax}}{o(a)}$
 - $(3) g(a)e^{ax}$
- (4) $\frac{xe^{ax}}{o(a)}$ 248 / 270

(105)	Which of the follo	wing are statem	ents?	
	(i) May God bles	s you.	(ii) Rose is a flower	
	(iii) Milk is white.		(iv) 1 is a prime nur	nber
	(1) (i), (ii), (iii)		(3) (i), (iii), (iv) (4	
(106)	If a compound star	tement is made u	up of three simple sta	tements, then the
	number of rows in	the truth table i	S	
	(1) 8	(2) 6	(3) 4	(4) 2
(107)	If p is T and q is F	, then which of t	the following have th	e truth value T?
	(i) $p \vee q$	(ii) $\sim p \vee q$	(iii) $p \lor \sim q$	(iv) $p \wedge \sim q$
	(1) (i), (ii), (iii)		(2) (i) , (ii) , (iv)	
	(3) (i), (iii), (iv)		(4) (ii), (iii), (iv)	
(108)	The number of rov	ws in the truth ta	ble of $\sim [p \land (\sim q)]$ is	S
	(1) 2	(2) 4	(3) 6	(4) 8
(109)	The conditional st	atement $p \to q$ is	s equivalent to	
	(1) $p \vee q$	(2) $p \lor \sim q$	$(3) \sim p \vee q$	$(4) p \wedge q$
(110)	Which of the follo	wing is a tautolo	ogy?	
	$(1) p \vee q$	$(2) p \wedge q$	(3) $p \lor \sim p$	(4) $p \wedge \sim p$
(111)	Which of the follo			
,	(1) $p \vee q$		(3) $p \lor \sim p$	(4) $p \land \sim p$
(112)	$p \leftrightarrow q$ is equivalent		$\int \int \int \int \int \int \int \int \int \partial u du d$	
(/			$(q \rightarrow p) (4) (p - q)$	$(a \rightarrow p) \wedge (a \rightarrow p)$
(113)			nary operation on R	47.14 21
(113)	(1) a * b = ab		(2) a * b = a - b	
			(4) $a * b = \sqrt{a^2 + b^2}$	2
	$(3) a * b = \sqrt{ab}$			-
(114)	A monoid become	s a group if it al		
	(1) closure axiom		(2) associative axion	m
	(3) identity axiom		(4) inverse axiom	
(115)	Which of the follo	-		
	$(1) (Z_n, +_n)$	(2)(Z, +)	(3)(Z, .)	(4) (R, +)
(116)	In the set of integer	ers with operatio	on * defined by $a * b$	= a + b - ab, the
	value of 3 * (4 * 5) is		
	(1) 25	(2) 15	(3) 10	(4) 5
(117)	The order of [7] in	$(Z_{9}, +_{9})$ is		
	(1) 9	(2) 6	(3) 3	(4) 1
(118)	. ,	. ,	e root of unity, the or	4 /
(110)	(1) 4	(2) 3	(3) 2	(4) 1
	(1) 4	(2) 3	(3) 2	(7) 1

(119) The value of [3] $+_{11}$ ([5] $+_{11}$ [6]) is

- (1)[0]
- (2)[1]
- (3)[2]
- (4)[3]

(120) In the set of real numbers R, an operation * is defined by

- $a * b = \sqrt{a^2 + b^2}$. Then the value of (3 * 4) * 5 is
 - (2) $5\sqrt{2}$
- (3)25
- (4) 50

(121) Which of the following is correct?

- (1) An element of a group can have more than one inverse.
- (2) If every element of a group is its own inverse, then the group is abelian.
- (3) The set of all 2×2 real matrices forms a group under matrix multiplication.
- (4) $(a * b)^{-1} = a^{-1} * b^{-1}$ for all $a, b \in G$

(122) The order of -i in the multiplicative group of 4^{th} roots of unity is

- (1)4
- (ii) 3
- (3) 2

(123) In the multiplicative group of *n*th roots of unity, the inverse of ω^k is (k < n)

- (1) $\omega^{1/k}$
- (2) ω^{-1} (3) ω^{n-k}

(124) In the set of integers under the operation * defined by a * b = a + b - 1, the identity element is

- (1) 0
- (3) a
- (4) b

(125) If $f(x) = \begin{cases} kx^2, 0 < x < 3 \\ 0 & \text{elsewhere} \end{cases}$ is a probability density function then the value of k is

- (1) $\frac{1}{3}$ (2) $\frac{1}{6}$ (3) $\frac{1}{9}$

- $(4)\frac{1}{12}$

(126) If $f(x) = \frac{A}{\pi} \frac{1}{16 + x^2}, -\infty < x < \infty$

is a p.d.f of a continuous random variable X, then the value of A is

- (1) 16
- (2) 8
- (3) 4
- (4) 1

(127) A random variable X has the following probability distribution

			_	_	_	
X	0	1	2	3	4	5
P(X = x)	1/4	2 <i>a</i>	3 <i>a</i>	4 <i>a</i>	5a	1/4

Then $P(1 \le x \le 4)$ is

- $(2) \frac{2}{7}$
- (3) $\frac{1}{14}$

(128) A random variable X has the following probability mass function as follows:

X	-2	3	1
P(X = x)	$\frac{\lambda}{6}$	$\frac{\lambda}{4}$	$\frac{\lambda}{12}$

Then the value of λ is

- (1) 1
- (2) 2
- (3) 3
- (4)4

(129) X is a discrete random variable which takes the values 0, 1, 2 and $P(X=0) = \frac{144}{169}$, $P(X=1) = \frac{1}{169}$ then the value of P(X=2) is

- (1) $\frac{145}{169}$ (2) $\frac{24}{169}$ (3) $\frac{2}{169}$ (4) $\frac{143}{169}$

(130) A random variable X has the following p.d.f.

X	0	1	2	3	4	5	6	7
P(X = x)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

The value of k is

- (1) $\frac{1}{8}$
- $(2) \frac{1}{10}$
- (3) 0
- (4) 1 or $\frac{1}{10}$

(131) Given E(X + c) = 8 and E(X - c) = 12 then the value of c is

- (1) -2
- (2)4
- (3) -4

(132) X is a random variable taking the values 3, 4 and 12 with probabilities $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{5}{12}$. Then E(X) is

- (1) 5
- (2)7
- (3) 6

(133) Variance of the random variable X is 4. Its mean is 2. Then $E(X^2)$ is

- (1) 2
- (2) 4
- (3) 6

the random variable X is

(2) 5

(1) 16

(1)7

(1) $\frac{5}{3}$

(135) Var (4X + 3) is

successes is

(4) 1

(4) 0

, ,	binomial distribute of n and p are	ation is 5 and its st	andard deviation is 2.
$(1)\left(\frac{4}{5},25\right)$	$(2) \left(25, \frac{4}{5}\right)$	(3) $\left(\frac{1}{5}, 25\right)$	$(4)\left(25,\frac{1}{5}\right)$
respectively. T	hen the value of its	parameter p is	stribution are 12 and 2 $(4)\frac{1}{4}$
1	of a die getting an		considered a success.
(1) 4	(2) 6	(3) 2	(4) 256
	s 6 red and 4 white of getting 2 white		are drawn at random, ecement, is
(1) $\frac{1}{20}$	$(2)\frac{18}{125}$	$(3)\frac{4}{25}$	$(4)\frac{3}{10}$
	lrawn from a well s f the same colours v		cards, the probability nt, is
$(1)\frac{1}{2}$	$(2)\frac{26}{51}$	$(3)\frac{25}{51}$	$(4)\frac{25}{102}$
(142) If in a Poisson	distribution $P(X =$	0) = k then the va	ariance is
(1) $\log \frac{1}{k}$	(2) $\log k$	(3) e^{λ}	$(4)\frac{1}{k}$
(143) If a random va then the varian	ariable X follows Pariable of the distribution	oisson distribution on is	such that $E(X^2) = 30$ 252 / 270
(1) 6	(2) 5	(3) 30	(4) 25

(134) $\mu_2 = 20$, $\mu_2' = 276$ for a discrete random variable X. Then the mean of

(2) 16 Var (X) (3) 19

(136) In 5 throws of a die, getting 1 or 2 is a success. The mean number of

(2) $\frac{3}{5}$ (3) $\frac{5}{9}$ (4) $\frac{9}{5}$

(3) 2

(144)	The distribution function $F(X)$ of a random variable X is
	(1) a decreasing function
	(2) a non-decreasing function

- (3) a constant function
- (4) increasing first and then decreasing
- (145) For a Poisson distribution with parameter $\lambda = 0.25$ the value of the 2^{nd} moment about the origin is
 - (1) 0.25 (2) 0.3125 (3) 0.0625 (4) 0.025
- (146) In a Poisson distribution if P(X = 2) = P(X = 3) then the value of its parameter λ is
 - (1) 6 (2) 2 (3) 3 (4) 0
- (147) If f(x) is a p.d.f of a normal distribution with mean μ then $\int_{-\infty}^{\infty} f(x) dx$ is
 - (1) 1 (2) 0.5 (3) 0 (4) 0.25
- (148) The random variable X follows normal distribution

$$f(x) = ce^{\frac{-1/2(x-100)^2}{25}}$$
 Then the value of c is
$$(1) \sqrt{2\pi}$$

$$(2) \frac{1}{\sqrt{2\pi}}$$

$$(3) 5 \sqrt{2\pi}$$

$$(4) \frac{1}{5\sqrt{2\pi}}$$

(149) If f(x) is a p.d.f. of a normal variate X and $X \sim N(\mu, \sigma^2)$ then $\int_{-\infty}^{\mu} f(x) dx$

is

- (1) undefined (2) 1 (3) .5 (4) .5
- (150) The marks secured by 400 students in a Mathematics test were normally distributed with mean 65. If 120 students got more marks above 85, the number of students securing marks between 45 and 65 is
 - (1) 120
- (2) 20
- (3)80
- (4) 160

KEY TO OBJECTIVE TYPE QUESTIONS

Q.No	Key	Q.No	Key	Q.No	Key	Q.No	Key	Q.No	Key
1	4	31	2	61	2	91	2	121	2
2	2	32	4	62	2	92	4	122	1
3	3	33	1	63	1	93	2	123	3
4	2	34	1	64	4	94	3	124	2
5	1	35	3	65	2	95	2	125	3
6	3	36	2	66	4	96	1	126	3
7	4	37	1	67	1	97	2	127	4
8	2	38	2	68	2	98	3	128	2
9	3	39	3	69	3	99	4	129	2
10	4	40	4	70	2	100	3	130	2
11	1	41	4	71	2	101	1	131	1
12	2	42	1	72	3	102	2	132	2
13	2	43	4	73	3	103	3	133	4
14	_1	44	3	74	4	104	4	134	_1
15	1	45	1	75	4	105	4	135	2
16	4	46	3	76	1	106	1	136	1
17	2	47	4	77		107	3	137	4
18	1	48	2	78	1	108	2	138	3
19	1	49	3	79	2	109	3	139	1
20	2	50	1	80	4	110	3	140	4
21	3	51	1	81	3	111	4	141	3
22	1	52	2	82	2	112	4	142	1
23	1	53	3	83	2	113	3	143	2
24	2	54	2	84	1	114	4	144	2
25	2	55	3	85	2	115	3	145	2
26	3	56	1	86	2	116	1	146	3
27	2	57	1	87	3	117	1	147	1
28	4	58	4	88	4	118	2	148	4
29	2	59	4	89	2	119	4	149	3
30	1	60	2	90	1	120	2	150	3