HIGHER SECONDARY PUBLIC EXAMINATION, MARCH – 2022 TENTATIVE SCORING KEY

SUBJECT: ZOOLOGY

CLASS: 12

	P/	ART-I		15 x 1 = 15	
Q.NO	A - TYPE		Q.NO		B - TYPE
1	D	A deep geological repository	1	В	Multiple alleles
2	С	Sexual	2	В	Individuals mate selectively
3	с	Amphibians	3	В	LH – Leyidig cells – testosterone – Spermatogenesis.
4	С	Intersex	4	В	Reduce BOD
5	с	3.1 billion	5	С	Antigen
6	D	Inhibition of release of FSH & LH	6	А	Molasses
7	D	Eurytherms	7		• • •
8	С	Antigen	8		1. Net
9	А	Molasses	9	D	A deep geological repository
10	В	LH – Leyidig cells – testosterone – Spermatogenesis.	10	с	3.1 billion
11	В	Individuals mate selectively	11	с	Amphibians
12	В	Multiple alleles	12	D	Inhibition of release of FSH & LH
13	Α	A toxin from the plasmodium species	13	С	Intersex
14	c	Migration	14	D	Eurytherms
15	В	Reduce BOD	15	с	Migration


	PART-II (Q.NO : 24 Is Compulsory	6 x 2 = 12
	Senescent phase:	
16	1. It begins at the end of reproductive phase 1 N	1 2 M
	2. Degeneration sets in the structure and functioning of the body 1 N	1
	Composition of Semen:	
17	1. Semen or seminal fluid is contains sperms and the seminal plasma 1 N	1 2 M
17	3. Secretions of seminal vesicles, prostate gland and the bulbourethral gland	ls.
	1 N	N
	POCSO Act	
18	1. Prevention of children from sexual offences 1 N	2 M
10	2. Sexual harassment at workplace - Prevention, prohibition and redressal A	Act.
	1 N	1
	Transcription:	
19	1. The process of copying genetic information from one strand of DNA	into 2 M
	RNA 1 N	1
	Gases in primitive earth:	
	1. Ammonia, ½ I	
20	2. Methane, ½ I	
	3. Hydrogen and ½ I	
	4. Water vapour ½ I	М
	Amoebiasis:	
21	1. Infective stage of amoebiasis is parasite is the trophozoite, ½	2 M
	2. House flies (Musca domestica) acts as a carrier for transmitting	
	Trophozoite from contaminated faeces and water 1 ¹ / ₂	2 M
	Zymology:	
22	1. It is an applied science which deals with the biochemical process	
	fermentation and its practical uses 2 N	1
	Mass extinction:	•
	1. The earth has experienced quite a few mass extinctions due	
23	environmental catastrophes 1 N	
	2. A mass extinction occurred about 225 million years ago during the Perm	
	where 90% of shallow water marine invertebrates disappeared 1 N	1
	RTPCR technology: 1. The PCR technique can also be used for amplifications of RNA in which ca	se it
	is referred to as reverse transcription PCR (RT-PCR) ½	
	2. In this process the corona RNA molecules (mRNA) must be converted	
24	complementary DNA by the enzyme reverse transcriptase 1 N	
С	3. The cDNA then serves as the template for PCR ½ N	

www.Padasalai.Net

www.CBSEtips.in

		PART-III - QUESTION NO – 33. IS COMPULSORY 6 X	3 = 18
	1.	Female foeticide: 'aborting the female in the mother's womb' 1 ½ M	
25	2.	Female infanticide: killing the female child after her birth' 1 ½ M	3 M
	1.	If a woman is Rh negative and the man is Rh positive, the foetus may be Rh	
		positive having inherited the factor fromits father ½ M	
	2.	The Rh negative mother becomes sensitized by carrying Rh positive foetus	
		within her body ½ M	
	3.	Due to damage of blood vessels, during child birth, the mother's immune	
		system recognizes the Rh antigens and gets sensitized ½ M	
	4.	Usually no effects are associated with exposure of the mother to Rh positive	
26		antigen during the first child birth, ½ M	3 M
	5.	Subsequent Rh positive children carried by the same mother, may be	
		exposed to antibodies produced by the mother against Rh antigen, which are	
		carried across the placenta into the foetal blood circulation ½ M	
	6.	This causes haemolysis of foetal RBCs resulting in haemolytic jaundice and	
	_	anaemia ½ M	
	/.	This condition is known as Erythoblastosis foetalis or Haemolytic disease of	
	1	the new born (HDN).	
		Malaria vaccine is used to prevent malaria. ½ M The only approved vaccine as of 2015 is RTS,S (Mosquirix). ½ M	
27		It requires four injections and has relatively low efficacy (26–50%) 1 M	
21		Due to this low efficacy, WHO does not recommend the use of RTS,S vaccine	
		in babies between 6 and 12 weeks of age 1 M	
		Antigen binding	
		site Diagram – 2 mark Any four parts – 1 mark	
	(
		Variable region	
		Light chain	
		Disulphide	
		bond	
		Heavy chain	
28		Constant	3 M
		region	
		Fig. 8.7 Structure of immunoglobulin	
	1		1

	Working of a microbial fuel cell.				
	1. A microbial fuel cell is a bio-electrochemical				
	system that drives an electric current by using Substrate				
	bacteria and mimicking bacterial interaction				
	found in nature ½ Mark				
	2. Microbial fuel cells work by allowing bacteria to				
	oxidize and reduce organic molecules ½ Mark				
29	3. Bacterial respiration is basically one big redox	3 M			
	reaction in which electrons are being moved around ½ Mark				
	 A MFC consists of an anode and a cathode separated by a proton exchange membrane. - ½ Mark 				
	5. Microbes at the anode oxidize the organic fuel generating protons which pass through the membrane to the cathode and the electrons pass through the				
	anode to the external circuit to generate current.				
	6. Diagram - ½ Mark				
	Eurytherms:				
	1. Organisms which can survive a wide range of temperature 1 M				
	2. Ex: (cat, dog, tiger, human) ½ M				
30	Stenotherms:	3 M			
	3. Organisms which can tolerate only a narrow range of temperature 1 M				
	4. Ex: Fish, Frogs, Lizards and Snakes ½ M				
	Alpha diversity: 1 M				
	1. It is measured by counting the number of taxa (usually species) within a				
	particular area, community or ecosystem.	-			
	Beta diversity: 1 M	3 M			
31	2. It is species diversity between two adjacent ecosystems and is obtaining by				
	comparing the number of species unique to each of the ecosystem.				
	Gamma diversity: 1 M				
	 It refers to the diversity of the habitats over the total landscape or geographical area. 				
	Eutrophication can be controlled by. Any three valid points				
	1. Reducing the use of fertilizers in agricultural lands,				
	 Checking the runoff water from fields. 				
32	3. Prevent introduction of nutrients such as nitrates and phosphates, which				
	encourage the growth of aquatic organisms.				
	4. Pollutants should be reduced.				
	5. Effluents from the industries and homes should be treated.3 x 1 = 3				
	Multipotency (multi-Many):				
	1. The stem cells that can differentiate into various types of cells that are				
	related 1 M				
	2. Example: blood stem cells can differentiate into lymphocytes, monocytes,				
33	neutrophils ½ M	3 M			
С	Oligopotency (Oligo-Few):	2			
	3. The stem cells that can differentiate into few cell types 1 M				
	 Example lymphoid or myeloid stem cells can differentiate into B and T cells 				
	but not RBC ½ M				

3

	Functions: 1 M	
	1. IF3 binds to the 30S	
	2. 30S subunit to bind to mRNA.	
	3. (IF2) then enhances the binding of charged formyl methionine tRNA to the	
	small subunit in response to the AUG triplet.	
	4. IF3 is released and allows the initiation complex to combine with the 50S ribosomal subunit to form the complete ribosome (70S)	
	ribosomal subunit to form the complete ribosome (70S). Elongation components: 1 M	
	 Aminoacyl site (A site), 	
	 Peptidyl site (P site) and 	
	Exit site (E site).	
	Functions: 1 M	
	1. The charged initiator tRNA binds to the P site.	
	2. The covalent bond between the amino acid and tRNA occupying the P site is	
	hydrolyzed (broken).	
	The uncharged tRNA moves through the 'E' site on the ribosome.	
	Termination phase of translation: 1 M	
	1. The terminal codon signals the action of GTP – dependent release factor ,	
	which cleaves the polypeptide chain from the terminal tRNA releasing it from	
	the translational complex	
	OR	
	The salient features of genetic code: any five = 5 x 1 = 5	
	1. The genetic codon is a triplet code and 61 codons code for amino acids and 3	
	codons do not code for any amino acid and function as stop codon	
	(Termination).	
	2. The genetic code is universal. The mRNA (UUU) codon codes for	
	phenylalanine in all cells of all organisms.	
	3. A non-overlapping codon means that the same letter is not used for two	
	different codons. For instance, the nucleotide sequence GUU GUC represents	
	only two codons.	
	4. It is comma less, which means that the message would be read directly from	
25 D	one end to the other i.e., no punctuation are needed between two codes.	F N A
35. B		5 M
	5. A degenerate code means that more than one triplet codon could code for a	
	specific amino acid. For example, codons GUU, GUC, GUA and GUG code for	
	valine.	
	6. Non-ambiguous code means that one codon will code for one amino acid.	
	7. The code is always read in a fixed direction i.e. from $5' \rightarrow 3'$ direction called	
	polarity.	
	8. AUG has dual functions. It acts as a initiator codon and also codes for the	
	amino acid methionine.	
	9. UAA, UAG and UGA) codons are designated as termination (stop) codons and	
	also are known as "non-sense" codons.	

	Hardy weinhe	rg's law ·			
	generat recombi 2. Evolutio Hence p Explanation for 1. Large po grey and 2. "AA" an 3. "A" allel 4. Then p	ele frequencies ion to generation nation and natur n is a change in opulation in harco or the equilibrium opulations of bee d their colour is d d "Aa" beetles ar e has frequency + q = 1.	n in the absence of general selection. In the allele frequencies dy Weinberg is not evolve n: etles appear in two color letermined by "A" gene. The dark grey and 'aa' bee (P) of 0.3 and "a" allele h	urs dark grey (black) and light ½ M tles are light grey ½ M nas a frequency (q) of 0.7. ½ M	
36. A	be estim 6. $(P + q)^2$ $p^2 = frequer$ $\checkmark p^2 =$ $\checkmark p^2 =$ $\checkmark 2pq$ $\checkmark q^2 =$ 7. When t genotyp would b 8. The gen	hated by Hardy W = $P^2 + 2pq + q^2$ here of AA, 2pq= f (0.3), q = 0.7 then, (0.3) ² = 0.09 = 9 = 2(0.3) (0.7) = 0 (0.7)2 0.49 = 49 here beetles in Ha here frequency in the e no variation in	Veinberg equation requency of Aa, q ² = free % AA .42 = 42 % Aa % aa rdy- Weinberg equilibrin the next generation would the progeny. of the parent appears in	, the genotype frequency can quency of aa ½ M 1 M um reproduce, the allele and d be the same, and then there ½ M n the next generation. (i.e. 9% ½ M	
	Bacterial dise				
	Bacterial dise	ase: Causative agent	Site of infection & Mode of transmission	Symptoms	
		Causative		Symptoms Headache, abdominal discomfort, fever and diarrhoea	1 M
36. B	Diseases Typhoid (Enteric	Causative agent Salmonella	Mode of transmission Intestine Through contaminated	Headache, abdominal discomfort, fever and	1 M
36. B	Diseases Typhoid (Enteric fever) Shigellosis (Bacillary	Causative agent Salmonella typhi	Mode of transmission Intestine Through contaminated food and water Intestine Food and water contaminated by faeces	Headache, abdominal discomfort, fever and diarrhoea Abdominal pain, dehydration, blood and	
36. B	Diseases Typhoid (Enteric fever) Shigellosis (Bacillary dysentery)	Causative agent Salmonella typhi Shigella sp.	Mode of transmission Intestine Through contaminated food and water Intestine Food and water contaminated by faeces / faecal oral route Intestine Contaminated food and	Headache, abdominal discomfort, fever and diarrhoea Abdominal pain, dehydration, blood and mucus in the stools Severe diarrhoea and	1 M

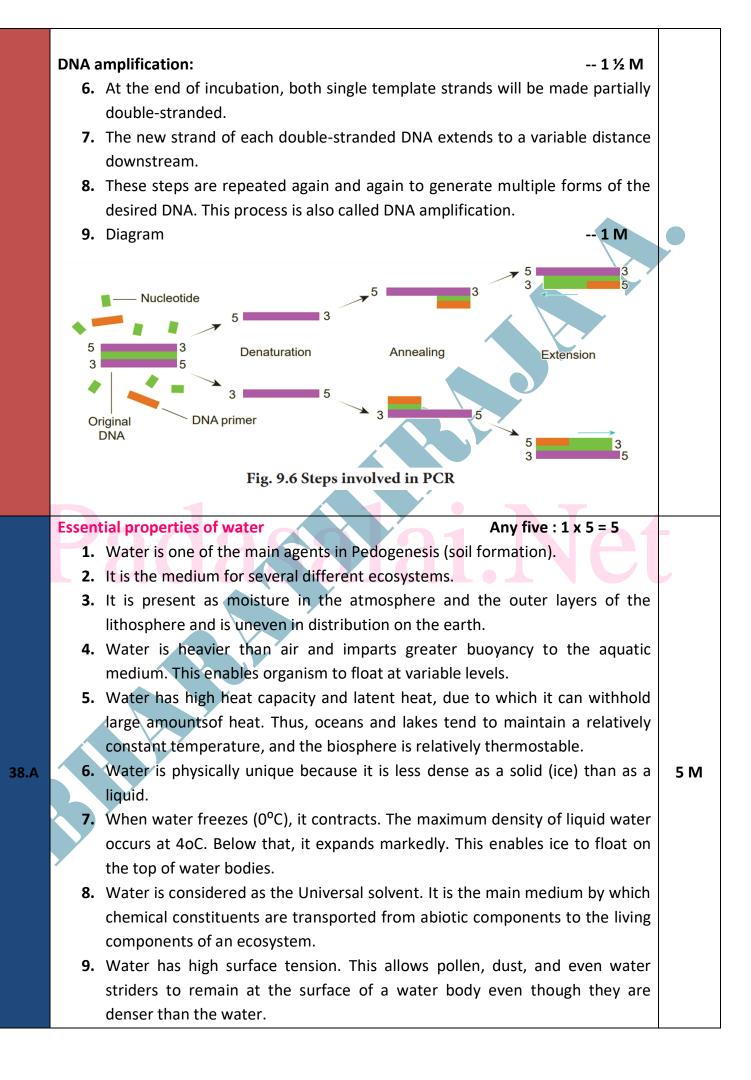
	Innate immunity	:	
	Type of innate immunity	Mechanism	
		1. Anatomical barriers	
	Skin	✓ Prevents the entry of microbes.	½ M
		✓ Its acidic environment (pH 3-5) retards the growth of microbes.	/2 101
	Mucus	✓ Mucus entraps foreign microorganisms and competes with	1/ 84
	membrane	microbes for attachment.	½ M
		2. Physiological barriers	
	Tomoroturo	✓ Normal body temperature inhibits the growth of pathogens.	
	Temperature	✓ Fever also inhibits the growth of pathogens.	½ M
	Low pH	✓ Acidity of gastric secretions (HCl) kills most ingested microbes.	½ M
37.A	Chemical mediators	 Lysozyme acts as antibacterial agent and cleaves the bacterial cell wall. Interferons induce antiviral state in the uninfected cells. Complementary substances produced from leucocytes lyse the pathogenic microbes or facilitate phagocytosis. 	1 M
	3. Phagocytic barriers	 Specialized cells (Monocytes, neutrophils, tissue macrophages) phagocytose, and digest whole microorganisms. 	1 M
	4. Inflammatory	✓ Tissue damage and infection induce leakage of vascular fluid, containing chemotactic signals like serotonin, histamine and prostaglandins.	1 M
	barriers	 ✓ They influx the phagocytic cells into the affected area. This phenomenon is called diapedesis. 	

Sprocess in PCR:

Denaturation:

-- 1 ½ M

- **1.** The double-stranded DNA of interest is denatured to separate into two individual strands by high temperature. This is called denaturation.
- Each strand is allowed to hybridize with a primer (renaturation or primer annealing). The primer-template is used to synthesize DNA by using Taq – DNA polymerase.
- **3.** During denaturation, the reaction mixture is heated to 95 °C for a short time to denature the target DNA into single strands that will act as a template for DNA synthesis.


Annealing:

37.B

-- 1 M

5 M

- **4.** Annealing is done by rapid cooling of the mixture, allowing the primers to bind to the sequences on each of the two strands flanking the target DNA.
- 5. During primer extension or synthesis the temperature of the mixture is increased to 75°C for a sufficient period of time to allow Taq DNA polymerase to extend each primer by copying the single-stranded template.

	Management of biomedical waste.2 ½ Mark	
	1. Any kind of waste that contains infectious material generated by hospitals,	
	laboratories, medical research centers, Pharmaceutical companies and	
	Veterinary clinics are called medical wastes.	
	2. Medical wastes contain body fluids like blood, urine, body parts and other	
	contaminants, culture dishes, glasswares, bandages, gloves, discarded	
	needles, scalpels, swabs and tissues.	
	3. Management: The safe and sustainable management of biomedical waste is	
	the social and legal responsibilities of people working in healthcare centers.	
	4. Waste disposal: Involved by incineration, chemical disinfection, autoclaving,	
	encapsulation, microwave irradiation are methods of waste disposals. Final	
	disposal includes landfill and burying as per norms inside premises.	
38.B	E – waste 2 ½ Mark	5 M
	1. Electronic waste or e-waste describes discarded electrical electronic devices	
	as well as any refuse created by discarded electronic devices and components	
	and substances involved in their manufacture or use.	
	2. Their disposal is a growing problem because electronic equipment frequently	
	contains hazardous substances.	
	3. In a personal computer, for example, there may be lead (Pb) in the cathode	
	ray tube (CRT) and soldering compound, mercury (Hg) in switches and	
	housing, and cobalt (Co) in steel components, among other equally toxic	
	substances.	
	 E-wastes are basically PCB (Polychlorinated biphenyl) based, which are non- degradable. 	
Prepo	ared by :	
•	BHARATHIRA	JA A.
	MSC., MPHIL., M.ED	.,DOA.
	PG ASSISTANT IN ZO	OLOGY,
	PUDUKK	OTTAI.
	994427	7623.