

N K MATHS ACADEMY

TIRUPUR-9843434491

REVISION EXAMANITION 2021-22

MATHEMATICS

(LESSONS-1 TO 7)

MARKS: 90 TIME: 3.00 HRS

I CHOOSE THE BEST ANSWER:

20X1=20

1. If
$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
, $B = adjA$ and $C = 3A$, then $\frac{|adjB|}{|C|} =$

$$(1)\frac{1}{3}$$

$$(2)\frac{1}{9}$$

$$(3)\frac{1}{4}$$

2. If
$$A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$
, then $9I - A =$

$$(1) A^1$$

$$(2)\frac{A^{-1}}{2}$$

$$(3) 3A^{1}$$

3. Let
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A, then the value of x is

4. The value of
$$\sum_{i=1}^{13} (i^n + i^{n-1})$$
 is

$$(1)1+i$$

5. If
$$z = \frac{(\sqrt{3} + i)^3 (3i + 4)^2}{(8 + 6i)^2}$$
, then $|z|$ is equal to

6. If
$$|z|=1$$
, then the value of $\frac{1+z}{1+z}$ is

$$(2)^{-1}z$$

$$(3)\frac{1}{7}$$

7. If
$$\alpha$$
, β and γ are the roots of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{\alpha}$ is

$$(1)-\frac{q}{r}$$

$$(2)-\frac{p}{r}$$

$$(3)\frac{q}{r}$$

$$(4)-\frac{q}{n}$$

8. If
$$x^3 + 12x^3 + 10ax + 1999$$
 definitely has a positive root, if and only if

$$(1) a \ge 0$$

$$(2) a \succ 0$$

$$(4) a \le 0$$

9. The number of positive roots of the polynomial
$$\sum_{r=0}^{n} {^{n}C_{r}(-1)^{r}x^{r}}$$
 is

10. The value of
$$\sin^{-1}(\cos x)$$
, $0 \le x \le \pi$ is

$$(1)\pi - x$$

(2)
$$x - \frac{\pi}{2}$$

$$(2) x - \frac{\pi}{2}$$
 $(3) \frac{\pi}{2} - x$

$$(4) \pi - 3$$

If $\sin^{-1} x = 2\sin^{-1} \alpha$ has a solution, then 11.

$$(1)|\alpha| \le \frac{1}{\sqrt{2}}$$

$$(2)|\alpha| \ge \frac{1}{\sqrt{2}} \qquad (3)|\alpha| < \frac{1}{\sqrt{2}}$$

$$(3)|\alpha| < \frac{1}{\sqrt{2}}$$

$$(4)\left|\alpha\right| > \frac{1}{\sqrt{2}}$$

 $\sin(\tan^{-1} x), |x| < 1$ is equal to 12.

$$(1)\frac{x}{\sqrt{1-x^2}}$$

$$(2)\frac{1}{\sqrt{1-x^2}} \qquad (3)\frac{1}{\sqrt{1+x^2}} \qquad (4)\frac{x}{\sqrt{1+x^2}}$$

$$(3)\frac{1}{\sqrt{1+r^2}}$$

$$(4) \frac{x}{\sqrt{1+x^2}}$$

The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the 13. distance between the foci is

$$(1)\frac{4}{3}$$

 $(2)\frac{4}{\sqrt{2}}$

$$(3)\frac{2}{\sqrt{3}}$$

 $(4)\frac{3}{2}$

If x + y = k is a normal to the parabola $y^2 = 12x$, then the value of K is 14.

$$(2)-1$$

(4)9

If $\vec{a}.\vec{b} = \vec{b}.\vec{c} = \vec{c}.\vec{a} = 0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is 15.

$$(1)\left|\vec{a}\right|\left|\vec{b}\right|\left|\vec{c}\right|$$

$$(2)\frac{1}{3}|\vec{a}||\vec{b}||\vec{c}|$$

(4)-1

The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$, z=2 and $\frac{x-1}{1} = \frac{2y+3}{3}$, $\frac{z+5}{2}$ is 16.

$$(1)\frac{\pi}{6}$$

$$(2)\frac{\pi}{4}$$

$$(3)\frac{\pi}{3}$$

The abscissa of the point on the curve $f(x) = \sqrt{8-2x}$ at which the slope of the tangents is -0.25? 17.

$$(2)$$
 -4

$$(3) -2$$

(4) 0

Angle between $y^2 = x$ and $x^3 = y$ at the origin is 18.

(1)
$$\tan^{-1} \frac{3}{4}$$

(1)
$$\tan^{-1} \frac{3}{4}$$
 (2) $\tan^{-1} \left(\frac{4}{3}\right)$

$$(3) \frac{\pi}{2}$$

The maximum value of the function x^2e^{-2x} , x > 0 is 19.

$$(1) \frac{1}{e}$$

(2)
$$\frac{1}{2e}$$

(3)
$$\frac{1}{e^2}$$

The point of inflection of the curve $y = (x-1)^3$ is 20.

(1)(0,0)

(3)(1,0)

(4)(1,1)

II ANSWER ANY 7 QUESTIONS (Q.NO 30 IS COMPLUSORY):

7X2=14

Prove that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal 21.

If $z_1 = 3$, $z_2 = -7i$, $z_3 = 5 + 4i$, show that $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$ 22.

Find the squares root of -5-12i. 23.

Find a polynomial equation of minimum degree with rational coefficients, having $2 + \sqrt{3}i$ as a root. 24.

Find the principal value of $\sin^{-1} \left(\sin \left(\frac{5\pi}{6} \right) \right)$ 25.

If y = 4x + c is a tangent to the circle $x^2 + y^2 = 9$, find c. 26.

Find the equation of the parabola with vertex (1,-2) and focus (4,-2). 27.

- 28. Find the slope of the tangent to the curve $y = x^4 + 2x^2 x$ at x = 1.
- 29. Find the intercepts cut off by the plane $\vec{r} \cdot (6\hat{i} + 4\hat{j} 3\hat{k}) = 12$
- 30. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = 0$.

III ANSWER ANY 7 QUESTIONS (Q.NO 40 IS COMPULSORY):

7X3 = 21

- 31. Find the rank of $\begin{bmatrix} 2 & -2 & 4 & 3 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7 \end{bmatrix}$ by reducing it to an echelon form.
- 32. If $\frac{z+3}{z-5i} = \frac{1+4i}{2}$ find the complex number z in the rectangular form.
- 33. Show that the points $1, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} i\frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle.
- 34. If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$ form a cubic equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$
- 35. Find the n value of $\sin^{-1} \left(\sin \frac{5\pi}{9} \cos \frac{\pi}{9} + \cos \frac{5\pi}{9} \sin \frac{\pi}{9} \right)$
- 36. Find the vertices, foci for the hyperbola $9x^2 16y^2 = 144$
- 37. Prove by vector method then an angle in a semi-circle is a right-angle.
- 38. Find the vector equation in parametric form and Cartesian equation of the line passing through (-4, 2, -3) and is parallel to the line $\frac{-x-2}{4} = \frac{y+3}{-2} = \frac{2z-6}{3}$.
- 39. Evaluate: $\lim_{x \to 1^+} \left(\frac{1}{x} \frac{1}{e^x 1} \right)$
- 40. Find the absolute extrema of $f(x) = 6x^{\frac{4}{3}} 3x^{\frac{1}{3}}$, $\begin{bmatrix} -1,1 \end{bmatrix}$

III ANSWER THE FOLLOWING QUESTIONS:

7X5 = 35

- 41. If $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find the products AB and BA and Hence solve x y + z = 4, x 2y 2z = 9, 2x + y + 3z = 1 (OR) Solve $x_1 - x_2 = 3, 2x_1 + 3x_2 + 4x_3 = 17, x_2 + 2x_3 = 7$ by Cramer's rule.
- 42. If z = x + iy is a complex number such that $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = 0$, show that locus of z is $2x^2 + 2y^2 + x 2y = 0$. (OR)

If
$$z = x + iy$$
 and $\arg\left(\frac{z - i}{z + 2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x - 3y + 2 = 0$.

43. Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} - \sqrt{3}$ as a root. (OR)

Solve the equation $6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.

Show that the line x - y + 4 = 0 is a tangent to the ellipse $x^2 + 3y^2 = 12$. Also find the coordinates of the point of contact. **(OR)**

At a water fountain, water attains a maximum height of 4m at horizontal distance of 0.75m from the point of origin. If the path of water is a parabola, find the height of water at a horizontal distance of 0.75m from the point of origin.

A rod of length 1.2m moves with its end always touching the coordinates axis. The locus of a point P on the rod, which is 0.3m from the end in contact with x-axis in an ellipse find the eccentricity.

(OR)

Prove by vector method that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$.

46. Prove that vector method that the perpendicular (attitudes) from the vertices to the opposite sides of a triangle is concurrent. (OR)

Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and

$$\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}.$$

47. Find the acute angle between $y = x^2$ and $y = (x-3)^2$ (OR)

A rectangular page is to contain 24 cm² of print. The margins at the top and bottom of the page are 1.5 cm and the margins at other sides of the page is 1 cm. What should be the dimensions of the page so that the area of the paper used is minimum.

CONTACT FOR HOME TUITIONS / ONLINE CLASSES
(9, 10, 11, 12 MATRIC / CBSE/ISC/ICSE)

N.KARTHIKEYAN.M.Sc.B.Ed,
9843434491/9842423838