UNIT TEST

MATHEMATICS

APPLICATIONS OF MATRICES AND DETERMINANTS

MARKS: 50 TIME 1.30 HRS

I. CHOOSE THE BEST ANSWER:

5X1=5

- If A is 3×3 Non-singular matrix such that $AA^T = A^TA$ and $B = A^{-1}A^T$, then $BB^T =$
 - (1)A

- 2. If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then 9I A =
 - $(1) A^{1}$

- $(2)\frac{A^{-1}}{2}$
- $(3)3A^{1}$
- 3. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

- (4)-1

- (1)0 4. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$ be such that $A^{-1} = A$, then A = A is
 - (1)17

- (3)19
- (4)21
- 5. If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^T)^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$

II. ANSWER THE FOLLOWING

5X2=10

- 6. Show that square matrix has an inverse, then it is Unique.
- 7. Find the inverse (if it exists) of $\begin{vmatrix} -2 & 4 \\ 1 & -3 \end{vmatrix}$
- Find the rank of matrix $\begin{vmatrix} 6 & 0 & -9 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{vmatrix}$ which is in row-echelon form..

N KARTHIKEYAN ,M.Sc,B.Ed .

9843434491

- Find the rank of matrix $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \\ 8 & 1 & 0 & 2 \end{bmatrix}$ by minor method.
- 10. Find the rank of matrix $\begin{bmatrix} 0 & 3 & 1 \end{bmatrix}$ which is in row-echelon form.

III. ANSWER ANY 5 QUESTIONS:

5X3=15

- 11. Find the inverse of the matrix $\begin{vmatrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{vmatrix}$
- 12. Verify the property $(A^T)^{-1} = (A^{-1})^T$ with $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$.
- 13. Prove that $\begin{bmatrix} \cos_n & -\sin_n \\ \sin_n & \cos_n \end{bmatrix}$ is orthogonal
- 14. Find the rank of $\begin{bmatrix} 4 & 3 & 1 & -2 \\ -3 & -1 & -2 & 4 \\ 6 & 7 & -1 & 2 \end{bmatrix}$ 15. Solve the system of linear equation 2x + 5y = -2, x + 2y = -3 using matrix inversion methods.
- 16. Solve $\frac{3}{x} + 2y = 12, \frac{2}{x} + 3y = 13$ by cramer's rule.

IV ANSWER ANY 4 OUESTIONS:

4X5=20

17. If $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find the products AB and BA and Hence solve

$$x - y + z = 4$$
, $x - 2y - 2z = 9$, $2x + y + 3z = 1$

- 18. The prices of three commodities A,B, and C are Rs x, y, and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, P,Q, and R earn Rs15,000, Rs 1,000 and Rs 4,000 respectively. Find the prices per unit of A,B, and C. (Use matrix inversion method to solve the problem.)
- 19. Solve $\frac{3}{x} \frac{4}{y} \frac{2}{z} 1 = 0$, $\frac{1}{x} + \frac{2}{y} + \frac{1}{z} 2 = 0$, $\frac{2}{x} \frac{5}{y} \frac{4}{z} + 1 = 0$ by carmer's rule.
- 20. If $ax^2 + bx + c$ is divided by x + 3, x 5 and x 1, the remainders are 21, 61 and 9 respectively .Find a ,b and c .(use Gaussian elimination method).
- 21. Solve x + y + z 2 = 0.6x 4y + 5z 31 = 0.5x + 2y + 2z = 13 by matrix inversion method.

N KARTHIKEYAN ,M.Sc,B.Ed .

9843434491