

N K MATHS ACADEMY

TIRUPUR-9843434491

UNIT TEST-(LN-9, 10)

MARKS: 50 TIME: 1.30 MIN

I. CHOOSE THE BEST ANSWER:

10X1=10

- 1. The value of $\int_{-1}^{2} |x| dx$ is
- (1) $\frac{1}{2}$ (2) $\frac{3}{2}$ (3) $\frac{5}{2}$

- The value of $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{2x^2 3x^5 + 7x^3 x + 1}{\cos^2 x} \right) dx$ is
 - (1)4

- (4)0
- The value of $\int_0^{\frac{\pi}{6}} \cos^3 3x dx$ is (1) $\frac{2}{3}$ (2) $\frac{2}{9}$ (3) $\frac{1}{9}$

- The order and degree of the differential equation $\sqrt{\sin x}(dx + dy) = \sqrt{\cos x}(dx dy)$ is

(2) 2,2

- (3) 1,1
- (4) 2,1

- The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is
 - (1) xy = k
- $(2) y = k \log x$ (3) y = kx
- (4) $\log y = kx$

- The solution of $\frac{dy}{dx} = 2^{y-x}$ is
- (1) $2^x + 2^y = c$ (2) $2^x 2^y = c$ (3) $\frac{1}{2^x} \frac{1}{2^y} = c$ (4) x + y = c
- The value of $\int_{0}^{\pi/2} \frac{\cos^{5/3} x}{\cos^{5/3} x + \sin^{5/3} x} dx$ is 1) $\pi/2$ 2) $\pi/4$ 3) 0

- The area bounded by the line y = x, the x axis, the ordinates x = 1, x = 2 is.
 - 1) 3 / 2.

4)7/2

- Integrating factor of $\frac{dy}{dx} + \frac{1}{x \log x} \cdot y = \frac{2}{x^2}$ is
- 1) e^{x} .
- 2) log x. 3) 1/ x
- 4) e^{-x} .
- 10. The differential equation obtained by eliminating a and b from $y = ae^{3x} + be^{-3x}$ is.
 - 1) $\frac{d^2y}{dx^2} + ay = 0$ 2) $\frac{d^2y}{dx^2} 9y = 0$
- 3) $\frac{d^2y}{dx^2} 9\frac{dy}{dx} = 0$
- 4) $\frac{d^2y}{dx^2} + 9x = 0$

II. ANSWER ANY 5 QUESTIONS:

5X2=10

- 11. Evaluate $\int x \cos x \, dx$
- 12. Evaluate $\int_{0}^{2} \left(\sin^2 x + \cos^4 x \right) dx$

- 13. Determine the order and degree $3\left(\frac{d^2y}{dx^2}\right) = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$
- 14. Show that $y = 2x^2$ is a solution of the differential equation xy' = 2y
- 15. Form the differential equation by eliminating the arbitrary constants A and B from $y = A\cos x + B\sin x$

16. Solve
$$(1+x^2)\frac{dy}{dx} = 1 + y^2$$

III. ANSWER ANY 5 QUESTIONS:

5X3=15

- 17. Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{e^{-\tan x}}{\cos^{6} x} dx$
- 18. Find the area of the region bounded by 2x y + 1 = 0, y = -1, y = 3 and y-axis
- 19. Show that $\int_{0}^{\frac{\pi}{2}} \frac{dx}{4 + 5\sin x} = \frac{1}{3}\log_{e} 2$
- 20. Solve $\frac{dy}{dx} x\sqrt{25 x^2} = 0$
- 21. Solve $\tan y \frac{dy}{dx} = \cos(x+y) + \cos(x-y)$
- 22. Solve $\frac{dy}{dx} + \frac{y}{x \log x} = \frac{\sin 2x}{\log x}$

IV. ANSWER ANY 3 QUESTIONS:

3X5=15

- 23. The curve $y = (x-2)^2 + 1$ has a minimum point at P. A point Q on the curve is such that the slope of PQ is 2. Find the area bounded by the curve and the chord PQ
- 24. Find the volume of the solid formed by revolving the region bounded by the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a > b about the major axis
- 25. Solve $(x^2 + y^2)dy = xydx$. It is given that y(1) = 1 and $y(x_0) = e$. Find the value of x_0
- 26. Find the population of a city at any time *t*, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3, 00,000 to 4, 00,000
- 27. Assume that the rate at which radioactive nuclei decay is proportional to the number of such nuclei that are present in a given sample. In a certain sample 10% of the original number of radioactive nuclei has undergone disintegration in a period of 100 years. What percentage of the original radioactive nuclei will remain after 1000 years?

CONTACT FOR HOME TUITIONS / ONLINE CLASSES

(9, 10, 11, 12 MATRIC / CBSE/ISC/ICSE)

N.KARTHIKEYAN.M.Sc.B.Ed,

9843434491/9842423838

