VINAYAGA TUITION CENTRE ANAIMALAI

UNIT TEST

MATHEMATICS

CLASS: 12

TIME: 1.30Hrs MARKS: 50

I. Choose the best answer

10x1=10

- 1. If $|adj(adj A)| = |A|^9$, then the order of the square matrix A is

- 1. If $|aaj(aaj|A)| = |A|^2$, then the order of the square matrix A is

 (a) 3 (b) 4 (c) 2 (d) 5

 2. If A is a 3 x 3 non singular matrix such that $AA^T = A^T A$ and $B = A^{-1}A^T$, then $BB^T = (a) A$ (b) B (c) I_3 (d) B^T 3. If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, B = adj A and C = 3A, then $\frac{|adj|B|}{|C|} = (a) \frac{1}{3}$ (b) $\frac{1}{9}$ (c) $\frac{1}{4}$ (d) 1

 4. If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and If $A = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then |adj|AB = (a) -40 (b) -80 (c) -60 (d) -20

- (a) -40 (b) 50

 5. If $P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$ is the adjoint of 3x3 matrix A and |A| = 4, then x is

 (a) 15 (b) 12 (c) 14 (d) 11

- (a) 15 (b) 12 (c) 14 (d) 11 6. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is
 (a) 17 (b) 14 (c) 19 (d) 21

 7. If $A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{bmatrix}$ and $A^{T} = A^{-1}$, then the value of x is

- (a) $\frac{-4}{5}$ (b) $\frac{-3}{5}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$ 8. If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and A (adj A) = $\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = \frac{1}{5}$
 - (a) 0
- (b) $\sin \theta$

- 9. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$ is
 (a) 1 (b) 2 (c) 4 (d) 3

 10. If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I_2 A =$ (a) A^{-1} (b) $\frac{A^{-1}}{2}$ (c) $3A^{-1}$ (d) $2A^{-1}$ II. Answer the following questions

4x2=8

- 11. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is non singular, find A^{-1} .
- 12. If A is a non singular matrix of odd order, prove that |adj|A| is Positive.

- 13. Find the adjoint $\begin{bmatrix} -3 & 4 \\ 6 & 2 \end{bmatrix}$
- 14. Solve the systems of linear equations by Cramer's rule

III.Answer the following questions

4x3=12

15. Find a matrix A if adj (A) =
$$\begin{bmatrix} 7 & 7 & -7 \\ -1 & 11 & 7 \\ 11 & 5 & 7 \end{bmatrix}$$
16. Verify the property $(A^{T})^{-1} = (A^{-1})^{T}$ with $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$

17. Solve the systems of linear equations by matrix inversion method.

$$2x + 3y - z = 9$$
, $x + y + z = 9$, $3x - y - z = -1$.

18. Solve the systems of linear equations by Gaussian elimination method.

$$4x + 3y + 6z = 25$$
, $x + 5y + 7z = 13$, $2x + 9y + z = 1$.

IV.Answer the following question

4x5=20

- 19. If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non trivial Solution and $p \ne a$, $q \ne b$, $r \ne c$, Prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$.
- 20. Find the value of k for which the equations kx 2y + z = 1, x 2ky + z = -2, x 2y + kz = 1 have (i) No solution (ii) unique solution (iii) infinitely many solution.
- 21. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one women alone to finish the same work by using matrix inversion method.
- 22. By using Gaussian elimination method, balance the chemical reaction equation.

$$C_2 H_6 + O_2 \rightarrow H_2O + CO_2$$
.

Mr.S.MEGANATHAN M.Sc., M.Ed.,

VINAYAGA TUITION CENTRE

ANAIMALAI-642104

PH:7502638443

VINAYAGA TUITION CENTRE ANAIMALAI

UNIT TEST(CHAPTER 2)

MATHEMATICS

CLASS: 12

TIME: 1.30Hrs MARKS: 50

I. Choose the best answer

10x1=10

1. $i^n + i^n + i^{n+2} + i^{n+3}$ is

(a) 0

(c) -1

(d) i

2. If z is a non – zero complex number, such that $2iz^2 = \bar{z}$ then |z| is

(c) 2

(d) 3

(a) $\frac{1}{2}$ (b)1 (c) 3. The value of $\sum_{i=1}^{13} (i^n + i^{n-1})$ is

(a)1 + i (b) i

(d)0

4. If $\left|z - \frac{3}{z}\right| = 2$, then the least value of |z| is

(b) 2

(d) 5

5. If z is a complex number such that $z \in \mathbb{C}/\mathbb{R}$ and $z + \frac{1}{z} \in \mathbb{R}$, then |z| is

(b) 1

(d) 3

6. If |z| = 1, then the value of $\frac{1+z}{1+\overline{z}}$ is

(d) 1

(a) z (b) \overline{z} (c) $\frac{1}{z}$ 7. If $=\frac{(\sqrt{3}+i)^3 + (3i+4)^2}{(8+6i)^2}$, then |z| is equal to

8. If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$, then the value of $|z_1 + z_2 + z_3|$ is

(a) 1

(c) 3

(d) 4

9. The area of triangle formed by the complex numbers z, iz, and z + iz in the Argand 's diagram is

(a) $\frac{1}{2}|z|^2$ (b) $|z|^2$ (c) $\frac{3}{2}|z|^2$ (d) $2|z|^2$ 10. If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is

(d) 3

II.Answer the following questions any four

4x2=8

11. Evaluate the following if z = 5 - 2i and w = -1 + 3i

(ii) 2z + 3w

12. Simplify $\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3$. into rectangular form

13. Which one of the points i, -2 + i, and 3 is farthest from the origin?

14. Which one of the points 10 - 8i, 11 + 6i is closest to 1 + i.

15. If $z = (\cos \theta + i \sin \theta)$, show that $z^n + \frac{1}{z^n} = 2 \cos n\theta$ and $z^n - \frac{1}{z^n} = 2i \sin n\theta$.

16. Find the principal argument Arg z, when $z = \frac{-2}{1+i\sqrt{3}}$.

III. Answer the following questions any four

4x3=12

17. Find the value of the real numbers x and y, if the complex number (2+i)x + (1-i)y + 2i - 3 and x + (-1+2i)y + 1 + i are equal.

- 18. The complex numbers u, v and w are related by $\frac{1}{v} = \frac{1}{v} + \frac{1}{w}$. if v=3-4i and w=4+3i find u in rectangular form
- 19. If z_1 , z_2 and z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = |z_1 + z_2 + z_3| = 1$, Find the value of $\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right|$. 20. Show that |3z - 5 + i| = 4 represents a circle and find its centre and radius.
- 21. Find the product $\frac{3}{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$. 6 $\left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)$ in rectangular from.
- 22. Show that $\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^5 + \left(\frac{\sqrt{3}}{2} \frac{i}{2}\right)^5 = -\sqrt{3}$.

IV. Answer the following questions any four

- 23. Show that (i) $\left(2 + i\sqrt{3}\right)^{10} + \left(2 i\sqrt{3}\right)^{10}$ is real and (ii) $\left(\frac{19+9i}{5-3i}\right)^{15} \left(\frac{8+i}{1+2i}\right)^{15}$ is Purely imaginary.
- 24. Let z_1 , z_2 and z_3 be complex numbers such that $|z_1| = |z_2| = |z_3| = r > 0$ and
- $z_1 + z_2 + z_3 \neq 0$, Prove that $\left| \frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3} \right|$. 25. If z = x + iy and $arg\left(\frac{z i}{z + 2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x 3y + 2 = 0$.
- 26. If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$, show that (i) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$
- 27. Find all cube roots of $\sqrt{3}$ + i.
- 28. Find the value of $\sum_{k=1}^{8} \left(\cos\frac{2k\pi}{9} + i\sin\frac{2k\pi}{9}\right)$.

S.MEGANATHAN M.Sc., M.Ed., VINAYAGA TUITION CENTRE **ANAIMALAI POLLACHI** COIMBATORE-642104 CELL:7502638443