www.Padasalai.Net

www.CBSEtips.in

								Pł	HYU	12	
No. of Printed Pages:	: 4			Register Number							
12				PART - III		-					
			இய	ற்பியல் / PHYS	SICS	S)					
				(English Version)				X			
Time Allowed	: 2	2.00 Ho	urs]			[]	/laxii	mum	n Ma	rks	: 50
Instructions:	(1)		•	stion paper for fairr , inform the Hall Si				-			any
		iach U	i iaiiiiess		upe	1150		meu	alei	у.	

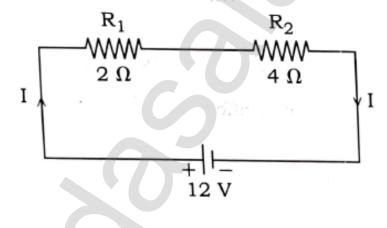
- (2) Use **Blue** or **Black** ink to write and underline and pencil to draw diagrams.
- Note: (i) Answer all the questions.
 - (ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.
- An electric dipole consists of two charges of 0.1 μC separated by a distance of 2.0 cm. The dipole is placed in an external field of 10⁵ N/C. What maximum torque does the field exert on the dipole?
- (a) 4x10⁻⁴ Nm
 (b) 4x10⁴ Nm
 (c) 4x10⁻⁵ Nm
 (d) 4x10⁵ Nm
 2. If voltage applied on a capacitor is increased from V to 2V, choose the correct conclusion.
 - (a) Q remains the same, C is doubled (b) Q is doubled, C doubled
 - (c) C remains same, Q doubled (d) Both Q and C remain same
- 3. A toaster operating at 240V has a resistance of 120 Ω . The power is
 - (a) 240W (b) 400W (c) 2W (d) 480W

[Turn over

10x1 = 10

PHYU12

2


- 4. As the temperature increases, the electrical resistance
 - (a) Increases for both conductors and semiconductors
 - (b) Decreases for both conductors and semiconductors
 - (c) Increases for conductors but decreases for semiconductors
 - (d) Decreases for conductors but increases for semiconductors
- 5. An electric dipole is placed at an alignment angle of 30° with an electric field of 2×10^{5} NC⁻¹. It experiences a torque equal to 8 Nm. The charge on the dipole if the dipole length is 1 cm is
 - (a) 4 mC (b) 8 mC (c) 5 mC (d) 7 Mc
- 6. In meter bridge for measurement of resistance, the known and the unknown resistance are interchanged. The error so removed is
 - (a) end correction (b) gross error
 - (c) random error (d) due to temperature effect
- 7. The temperature coefficient of resistance of a wire is 0.00125 per °C. At 20°C, its resistance is 1 Ω . The resistance of the wire will be 2 Ω at
 - (a) 800 °C (b) 700 °C (c) 850 °C (d) 820 °C
- 8. Two identical conducting balls having positive charges q_1 and q_2 are separated by a centre to centre distance r. If they are made to touch each other and then separated to the same distance, the force between them will be
 - (a) less than before (b) same as before (c) more than before (d) zero
- 9. The electric field due to point charge at a distance of 3 m from it is 500 NC⁻¹. The magnitude of the charge is $\left[\frac{1}{4\pi\epsilon_0} = 9x10^9 \text{ Nm}^2 \text{ C}^{-2}\right]$
 - (a) $2.4 \ \mu C$ (b) $1.0 \ \mu C$ (c) $2.0 \ \mu C$ (d) $0.5 \ \mu C$
- 10. A carbon resistor of (47 \pm 4.7) k Ω to be marked with rings of different colours for its identification. The colour code sequence will be....
 - (a) Yellow Green Violet Gold (b) Yellow Violet Orange Silver
 - (c) Violet Yellow Orange Silver (d) Green Orange Violet Gold

PHYU12

3 PART – II

Note : Answer any five questions. Question No. 18 is compulsory. 5x2=10

- 11. State Joule's law of heating.
- 12. Define electric flux. Give its SI unit.
- 13. Distinguish between electric energy and electric power.
- 14. State the principle of Potentiometer.
- 15. What is called electric dipole? Give an example.
- During lightning, it is safer to sit inside car than in an open ground or under tree. Why?
- 17. Distinguish between Polar molecules and Non Polar molecules.
- Calculate the equivalent resistance for the circuit which is connected to
 12 V battery and also find the potential difference across 2Ω and 4Ω resistors in the circuit.

Note : Answer any five questions. Question No. 26 is compulsory. 5x3=15

- 19. State and explain Kirchhoff's rules.
- 20. Obtain an expression for energy stored in the parallel plate capacitor.
- 21. Explain the equivalent resistance of a series resistance network.
- 22. The resistance of a nichrome wire at 0°C is 10Ω. If its temperature coefficient of resistance is 0.004/°C, find its resistance at boiling point of water. Comment on the result.
 [Turn over]

PHYU12

23. Derive an expression for torque experienced by an electric dipole placed in the uniform electric field.

4

- 24. What is Seebeck effect? State the applications of Seebeck effect.
- 25. List the properties of electric field lines.
- 26. A parallel plate capacitor has square plates of side 5 cm and separated by a distance of 1 mm. (a) Calculate the capacitance of this capacitor. (b) If a 10 V battery is connected to the capacitor, what is the charge stored in any one of the plates? (The value of $\varepsilon_0 = 8.85 \times 10^{-12} \text{ Nm}^2 \text{ C}^{-2}$)

PART – IV

Note : Answer **all** the questions.

3x5=15

27. Obtain an expression for electric field due to an infinitely long charged wire.

(OR)

Explain in detail the construction and working of Van de Graaff generator.

28. Calculate the electric field due to a dipole on its axial line.

(OR)

Explain the determination of the internal resistance of a cell using voltmeter.

29. Obtain the condition for bridge balance in Wheatstone's bridge.

(OR)

Describe the microscopic model of current and obtain general form of Ohm's law.

 $-\infty \Omega \infty \Psi \infty \Phi \infty \pm \infty -$

HIGHER SECONDARY SECOND YEAR : FIRST MID – TERM TEST: AUGUST 2022 PH<u>YSICS ANSWER KEY</u>

Note:

- 1. Answers written with **Blue** or **Black ink** only to be evaluated.
- 2. Choose the most suitable answer in Part A from the given alternatives and write the **option code** and the **corresponding answer**.
- 3. For answers in Part-II, Part-III and Part-IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems, if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

PART – I

Answer all the questions.

10x1=10

Q. No.	Answer		Q. No.	Answer		
1	(a)	4x10 ⁻⁴ Nm	6	(a)	end correction	
2	(c)	C remains same, Q doubled	7	(d)	820 °C	
3	(d)	480W	8	(c)	more than before	
4	(c)	Increases for conductors but decreases for semiconductors	9	(d)	0.5 μC	
5	(b)	8 mC	10	(b)	Yellow – Violet – Orange – Silver	

PART – II

Answer any five questions. Question number 18 is compulsory.

5x2=10

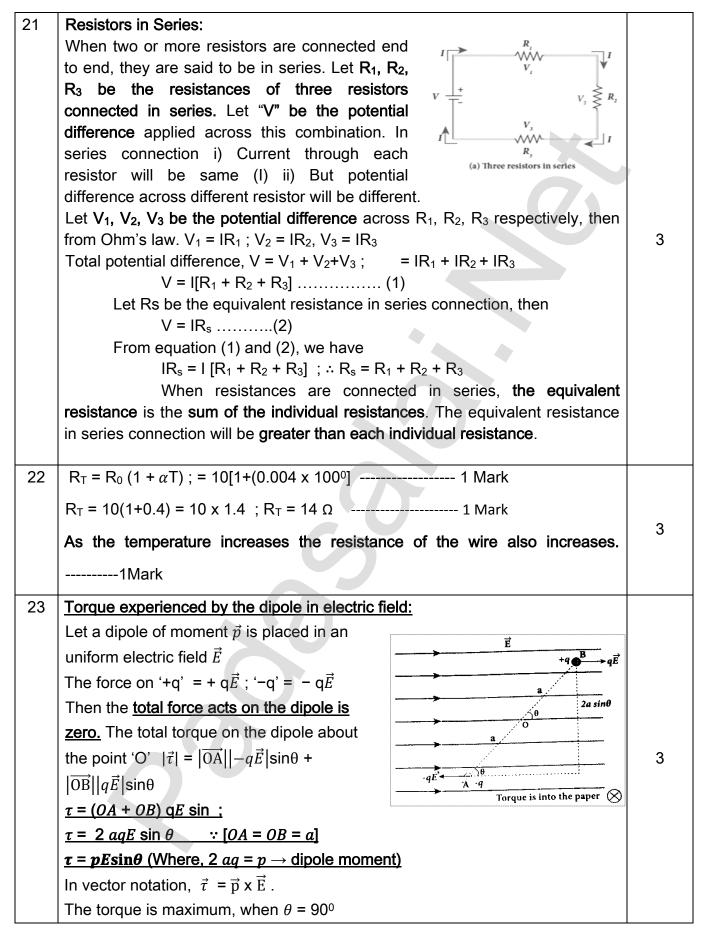
11	Joule's law of heating.	
	It states that the heat develops in an electrical circuit due to the flow, current	
	varies directly as (i) the square of the current (ii) the resistance of the circuit	2
	and (iii) the time of flow (i. e) H = I^2Rt	2
12	Electric flux: The number of electric field lines crossing a given area kept	
	normal to the electric field lines is called electric flux (Φ_E).	
	Its <u>S.I unit is Nm²C⁻¹.</u> It is a <u>scalar quantity</u> .	2

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

2

13	S. No.	Electric Energy		Electric Power		
	1	Work has to be done to move the charge from One end to other end of the conductor and work-done is called electric ener dW = dU = VdQ		called electric power.		
	2	Its SI Unit is joule (J)		Its SI Unit is watt (W)	1	
	3	Its practical unit is kilowatt hour (kwh) 1 kwh = 3.6x10 ⁶ J		Its practical unit is horse power(HP)1 HP = 746 W		
14	Let 'l' balan	ple of potentiometer. be the current, 'r' be the resiscing length, then emf is ξ = Ir l mf is directly proportional to the basis	(<i>or</i>)	$\xi \propto l$ 1 Mark	2	
15	Electr	ic dipole : Two equal and oppo	osite	charges <u>separated by a small</u>		
	<u>distance</u> constitute an electric dipole1 ½ Mark Example: <u>CO, HCI, NH₄, H₂O</u> ½ Mark					
16	The metal body of the car provides electrostatic shielding , where the electric field is zero . During lightning the electric discharge passes through the body of the car.					
17	Polar Molecules Non- Polar Molecules					
	<u>positiv</u> <u>separ</u> exterr They	ar molecule is one in which the <u>ve and negative charges are</u> <u>ated</u> even in the absence of an hal electric field. have a permanent dipole ent. (e.g) H ₂ O, N ₂ O, HCI, NH ₄	<u>centr</u> <u>charc</u> perm	n-polar molecule is one in which res of positive and negative ges coincide. It has no anent dipole moment. H ₂ , O ₂ , CO ₂	2	
18	$\Omega + 4$ The C Voltag V ₁ = <i>I</i> Voltag	esistors are connected in series, the $\Omega = 6 \Omega$ Current <i>I</i> in the circuit $= \frac{V}{R_{eq}} = \frac{12}{6} = \frac{12}{6}$ ge across 2Ω resistor $R_1 = 2A \times 2 \Omega = 4 V$ ge across 4Ω resistors $R_1 = 2A \times 4 \Omega = 8 V$	2A	. ½ Mark ½ Mark ½ Mark	2	

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI


PART – III

Answer **any five** questions. Question number **26 is compulsory**.

5x3=15

19 Kirchhoff first law (current law) : It states that the algebraic sum of currents at any junction in a circuit is zero. $(\sum I = 0).$ Explanation: It is a statement of conservation of electric charge. Thus all charges that enter a given junction in a circuit must leave that junction. Current entering the junction is taken as positive and current leaving the junction is taken as **negative.** Applying this law at junction 'A' $I_1 + I_2 - I_3 - I_4 - I_5 = 0$ $I_1 + I_2 = I_3 - I_4 - I_5$ ------ 1 ½ Marks (or) Kirchhoff second law (voltage law) : 3 It states that in a closed circuit the algebraic sum of the products of the current and resistance of each part of the circuit is equal to the total emf included in the circuit ($\sum IR = \sum \xi$) Explanation: It is a statement of conservation of energy for an isolated system. The product 'IR' is taken as positive when we proceed along the direction of current and taken as negative when we proceed opposite to the direction of current. Similarly. The emf is considered as positive, when we proceed from negative to positive terminal of the cell and as negative, when we proceed from positive to negative terminal of the cell. ----- 1 ½ Marks 20 Energy stored in capacitor: Capacitor is a device used to store charges and energy. When a battery is connected to the capacitor, electrons of total charge '-Q' are transferred from one plate to other plate. For this work is done by the battery. To transfer 'dQ' for a potential difference 'V', the work done is $dW = VdQ = \frac{\varrho}{c} dQ \qquad [\because V = \frac{\varrho}{c}] \dots \frac{1}{2} Mark$ 3 The total work done to charge a capacitor, W = $\int_{0}^{Q} \frac{Q}{c} dQ$; = $\frac{1}{C} \left[\frac{Q^2}{2} \right]_{0}^{Q}$; = $\frac{Q^2}{2C}$ 1 Mark This work done is stored as electrostatic energy of the capacitor, (i.e) $U_E = \frac{Q^2}{2C} = \frac{1}{2}CV^2$ [∵Q = CV]1⁄₂ Mark

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

0.4	On the self office of						
24	Seebeck effect:						
	Seebeck discovered that in a closed circuit						
	Consisting of two dissimilar metals, when the junction 1 Metal B						
	junctions are maintained at different						
	temperatures an emf (potential difference) is						
	developed. This is called Seebeck effect.						
	The current that flows due to the emf developed						
	is called thermoelectric current. The two dissimilar metals connected to form						
	two junctions is known as thermocouple. If hot and cold junctions are	3					
	interchanged, the direction of current also reversed.						
	Hence Seebeck effect is reversible.						
	Applications:						
	Seebeck effect is used in thermoelectric generators (Seebeck generators).						
	This effect is utilized in automobiles as automotive thermoelectric						
	generators.						
	Seebeck effect is used in thermocouples and thermopiles.						
	(Any 3 applications : $3 \times \frac{1}{2} = 1 \frac{1}{2}$ Marks)						
25	Properties of electric field lines:						
	1) They starts from positive charge and end at negative charge or at						
	infinity.						
	2) The electric field vector at a point in space is tangential to the						
	electric field line at that point.						
	3) The electric field lines are denser in a region where the electric field						
	has larger magnitude and less dense in region where the electric	-					
	field is of smaller magnitude. (i.e) the number of lines passing	3					
	through a given surface area perpendicular to the line is						
	proportional to the magnitude of the electric field.						
	 4) No two electric field lines intersect each other 						
	5) The number of electric field lines that emanate from the positive charge or end at a negative charge is directly proportional to the						
	magnitude of the charges.						
26							
20	(a) The capacitance of the capacitor is $C = \frac{\epsilon_0 A}{d}$; $\frac{8.854 \times 10^{-12} \times 25 \times 10^{-4}}{1 \times 10^{-3}}$						
	= 221.2 x 10 ⁻¹³ F;						
	C = 22.12 x 10 ⁻¹² F; = 22.12 p F 1 ½ Marks						
		3					
	(b) The charge stored in any one of the plates is Q = CV, Then	Ŭ					
	$Q = 22.12 \times 10^{-12} \times 10 = 221.2 \times 10^{-12}C$						
	Q = 221.2 pC 1 $\frac{1}{2}$ Marks						
L	1	L					

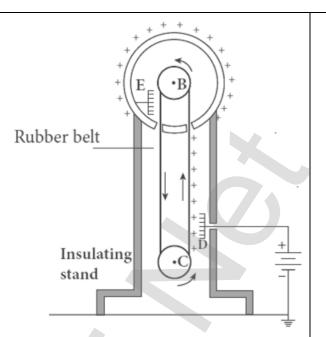
DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

3x5=15

PART – IV

Answer **all t**he questions.

27


Electric field due to infinitely long charged wire: Consider an infinitely long straight wire of uniform linear charge density ' λ '. Let 'P' be a point at a distance 'r' from the wire. Let 'E' be the electric field 5 at 'P'. Consider a cylindrical Gaussian surface of length 'L' and radius 'r' The electric flux through the top surface, É $\Phi_{\text{tap}} = \int \vec{E} \cdot \vec{dA} = \int E \, dA \cos 90^{\circ} = 0$ The electric flux through the **bottom surface**, $\Phi_{\text{bottom}} = \int \vec{E} \cdot \vec{dA} = \int E \, dA \cos 90^0 = 0$ Then the total electric flux through the curved surface, $\Phi_{\text{curve}} = \int \vec{E} \cdot \vec{dA} = \int E \, dA \cos 90^0 = E \int dA$ $\Phi_{\text{curve}} = E 2\pi rL$ Then the total electric flux through the Gaussian surface, $\Phi_{\mathsf{E}} = \Phi_{\mathsf{tap}} + \Phi_{\mathsf{bottom}} + \Phi_{\mathsf{curve}}; \Phi_{\mathsf{E}} = \mathsf{E} (2\pi \mathsf{rL})$ By Gauss law, $\Phi_{\mathsf{E}} = \frac{Q_{in}}{\varepsilon_0}$; E (2 π rL) = $\frac{\lambda L}{\varepsilon_0}$; $\mathsf{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \qquad \text{In vector notation, } \vec{E} = \frac{\lambda}{2\pi\varepsilon_0} \hat{r}$ Here $\hat{r} \rightarrow$ unit vector perpendicular to the curved surface outwards. If $\lambda > 0$, then \vec{E} points perpendicular outward (\hat{r}) from the wire and if λ < 0, then \vec{E} points perpendicular inward $(-\hat{r})$. (OR) Van de Graff Generator: It is designed by Robert Van de Graff. It produces large electro static potential difference of about 107 V Principle: Electro static induction, Action of points Construction: 5 It consists of large hollow spherical conductor 'A' fixed on the insulating stand. Pulley 'B' is mounted at the centre of the sphere and another pulley 'C' is fixed at the bottom. A belt made up of insulating material like silk or rubber runs over the pulleys.

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

'C' The pulley driven is continuously by the electric motor. Two comb shaped metallic conductor D and E are fixed near the pulleys. The comb 'D' is maintained at a positive potential of 10⁴ V by a power supply. The upper comb 'E' is connected to the inner side of the hollow metal sphere.

Working:

Due to the high electric field near comb 'D', air between the belt

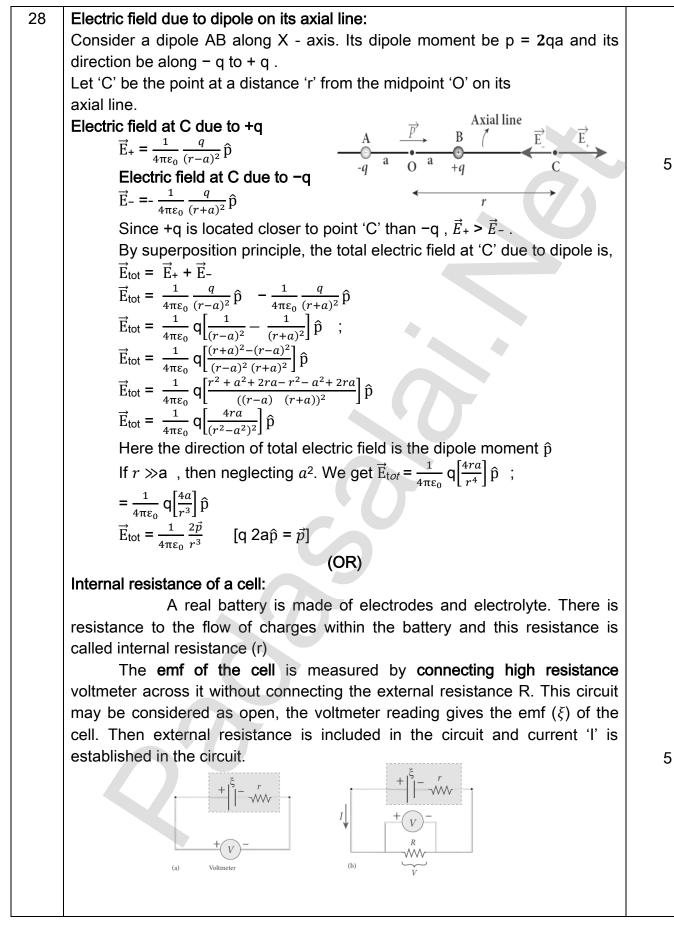
and comb 'D' gets ionized. The positive charges are pushed towards the belt and negative charges are attracted towards the comb 'D'.

The positive charges stick to the belt and move up. When the positive charges reach the comb 'E' a large amount of negative and positive charges are induced on either side of comb 'E' due to electrostatic induction.

As a result, the positive charges are pushed away from the **comb** 'E' and they reach the outer surface of the sphere.

These positive charges are distributed uniformly on the outer surface of the hollow sphere. At the same time, **the negative charges neutralize the positive charges in the belt due to corona discharge before it passes over the pulley.** When the belt descends, it has almost no net charge.

This process continues until the outer surface produces the **potential difference of the order of 10⁷ V** which is the limiting value.


Beyond this, the charge starts leaking to the surroundings due to ionization of air. It is prevented by enclosing the machine in a gas filled steel chamber at very high pressure.

Applications:

The high voltage produced in this Van de Graff generator is used to accelerate positive ions (Protons and Deuterons) for nuclear disintegrations and other applications.

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

8

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

1	L	4	Ľ
			1

	This circuit is then considered as close, the voltmeter reading gives the potential difference (V) across 'R' By Ohm's law, = IR (or) $I = \frac{V}{R}$ (1)	
	Due to internal resistance of the cell, the voltmeter reads the value "V" which is less than the emf (ξ). It is because, certain amount of voltage (Ir) has dropped across the internal resistance 'r'. Hence $V = \xi - Ir (2)$ (or) $Ir = \xi - V$ $\therefore r = \frac{\xi - V}{I}; = \left[\frac{\xi - V}{V}\right]R$	
	Since ξ , V and R are known, internal resistance 'r' and total current 'l' can be determined. The power delivered to the circuit is, I = I ξ ; = I (V + Ir); = I (IR + Ir) P = I ² R + I ² r where, I ² R \rightarrow power delivered to R I ² r \rightarrow power delivered to r	
29	Wheetetene's bridge	
29	Wheatstone's bridge: An important application of Kirchhoff's laws is the Wheatstone's bridge. It is used to compare resistances	
	and also helps in determining the unknown resistance in the electrical network. The bridge consists of four resistances P, Q, R, S connected as shown. A	
	galvanometer 'G' is connected between B and D. A battery ' ξ ' is connected	
	between A and C . Let I_1 , I_2 , I_3 , I_4 currents through various branches and I_G	5
	be the current through the galvanometer.	
	Applying Kirchhoff's current law at B and D,	
	$I_1 - I_G - I_3 = 0$ (1)	
	$I_2 + I_G - I_4 = 0$ (2)	
	Applying Kirchhoff's voltage law ABDA and ABCDA,	
	$I_1 P + I_G G - I_2 R = 0$ (3)	
	$I_1P + I_3Q - I_2R - I_4S = 0$ (4)	
	At balanced condition, the potential at B and D are same, and hence the	
	galvanometer shows zero deflection. So $I_G = 0$	
	Put this in equation (1), (2) and (3)	

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI

www.Padasalai.Net

www.CBSEtips.in

 $I_1 - I_3 = 0$ (or) $I_1 = I_3$ ----(5) $I_2 - I_4 = 0$ (or) $I_2 = I_4$ ----(6) $I_1P - I_2R = 0$ (or) $I_1P = I_2R - - - - (7)$ Put equation (5) and (6) in (4) $I_1P + I_1Q - I_2R - I_2S = 0$; $I_1(P + Q) - I_2(R + S) = 0$ \therefore I₁ (P+Q) = I₂ (R + S) ---- (8) Divide equation (8) by (7) $\frac{I_1(P+Q)}{I_1P} = \frac{I_2(R+S)}{I_2R} ; \qquad \frac{(P+Q)}{P} = \frac{(R+S)}{R}$ $1 + \frac{Q}{P} = 1 + \frac{S}{P}$; $\frac{Q}{P} = \frac{S}{R}$ (or) $\frac{P}{Q} = \frac{R}{S}$ (OR) Microscopic model of current and Ohm' law: dx Area of cross section of the conductor = A Number of electrons per unit volume = n, Applied electric field $=\vec{E}$ Drift velocity of electrons = vd, $v_d dt$ Charge of an electrons = eLet 'dx' be the distance travelled by the electron in time 'dt', then $v_d = \frac{dx}{dt}$ (or) $dx = v_d dt$ The number of electrons available in the volume of length 'dx' is = A dx X n; $= A v_d dt X n$ 5 Then the total charge in this volume element is, $dQ = A v_d dt n e$ By definition, the current is given by $I = \frac{dQ}{dt}$; $= \frac{A v_d dt n e}{dt}$; $I = n e A V_d$ Current density (J): Current density (J) is defined as the current per unit area of cross section of the conductor. $J = \frac{I}{A}$; $= \frac{n e A v_d}{A}$. J = ne v_d . Its unit is Am⁻² In vector notation, $\vec{J} = ne\vec{v}_d$; $\vec{J} = ne\left[-\frac{e\tau}{m}\vec{E}\right]$; $= -\frac{ne^{2\tau}}{m}\vec{E}$ Where, $\frac{ne^2\tau}{m} = \sigma \rightarrow \text{Conductivity}; \therefore \vec{J} = -\sigma \vec{E}$ But conventionally, we take the direction of current density as the direction of electric field. So the above equation becomes, $\vec{J} = \sigma \vec{E}$ This is called microscopic form of Ohm's law.

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI