PATTUKKOTTAI-PALANIAPPAN-MATHS

MATHS QUARTERLY MODEL EXAM - 2022-23

CLASS:12 TIME:3Hrs

PART-I

TOTAL MARKS:90

All questions are compulsory.

1. If $\frac{a_1}{x} + \frac{b_1}{y} = d_1$, $\frac{a_2}{x} + \frac{b_2}{y} = d_2$

20X 1 = 20

 $\Delta_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} a_1 & d_1 \\ a_2 & d_2 \end{vmatrix}$ and $\Delta_3 = \begin{vmatrix} d_1 & b_1 \\ d_2 & b_2 \end{vmatrix}$, then x and y are respectively

- $(1) \frac{\Delta_1}{\Delta_2}$ and $\frac{\Delta_1}{\Delta_2}$ $(2) \frac{\Delta_2}{\Delta_2}$ and $\frac{\Delta_1}{\Delta_2}$ $(3) \frac{\Delta_3}{\Delta_1}$ and $\frac{\Delta_2}{\Delta_2}$ $(4) \frac{\Delta_2}{\Delta_1}$ and $\frac{\Delta_3}{\Delta_2}$

If A is an invertible square matrix and k is a non-negative real number, then $(kA)^{-1}$

- (1) kA^{-1}
- (2) $\frac{1}{k}k^{-1}$ (3) $-kA^{-1}$

3. If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then $|\operatorname{adj}(AB)| = (1) -80$

4. If $P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$ is the adjoint of 3×3 matrix A and |A| = 4, then x is

- (4) 14

5. The modulus and principal argument of the complex number $z = -2(\cos\theta - i\sin\theta)$

where $0 < \theta \le \frac{\pi}{2}$ are, respectively,

(1) $2, -\theta$ (2) $2, \pi - \theta$ (3) $-2, \theta$ 6. If $x + iy = (-1 + i\sqrt{3})^{2019}$, then x is
(1) 2^{2019} (2) -2^{2019} (3) -1

- (4) 1

7. If z is a non zero complex number, such that $2iz^2$

- $(3)^{\frac{1}{2}}$
- (4) 1

8. If $\left|z - \frac{3}{z}\right| = 2$, then the least value of |z| is

- (1) 3
- (3) 2
- (4)

9. The polynomial $x^3 + 2x + 3$ has

(1)no zeros

(2) one positive and two imaginary zeros

(3) three real zeros

(4) one negative and two imaginary zeros

10. $2x^3 - x^2 - 2x + 2 = Q(x)(2x - 1) + R(x)$ for all values of x. The value of R(x) is

(1) 1

11. $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12}$ is equal to

(3) 0

(4) $\tan^{-1} \frac{12}{65}$

12. If $\sin^{-1} x = 2\sin^{-1} \alpha$ has a solution, then

 $(1) \left| \alpha \right| \leq \frac{1}{\sqrt{2}}$

 $(2) \left| \alpha \right| \ge \frac{1}{\sqrt{2}} \qquad (3) \left| \alpha \right| < \frac{1}{\sqrt{2}} \qquad (4) \left| \alpha \right| > \frac{1}{\sqrt{2}}$

13. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is

(1) $4(a^2+b^2)$

(2) $2(a^2+b^2)$ (3) a^2+b^2

 $(4) \frac{1}{2}(a^2+b^2)$

14. If the two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles then the locus of P is

(1) 2x+1=0

(2) x = -1

(3) 2x-1=0

(4) x = 1

15. The values of m for which the line $y = mx + 2\sqrt{5}$ touches the hyperbola $16x^2 - 9y^2 = 144$ are the roots of $x^2 - (a+b)x - 4 = 0$, then the value of (a+b) is

(1) 2

(2) 4

(3) 0

16. The radius of the circle $3x^2 + by^2 + 4bx - 6by + b^2 = 0$ is

 $(1)_{1}$

(3) $\sqrt{10}$

17. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{1}{4}$, then the angle between \vec{a} and \vec{b} is

 $(1) \frac{\pi}{6}$

 $(4) \frac{\pi}{2}$

18. Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is

(1) 0

(2) 1

(4) 3

19. If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then

(1) $c = \pm 3$

(2) $c = \pm \sqrt{3}$ (3) c > 0

(4) 0 < c < 1

20. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b} , and is parallel to \vec{c} then $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to

(1) \vec{a}

(2) \vec{b}

 $(3) \vec{c}$

(4) 0

PART-II

Note: (i) Answer any SEVEN questions

 $7 \times 2 = 14$

(ii) Question number 30 is compulsory

21. Find the matrix A for which $A \begin{vmatrix} 5 & 3 \\ -1 & -2 \end{vmatrix} = \begin{vmatrix} 14 & 7 \\ 7 & 7 \end{vmatrix}$.

22. Simplify $ii^{2}i^{3}\cdots i^{2000}$

23. If $\omega \neq 1$ is a cube root of unity, show that $(1 - \omega + \omega^2)^6 + (1 + \omega - \omega^2)^6 = 128$.

24. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}$ as a root.

PATTUKKOTTAI PALANIAPPAN MATHS 9443407917

PATTUKKOTTAI PALANIAPPAN MATHS 9443407917

- 25. Is $\cos^{-1}(-x) = \pi \cos^{-1}(x)$ true? Justify your answer.
- 26. Find the centre and radius of the circle $3x^2 + a + 1$ $y^2 + 6x 9y + a + 4 = 0$.
- 27. Find the equation of the parabola with vertex (-1,-2), axis parallel to y -axis and passing through (3,6).
- 28. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, prove that c is the geometric mean of a and b.
- 29. Find the acute angle between the lines. 2x = 3y = -z and 6x = -y = -4z.
- **30.** If A is a non-singular square matrix of order n, then $|\operatorname{adj}(\operatorname{adj} A)| = |A|^{(n-1)^2}$

PART-III

Note: (i) Answer any SEVEN questions

 $7 \times 3 = 21$

- (ii) Question number 40 is compulsory
- **31.** Find the inverse of the non-singular matrix $A = \begin{bmatrix} 0 & 5 \\ -1 & 6 \end{bmatrix}$, by Gauss-Jordan method.
- 32. In a competitive examination, one mark is awarded for every correct answer while $\frac{1}{4}$ mark is deducted for every wrong answer. A student answered 100 questions and got 80 marks. How many questions did he answer correctly? (Use Cramer's rule to solve the problem).
- **33.** Find the least value of the positive integer n for which $(\sqrt{3} + i)^n$ (i) real (ii) purely imaginary.
- **34.** If p is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$, in terms of p.
- 35. Find the value of $\cos \left[\frac{1}{2} \cos^{-1} \left(\frac{1}{8} \right) \right]$
- **36.** Prove that the length of the latus rectum of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.
- 37. If the normal at the point ' t_1 ' on the parabola $y^2 = 4ax$ meets the parabola again at the point ' t_2 ', then prove that $t_2 = -\left(t_1 + \frac{2}{t}\right)$.
- **38.** If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{a} \times (\vec{b} \times \vec{c}) = l\vec{a} + m\vec{b} + n\vec{c}$, find the values of l, m, n.
- 39. If a plane meets the coordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane.
- 40. Find the principal argument Arg z, when $z = \frac{-2}{1 + i\sqrt{3}}$.

PATTUKKOTTAI PALANIAPPAN MATHS 9443407917

PART-IV

Answer all the questions Note:

 $7 \times 5 = 35$

41a) If $ax^2 + bx + c$ is divided by x+3, x-5, and x-1, the remainders are 21,61 and 9 respectively. Find a,b and c. (Use Gaussian elimination method.)

(OR)

- b) Find the value of k for which the equations kx 2y + z = 1, x 2ky + z = -2, x 2y + kz = 1have
 - (i) no solution
- (ii) unique solution (iii) infinitely many solution
- 42 a) If z = x + iy is a complex number such that $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = 0$, show that the locus of z is $2x^2 + 2y^2 + x 2y = 0$. (OR)
 - b) If $\frac{1+z}{1-z} = \cos 2\theta + i \sin 2\theta$, show that $z = i \tan \theta$.
- 43 a) Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135$, if it is known that 1+2i and $\sqrt{3}$ are two of its zeros.

- b) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.
- 44 a) Find the value of $\cos^{-1} \left(\cos \left(\frac{4\pi}{3} \right) \right) + \cos^{-1} \left(\cos \left(\frac{5\pi}{4} \right) \right)$.
 - b) Solve: $\cot^{-1} x \cot^{-1} (x+2) = \frac{\pi}{12}, x > 0$
- 45 a) Find the equation of the circle passing through the points (1,1), (2,-1), and (3,2).

(OR)

- b) Find the vertex, focus, equation of directrix and length of the latus rectum of $y^2 4y 8x + 12 = 0$
- 46a) Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent. (OR)
 - b) Find parametric form of vector equation and Cartesian equations of the plane passing through the points (2,2,1), (1,-2,3) and parallel to the straight line passing through the points (2,1,-3)and (-1,5,-8).
- 47 a) A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16m, and the height at the edge of the road must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5mapproximately. How wide must the opening be?

(OR)

b) Prove by vector method that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$.

PATTUKKOTTAI· PALANIAPPAN MATHS 9443407917