15．Show that the function $f: N \rightarrow N$ defined by $f(x)=2 x-1$ is one－one but not onto．
16．Show that the function $f: N \rightarrow N$ defined by $f(m)=m^{2}+m+3$ is one－one function．

17．Let $f$ be a function $f: N \rightarrow N$ defined by $f(x)=3 x+2 \in N(i)$ Find the images of $1,2,3$
（ii）Find the pre－images of 29， 53 （III）Identify the type of function．
18．State whether the function $f: R \rightarrow R$ defined by $f(x)=2 x+1$ is bijective or not．
19．Let $f$ be a function from $R$ to $R$ defined $b y f(x)=3 x-5$ ．Find the values of $a$ and $b$ given that $(a, 4)$ and $(1, b)$ belong to $f$ ．
20．Let $A=\{-1,1\}$ and $B=\{0,2\}$ ．If the function $f: A \rightarrow B$ defined $b y f(x)=a x+b$ is an onto function？ Find $a$ and $b$ ．

## （v）COMPOSITION OF FUNCTIONS

21．Find $f \circ g$ and $g \circ f$ when $f(x)=2 x+1$ and $g(x)=x^{2}-2$ ．
22．$f(x)=2 x-1$ and $g(x)=\frac{x+1}{2}$ ，show that $f \circ g=g \circ f=x$ ．
23．If $f(x)=\frac{x-1}{x+1}, x \neq-1$ show that $f(f(x))=-\frac{1}{x}$ ，provided $x \neq 0$
24．If $f(x)=3 x-2, g(x)=2 x+k$ and if $f \circ g=g \circ f$ ，then find the value of $k$ ．
25．If $f(x)=x^{2}-1, g(x)=x-2$ find a if $g \circ f(a)=1$
26．Let $f(x)=x^{2}-1$ ．Find（i）$f \circ f$（ii）$f \circ f \circ f$
27．Let $f=\{(-1,3),(0,-1),(2,-9)\}$ be a linear function from $z$ into $z$ ．Find $f(x)$ ．

## 2．NUMBERS \＆SEOUENCES

（i）EULID＇S DIVISION LEMMA
01．Prove that the product of two consecutive positive integers is divisible by 2.
02．When the positive integers $a, b$ and $c$ are divided by 13 ，the respective remainders are 9,7 and 10．Show that $a+b+c$ is divisible by 13.
03．A positive integer when divided by 88 gives the remainder 61 ．What will be the remainder when the same number is divided by 11 ？
04．Use Euclid＇s Division Algorithm to find the Highest Common Factor（HCF）of
（i） 340 and 412
（ii） 10224 and 9648
（EACH）

05．Use Euclid＇s Division Algorithm to find the Highest Common Factor（HCF）of 84，90，and 120
06．Find the greatest number that will divide 445 and 572 leaving remainders 4 and 5 respectively．
07．If the Highest Common Factor of 210 and 55 is expressible in the form $55 x-325$ ，find $x$ ．
08．Prove that two consecutive positive integers are always Co－prime．

X MATHEMATICS
SELECTED TWO MARKS QUESTIONS
RAVI＇S MATH

（ii）FUNDAMENTAL THEOREM OF ARITHMETIC

09．Can the number $6^{n}, n$ being a natural number end with the digit 5 ？Give reason for your answer．
10．If $m, n$ are natural numbers，for what values of $m$ ，does $2^{n} \times 5^{m}$ ends in 5 ？
11．＇$a$＇and＇$b$＇are two positive integers such that $a^{b} \times b^{a}=800$ ．Find＇$a$＇and＇$b$
12．If $p_{1}{ }^{x_{1}} \times p_{2}{ }^{x_{2}} \times p_{3}{ }^{x_{3}} \times p_{4}{ }^{x_{4}}=113400$ where $p_{1}, p_{2}, p_{3}, p_{4}$ are primes in ascending order and $x_{1}, x_{2}, x_{3}, x_{4}$ are integers，find the value of $p_{1}, p_{2}, p_{3}, p_{4}$ and $x_{1}, x_{2}, x_{3}, x_{4}$ ．
13．Find the HCF of 252525 and 363636.
14．Find the greatest number consisting of 6 digits which is exactly divisible by $24,15,36$ ？
15．Find the least number that is divisible by the first ten natural numbers

## （iii）MODULAR ARITHMETIC

16．Find the remainders when 70004 and 778 is divided by 7
17．Find the least positive value of $x$ such that $(i) 67+x \equiv 1(\bmod 4)(i i) 98 \equiv(x+4)(\bmod 5) \quad$（each）
18．Solve $5 x \equiv 4(\bmod 6)$
19．Solve $3 x-2 \equiv 0(\bmod 11)$
20．What is the time 100 hours after $\mathbf{7 a . m . ?}$
21．What is the time 15 hours before 11 p．m．？
22．Find the remainder when $2^{81}$ is divided by 17.
23．Compute $x$ ，such that $10^{4} \equiv x(\bmod 19)$ ．

## （iv）SEQUENCES

24．Find the first four terms of the sequence whose $n^{\text {th }}$ term are given by
（i）$a_{n}=n^{3}-2$
（ii）$a_{n}=(-1)^{n+1} n(n+1)$
（iii）$a_{n}=2 n^{2}-6$
（EACH）
25.

Find $a_{8}$ and $a_{15}$ whose $n^{\text {th }}$ term is $a_{n}=\left\{\begin{array}{l}\frac{n^{2}-1}{n+3} ; n \text { is even，} n \in N \\ \frac{n^{2}}{2 n+1} ; n \text { is odd，} n \in N\end{array}\right.$
26．Find the five terms of the following sequence．$a_{1}=1, a_{2}=1, a_{n}=\frac{a_{n-1}}{a_{n-2}+3} ; n \geq 3, n \in N$ 27．If $a_{1}=1, a_{2}=1$ and $a_{n}=2 a_{n-1}+a_{n-2} \quad n \geq 3, n \in N$ ，then find the first six terms of the sequence．
（v）ARITHMETIC PROGRESSUON
28．Write an A．P．whose first term is $\mathbf{2 0}$ and common difference is 8
29．Find the first term and common difference of the Arithmetic Progressions whose $n^{\text {th }}$ terms are given below（i）$t_{n}=-3+2 n \quad$（ii）$t_{n}=4-7 n \quad$（EACH）
30．Find nth term（general term）of an A．P．given by $3,15,27,39, \ldots$
31．Find the 19th term of an A．P．－－11，－15－19．．．．．．
32．Find the number of terms in the A．P．3，6，9，12，．．．， 111.
X MATHEMATICS
SELECTED TWO MARKS QUESTIONS
RAVI＇S MATH
32．Find

46．Find the sum of 8 terms of the G．P．1，$-3,9,-27, \ldots$
47．Find the sum of first six terms of the G．P． $5,15,45, \ldots$
48．Find the sum to infinity of $9+3+1+$ $\qquad$
49．Find the sum $3+1+\ldots$
50．How many terms of the series $1+4+16+$ make the sum 1365 ？
51．Find the first term of G．P．in which $\mathrm{S6}=4095$ and $\mathrm{r}=4$ ．
52．If the first term of an infinite G．P．is 8 and its sum to infinity is $\frac{\mathbf{3 2}}{3}$ then find the common ratio．

## （viii）SPECIAL SERIES

53．Find the value of（i） $1+2+3+\ldots .+50$（ii） $2+4+6+$ $\qquad$ $+80$
54．Find the sum of
（i） $1^{2}+2^{2}+\ldots .+19^{2}$
（ii） $1+4+9+16+$ $\qquad$ +225 （Each）
55．Find the sum of（i） $1+3+5+$ $\qquad$ ＋ 71 （ii） 1 ＋ 3 ＋ 5 ＋ ＋55
56．Find the sum of（i） $1^{3}+2^{3}+3^{3}+\ldots .+16^{3}$

58．If $1+2+3+\ldots \ldots+k=325$ ，then find $1^{3}+2^{3}+3^{3}+$ $\qquad$ $+k^{3}$
59．If $\mathbf{1}^{3}+\mathbf{2}^{3}+3^{3}+$ $\qquad$ $+k^{3}=44100$ ，then find $1+2+3+$ $\qquad$ ＋$k$ ．
40．Find the 8 th term of the G．P． $9,3,1, \ldots$
41．In a G．P．729，243，81，．．．find $\mathrm{t}_{7}$ ．
42．Find $x$ so that $x+6, x+12$ and $x+15$ are consecutive terms of a Geometric Progression．
43．Find the number of terms in The G．P．4，8，16，．．．， 8192 ？
44．Find the number of terms in the G．P．$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots . . \frac{1}{2187}$ ．
45．If $a, b, c$ are in A．P．then show that $3 a, 3 b, 3 c$ are in G．P．
（vii）GEOMETRIC SERIES
(i) GCD AND LCM OF POLYNOMIALS

60．Find the LCM of the following：（each）
（i） $4 x^{2} y, 8 x^{3} y^{2}$
（ii）$x^{4}-1, x^{2}-2 x+1$
（iii）$x^{3}-27,(x-3)^{2}, x^{2}-9$
（iv） $2 x^{2}-5 x-3,4 x^{2}-36$

61．Find the LCM and GCD for $\left(x^{3}-1\right)(x+1),\left(x^{3}+1\right)$ and verify that $f(x) \times g(x)=L C M \times G C D$
62．Find the LCM of the polynomials $a^{2}+4 a-12, a^{2}-5 a+6$ whose GCD is $a-2$ ．
（ii）REDUCTION OF RATIONAL EXPRESSION
63．Reduce each of the following rational expressions to its lowest form．
（i）$\frac{x^{2}-1}{x^{2}+x}$
（ii）$\frac{x^{2}-11 x+18}{x^{2}-4 x+4}$
（Each）
（iii）EXCLUDED of RATIONAL EXPRESSION
64．Find the excluded values of the following expressions（if any）
（i）$\frac{y}{y^{2}-25}$
（ii）$\frac{x^{2}+6 x+8}{x^{2}+x-2}$
［Each）
（iv）OPERATION ON RATIONAL EXPRESSION
65．Simplify：$\frac{p^{2}-10 p+21}{p-7} \times \frac{p^{2}+p-12}{(p-3)^{2}}$
66．Simplify：（i）$\frac{x+4}{3 x+4 y} \times \frac{9 x^{2}-16 y^{2}}{2 x^{2}+3 x-20}$
（ii）$\frac{x^{3}-y^{3}}{3 x^{2}+9 x y+6 y^{2}} \times \frac{x^{2}+2 x y+y^{2}}{x^{2}-y^{2}}$
67．Find $\frac{x^{2}-16}{x+4} \div \frac{x-4}{x+4}$
68．Simplify：$\frac{b^{2}+3 b-28}{b^{2}+4 b+4} \div \frac{b^{2}-49}{b^{2}-5 b-14}$
69．If a polynomial $p(x)=x^{2}-5 x-14$ is divided by another polynomial $q(x)$ we get $\frac{x-7}{x+2}$ ，find $q(x)$ ．
$\begin{array}{ll}\text { 70．Simplify：（i）} \frac{x^{2}}{x-y}+\frac{y^{2}}{y-x} & \text {（ii）} \frac{x+2}{x+3}+\frac{x-1}{x-2}\end{array}$［Each］
71．Subtract $\frac{1}{x^{2}+2}$ from $\frac{2 x^{3}+x^{2}+3}{\left(x^{2}+2\right)^{2}}$
72．Which rational expression should be subtracted from $\frac{x^{2}+6 x+8}{x^{3}+8}$ to get $\frac{3}{x^{2}-2 x+4}$

X MATHEMATICS
SELECTED TWO MARKS QUESTIONS
RAVI＇S MATH

## （v）To find the square root of a given expression

73．Find the square root of（i）$\frac{144 a^{8} b^{12} \mathbf{c}^{16}}{81 f^{16}} \quad$（ii）$\frac{121(a+b)^{8}(\mathbf{x}+\mathbf{y})^{8}(b-c)^{8}}{81(b-c)^{4}(a-b)^{12}(b-c)^{4}} \quad$［Each］
74．Find the square root of $16 x^{2}+9 y^{2}-24 x y+24 x-18 y+9$
75．Find the square root of $1+\frac{1}{x^{6}}+\frac{2}{x^{3}}$
（vi）QUADRATIC EQUAGTION
76．Write down the quadratic equation in general form for which sum and product of the roots
are given below：
（i）9， 14
（ii）$-\frac{7}{2}, \frac{5}{2}$
（iii）$-\frac{3}{5},-\frac{1}{2}$［Each］

77．Find the sum and product of the roots for each of the roots for each of the following quadratic equations：（i）$x^{2}+8 x-65=0 \quad$（ii） $2 x^{2}+5 x+7=0 \quad$（iii）$k x^{2}-k^{2} x-2 k^{3}=0$
［Each］
78．Solve the following by using factorization method：
（i） $\mathbf{2 m}{ }^{2}+19 m+30=0$
（ii） $3\left(p^{2}-6\right)=p(p+5)$
（iii）$\sqrt{2} x^{2}+7 x+5 \sqrt{2}$
［Each］

79．Solve the following by using completing square method：
（i）$x^{2}-3 x-2=0$
（ii） $9 x^{2}-12 x+4=0$
［Each］

80．Solve the following by using formula method：
（i） $2 x^{2}-3 x-3=0$
（ii） $3 p^{2}+2 \sqrt{5} p-5=0$
（iii） $36 y^{2}-12 a y+\left(a^{2}-b^{2}\right)=0$
［Each\}

## （vi）NATURE OF ROOTS OF A QUADRATIC EQUAGTION

81．Determine the nature of the roots for the following quadratic equations．
（i） $15 x^{2}+11 x+2=0$
（ii）$x^{2}-x-1=0$
（iii）$\sqrt{2} t^{2}-3 t+3 \sqrt{2}=0 \quad$［Each］

82．Find the value of＇$k$＇，for which the quadratic equation $k x^{2}-(8 k+4) x+81=0$ has real and equal roots．
（vii）RELATION BETWEEN ROOTS AND COEFFICIENT OF A QUADRATIC EQUATION

83．Write each of the following expression in terms of $\alpha+\beta$ and $\alpha \beta$ ．（i）$\frac{\alpha}{3 \beta}+\frac{\beta}{3 \alpha} \quad$（ii）$\frac{\alpha+3}{\beta}+\frac{\beta+3}{\alpha}$
84．The roots of the equation $2 x^{2}-7 x+5=0$ are $\alpha$ and $\beta$ ．Without solving for the roots find $\frac{1}{\alpha}+\frac{1}{\beta}$
85．If $\alpha$ and $\beta$ are the roots of $x^{2}+7 x+10=0$ ．Find the values of（i）$\alpha-\beta$
（ii）$\alpha^{2}+\beta^{2}$
（iii）$\alpha^{3}+\boldsymbol{\beta}^{3}$

米
X MATHEMATICS
SELECTED TWO MARKS QUESTIONS
RAVI＇S MATH

## （i）AREA OF A TRIANGLE

86．Find the area of the triangle whose vertices are

$$
\text { (i) }(-3,5),(5,6) \text { and }(5,-2) \text { (ii) }(-10,-4),(-8,-1) \text { and }(-3,-5) \quad[\text { Each] }
$$

87．Show that the points $P(-1.5,3), Q(6,-2), R(-3,4)$ are collinear．
88．Determine whether the sets of points $(a, b+c),(b, c+a)$ and $(c, a+b)$ are collinear or not．
89．Vertices of given triangles are taken in order and their areas are provided below．In each case， find the value of＇$p$＇．

| SI． <br> No． | Vertices | Area（sq．units） |
| :--- | :--- | :---: |
| 01 | $(0,0),(p, 8),(6,2)$ | 20 |
| 02 | $(p, p),(5,6),(5,-2)$ | 32 |

## （ii）INCLINATION AND SLOPE OF A STRAIGHT LINE

90．（i）What is the slope of a line whose inclination is $30^{\circ}$ ？
（ii）What is the inclination of a line whose slope is $\sqrt{3}$ ？
91．Find the slope of a line joining the given points（i）$(-6,1)$ and $(-3,2)$（ii）$\left(\frac{-1}{3}, \frac{1}{2}\right)$ and $\left(\frac{2}{3}, \frac{3}{7}\right)$
92．Show that the points $(-3,-4),(7,2)$ and $(12,5)$ ．are collinear．
93．If the three points $(3,-1),(a, 3)$ and $(1,-3)$ are collinear，find the value of $a$ ．
94．The line through the points $(-2, a)$ and $(9,3)$ has slope $\frac{1}{2}$ ．Find the value of a
95．The line $r$ passes through the points $(-2,2)$ and $(5,8)$ and the line $s$ passes through the points $(-8,7)$ and $(-2,0)$ ．Is the line $r$ perpendicular to $s$ ？
96．The line $p$ passes through the points $(3,-2),(12,4)$ and the line $q$ passes through the points $(6,-2)$ and $(12,2)$ ．Is $p$ parallel to $q$ ？
（iii）EQUATIONS OF A STRAIGHT LINE

| Given information | Equation of straight line |
| :--- | :--- |
| Line is parallel to $\mathbf{X}$－axis | $\mathbf{y}=\mathbf{k}$ |
| Line is parallel to $\mathbf{Y}$－axis | $\mathbf{x}=\mathbf{k}$ |
| Slope $=\mathbf{m}, \mathbf{y}$－intercept $=\mathbf{c}$ | $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ |

97．Find the equation of a straight line passing through the mid－point of a line segment joining the points（1，－5），（4，2）and parallel to（i）$X$ axis（ii）$Y$ axis
98．Find the equation of a straight line whose（i）Slope is 5 and $y$ intercept is $\mathbf{- 9}$
（ii）Inclination is $45^{\circ}$ and $y$ intercept is 11 ［Each］
X MATHEMATICS
SELECTED TWO MARKS QUESTIONS
RAVI＇S MATH

Kindly send me your district question papers to our whatsapp number： 7358965593
119. Prove that $\frac{\sin A}{1+\cos A}+\frac{\sin A}{1-\cos A}=2 \operatorname{cosec} A$
120. Prove that $\tan ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~B}=\frac{\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}}{\cos ^{2} \mathrm{~A} \cos ^{2} \mathrm{~B}}$
121. Prove that $\cot \theta+\tan \theta=\sec \theta \operatorname{cosec} \theta$
121. Prove that $\tan ^{4} \theta+\tan ^{2} \theta=\sec ^{4} \theta-\sec ^{2} \theta$
122. Prove that $\frac{1-\tan ^{2} \theta}{\cot ^{2} \theta-1}=\tan ^{2} \theta$
123. Prove that $\frac{\cos \theta}{1+\sin \theta}=\sec \theta-\tan \theta$
124. Prove that $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=\sec \theta+\tan \theta$
125. Prove that $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$
126. Prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
127. Prove that $\operatorname{Sec}^{6} \theta=\tan ^{6} \theta+3 \tan ^{2} \theta \sec ^{2} \theta+1$
128. Prove that $\sec ^{4} \theta\left(1-\sin ^{4} \theta\right)-2 \tan ^{2} \theta=1$
129. Prove that $\frac{\boldsymbol{\operatorname { c o t }} \theta-\operatorname{cosec} \theta}{\boldsymbol{\operatorname { c o t } \theta + \operatorname { c o s e c } \theta}}=\frac{\boldsymbol{\operatorname { c o s e c } \theta - 1}}{\boldsymbol{\operatorname { c o s e c } \theta + 1}}$
130. Prove that $\frac{\sin A-\sin B}{\cos A+\cos B}+\frac{\cos A-\cos B}{\sin A+\sin B}=0$
131. Prove that $\frac{\sin ^{3} A+\cos ^{3} A}{\sin A+\cos A}+\frac{\sin ^{3} A-\cos ^{3} A}{\sin A-\cos A}=2$
4. GEOMETRY

1. Examples: 4.1, 4.4, 4.5, 4.8, 4.13, 4.15
2. Exercise 4.1: 1, 8,
3. Exercise 4.2: 3(i), (ii), 7, 8, 9

X MATHEMATICS
SELECTED TWO MARKS QUESTIONS


