TENKASI DISTR1C FAndard 12

PART - A

In. Choose the correct answer:
$15 \times 1=15$

1) A plane glass is placed over a various coloured letters (violet, green, yellow, red). The letter which appears to be raised more is \qquad .
a) red
b) yellow
c) violet
d) green
2) The energy required to charge a parallel plate condenser of plate separation d and plate area of cross section ' A ' such that the uniform electric field between the plate is \qquad -
a) $\in_{0} A^{2} E d$
b) $\in_{0} E^{2} \mathrm{Ad}$
c) $1 / 2 \in{ }_{0} \mathrm{E}^{2} / \mathrm{Ad}$
d) $\in_{0} E^{2} / \mathrm{Ad}$
3) A wire fo resistance 2 ohms per metre is bent to form a circle of radius 2 m . The equivalent resistance between its two diametrically opposite points A and B as shown in the figure is \qquad .

a) $\pi \Omega$
b) $\frac{\pi}{2} \Omega$
c) $2 \pi \Omega$
d) $\frac{\pi}{4} \Omega$
4) The magnitude of magnetic field of a long, straight wire carrying a current of 2A at a distance of 1 m from it is \qquad .
a) $1 \times 10^{-7} \mathrm{~T}$
b) $2 \times 10^{-7} \mathrm{~T}$
c) $4 \times 10^{-7} \mathrm{~T}$
d) $3 \times 10^{-7} \mathrm{~T}$
5) In a series resonant RLC circuit, the voltage across 100Ω resistor is 40 V . The resonant frequency w is $250 \mathrm{rad} / \mathrm{s}$. If the value of c is 4 NF , then the voltage across ' L ' is \qquad -.
a) 600 V
b) 4000 V
c) 1 V
d) 400 V
6) unit of $\left(\lambda_{0} \varepsilon_{0}\right)^{-1 / 2}$ is \qquad -
a) Pascal
b) Nm^{-1}
c) ms^{-1}
d) Kgm^{-1}
7) When light is refracted, which of the following does not change?
a) Wavelength
b) Frequency
c) Velocity
d) Amplitude
8) Electromagnetic waves are \qquad .
a) Neither longitudinal nor transverse
b) Longitudinal
c) Transverse
d) Both longitudinal and transverse
9) In an ac circuit voltage and current are given by $\mathrm{V}=50 \mathrm{t}$ volt and $I=100 \sin (50 t+\pi / 3) A$. The power dissipted in the circuit will be \qquad .
a) 1.25 kw
b) 2.5 kw
c) 5 kw
d) 500 w
10) A cyclotorn can not accelerate \qquad .
a) electrons
b) protons
c) deutrons
d) α-particles
11) The current in this circuit is \qquad .

a) 4 A
b) 1 A
c) $2 A$
d) 3 A
12) Dielectric strength of air is $4 \times 10^{6} \mathrm{Vm}^{-1}$. Suppose the radius of a hollow sphere in the Van de Graff generator is $R=0.4 \mathrm{~m}$, calculate the maximum potential difference created by this Vande Graff generator is \qquad .
a) 1.6 million volt
b) 2.6 mV
c) 0.6 mV
d) 3.6 mV
13) A wire of resistance 10Ω is stretched uniformly, to thrice its original length then the resistance of stretched wire \qquad .
a) 90Ω
b) 70Ω
c) 50Ω
d) 30Ω
14) The ratio of magnetic length and geometrical length is \qquad .
a) 0.633
b) 0.733
c) 0.833
d) 0.933
15) When the current changes from $2 A$ to $-2 A$ in 0.05 s , an emf of $8 V$ is induced in a coil. The co-efficient of self-induction of the coil is \qquad -
a) 0.2 H
b) 0.4 H
c) 0.8 H
d) 0.1 H

PART- II
II. Answer any six of the following.
$6 \times 2=12$
Question number 211 is compullsory.
16) Define static potential.
17) What is Peltier effect?
18.) Write the uses of mass spectrometer.
19) State Len's law.
20) Compute the speed of electromagnetic waves in a medium if the amplitudes of electric and magnetic fields in it are $3 \times 10^{4} \mathrm{NC}^{-1}$ and $2 \times 10^{-4} \mathrm{~T}$ respectively.
21) An object is placed at a certain distances from a convex lens of focal length 20 cm . Find the object distance if the image obtained is magnitude 4 times.
22) State Malu's law.
23) Write the condition of Total internal reflection.
24) Why sky appears blue?

PART - III

III. Answer any six of the following.

Question number 27 is compulsory.
25) Write the application of capacitor.
26) When two resistors connected in series and parallel their equivalent resistances are $15 \Omega, \frac{56}{15} \Omega$ respectively. Find the two resistors.
27) A wire of length ℓ carrying a current I along the y direction is kept in a magnetic field is given by $B=\frac{\beta}{\sqrt{3}}(\vec{i}+\vec{j}+\vec{k}) T$. Calculate the magnitude of Lorentz force acting on the wire.
28) Obtain an expression for Q-factor.
29) Write short notes on Ampere's Maxwell law.
30) What is optical path? Obtain the equation for optical path.
31) Differentiate between Fresnel, and Frannhofer diffraction.
32) Obtain Gauss law form Columb's law.
33) Obtain the condition for bridge balance in Wheatston's bridge.

IV. Answer all questions:

PART - IV

34) Explain in detail the effect of a dielectric placed in a parallel plate capacitor (OR)

Explain in detail about absorption spectra.

35) Describe the microscopic model of current and obtain general form of ohm's law.
(OR)
Explain Fizean's method to determine the speed or light.
36) Derive the expression for the force between two parallel, current carrying conductors.
(OR)
Obtain the equation for bandwidth in young's double slit experiment.
37) Explain the construction and working of transformer.
(OR)
Obtain len's maker's formula and mention its significance.
38) Write down Maxwell's equations in integral form.
(OR)
Discuss the working' of cyclotron in detail.
39) A plane glass is placed over a various coloured letters (violet, green, yellow, red). The letter which appears to be raised more is \qquad .
a) red
b) yellow
c) violet
d) green
40) The energy required to charge a parallel plate condenser of plate separation d and plate area of cross section ' A ' such that the uniform electric field between the plate is \qquad -
a) $\in_{0} A^{2} E d$
b) $\in_{0} E^{2} A d$
C) $1 / 2 \in{ }_{0} E^{2} / \mathrm{Ad}$
d) $\in_{0} E^{2} / \mathrm{Ad}$
41) A wire fo resistance 2 ohms per metre is bent to form a circle of radius 2 m . The equivalent resistance between its two diametrically opposite points A and B as shown in the figure is \qquad -.

a) $\pi \Omega$
b) $\frac{\pi}{2} \Omega$
c) $2 \pi \Omega$
d) $\frac{\pi}{4} \Omega$
42) The magnitude of magnetic field of a long, straight wire carrying a current of 2 A at a distance of 1 m from it is \qquad
a) $1 \times 10^{-7} \mathrm{~T}$
b) $2 \times 10^{-7} \mathrm{~T}$
c) $4 \times 10^{-7} \mathrm{~T}$
d) $3 \times 10^{-7} \mathrm{~T}$
43) In a series resonant RLC circuit, the voltage across 100Ω resistor is 40 V . The resonant frequency w is $250 \mathrm{rad} / \mathrm{s}$. If the value of c is $4 N F$, then the voltage across ' L ' is \qquad _.
a) 600 V
b) 4000 V
c) 1 V
d) 400 V
44) unit of $\left(\lambda_{0} \varepsilon_{0}\right)^{-1 / 2}$ is \qquad \therefore.
a) Páscal
b) Nm^{-1}
C) ms^{-1}
d) Kgm^{-1}
45) When light is'refracted, which of the following does not change?
a) Wavelength
b) Frequency
c) Velocity
d) Amplitude
46) Electromagnetic waves are \qquad .
a) Neither longitudinal nor transverse
b) Longitudinal
c) Transverse
d) Both longitudinal and transverse
47) In an ac circuit voltage and current are given by $V=50 t$ volt and $\mathrm{I}=100 \sin (50 t+\pi / 3) A$. The power dissipted in the circuit will be \qquad _.
a) 1.25 kw
b) 2.5 kw
c) 5 kw
d) 500 w
48) A cyclotorn can not accelerate \qquad .
a) electrons
b) protons
c) deutrons
d) α-particles
49) The current in this circuit is \qquad -.

a) 4 A
b) 1 A
c) 2 A
d) 3 A
50) Dielectric strength of air is $4 \times 10^{6} \mathrm{Vm}^{-1}$. Suppose the radius of a hollow sphere in the Van de Graff generator is $R=0.4 \mathrm{~m}$, calculate the maximum potential difference created by this Vande Graff generator is \qquad -
a) 1.6 million volt
b) 2.6 mV
c) 0.6 mV
d) 3.6 mV
51) A wire of resistance 10Ω is stretched uniformly, to thrice its original length then the resistance of stretched wire \qquad .
a) 90Ω
b) 70Ω
c) 50Ω
d) 30Ω
52) The ratio of magnetic length and geometrical length is \qquad .
a) 0.633
b) 0.733
c) 0.833
d) 0.933
53) When the current changes from $2 A$ to $-2 A$ in 0.05 s, an emf of $8 V$ is induced in a coil. The co-efficient of self-induction of the coil is \qquad -
a) 0.2 H
b) 0.4 H
c) 0.8 H
d) 0.1 H

PART = II
$6 \times 2=12$
II. Answer any six of the following.

Question number 21 is compulsory.
16) Define static potential.
17) What is Peltier effect?
18) Write the uses of mass spectrometer.
19) State Len's law.
20) Compute the speed of electromagnetic waves in a medium if the amplitudes of electric and magnetic fields in it are $3 \times 10^{4} \mathrm{NC}^{-1}$ and $2 \times 10^{-4} \mathrm{~T}$ respectively.
21) An object is placed at a certain distances from a convex lens of focal length 20 cm . Find the object distance if the image obtained is magnitude 4 times.
22) State Malu's law.
23) Write the condition of Total internal reflection.
24) Why sky appears blue?

PART-III

III. Answer any six of the following.
25) Write the application of capacitor.
26) When two resistors connected in series and parallel their equivalent resistances are $15 \Omega, \frac{56}{15} \Omega$ respectively. Find the two resistors.
27) A wire of length ℓ carrying a current I along the y direction is kept in a magnetic field is given by $B=\frac{\beta}{\sqrt{3}}(\vec{i}+\vec{j}+\vec{k}) T$. Calculate the magnitude of Lorentz force acting on the wire.
Lorentz force acting on the wire. Sri Ram Matric itss
28) Obtain an expression for Q-factor. Write short notes on Ampere's Maxwell law. SIVAKUMAR. M
30) What is optical path? Obtain the equation for optical path.
31) Differentiate between Fresnel. and Frannhofer diffraction. 627809.
32) Obtain Gauss law form Columb's law.
33) Obtain the condition for bridge balance in Wheatston's bridge.

PART-IV

IV. Answer all questions:
$5 \times 5=25$
34) Explain in detail the effect of a dielectric placed in a parallel plate capacitor. (OR)
Explain in detail about absorption spectra.
35) Describe the microscopic model of current and obtain general form of ohm's law.
Explain Fizean's method to determine the speed or light.
36) Derive the expression for the force between two parallel, current carrying conductors.
(OR)
Obtain the equation for bandwidth in young's double slit experiment.
37) Explain the construction and working of transformer.
(OR)
Obtain len's maker's formula and mention its significance.
38) Write down Maxwell's equations in integral form.
(OR)
Discuss the working' of cyclotron in detail.

