SRI KRISHNA MATRIC HR. SEC. SCHOOL ODDANCHATRAM.

UNIT-5 TEST

STD: XII PHYSICS

MARKS: 45

PART-A

1. CHOOSE THE CORRECT ANSWER 10X1=10

- 1. In an electromagnetic wave travelling in free space the rms value of the electric field is 3 V m-1. The peak value of the magnetic field is
- (a) 1.414×10^{-8} T (b) 1.0×10^{-8} T
- (c) $2.828 \times 10^{-8}T$
- (d) 2.0×10^{-8} T
- 2. Which of the following is an electromagnetic wave?
 - (a) a rays
- (b) β rays
- (c) γ rays
- (d) all of them
- 3. The electric and magnetic fields of an electromagnetic wave are
 - (a) in phase and perpendicular to each other
 - (b) out of phase and not perpendicular to each other
 - (c) in phase and not perpendicular to each other
 - (d) out of phase and perpendicular to each other
- 4. If E = Eo $\sin[10^6 \text{ x} \omega t]$ be the electric field of a plane electromagnetic wave, the value of ω is
 - (a) 0.3×10^{-14} rad s-1 (b) 3×10^{-14} rad s-1 (c) 0.3×10^{14} rad s-1 (d) 3×10^{14} rad s-1
- Consider an oscillator which has a charged particle oscillating about its mean position with a frequency of 300 MHz. The wavelength of electromagnetic waves produced by this oscillator is
 - a) 1 m
- (b) 10 m
- (c) 100 m
- (d) 1000 m6.
- 6. If the amplitude of the magnetic field is 3 × 10-6T, then amplitude of the electric field for a electromagnetic waves is
 - (a) 100Vm-1
- (b) 300Vm-1
- (c) 600Vm-1
- (d) 900Vm-1
- 7. What is the phase difference between electric and magnetic fields in an electromagnetic wave?
 - (a) 0
- (b) n
- (c) $\pi/2$
- (d) $\pi/4$
- 8. The correct option, if speeds of gamma rays, X-rays and microwave are V_g , V_x an V_m respectively will be.
 - (a) $V_g > V_x > V_m$
- (b) $V_g < V_x < V_m$
- (c) $V_g > V_x > V_m$ (d) $V_g = V_x = V_m$
- 9. If E and B represent electric and magnetic field vector of the electromagnetic waves then the direction of propagation of the em wave is that of
 - (a) E.B
- (b) B.E
- (c) $\vec{E} \times \vec{B}$
- (d) $\vec{B} \times \vec{E}$
- 10. The oscillating magnetic field in a plane electromagnetic wave is given as $B_y = (8 \times 10^{-6}) \sin \left[2 \times 10^{11} t + 300 \pi x\right] T$, wavelength of the em wave is
 - (a) 0.80 cm
- (b) 1×10^{3} m
- (c) 2×10^{-2} cm
- (d) 0.67 cm

PART-B

II. Answer the following questions:

4x2 = 8

- 11. What is displacement current?
- 12. Why are e.m. waves non-mechanical?
- 13. The relative magnetic permeability of the medium is 2.5 and the relative electrical permittivity of the medium is 2.25. Compute the refractive index of themedium.
- 14. What are Fraunhofer lines? How arethey useful in the identification of elements present in the sun?

PART-C

III. Answer the following questions:

 $4 \times 3 = 12$

- 15. Write short notes on (a) microwave (b) X-ray (c) radio waves (d) visible spectrum
- 16. Write down the properties of electromagnetic waves.
- 17. Consider a parallel plate capacitor which is connected to an 230 V RMS value and 50 Hz frequency. If the separation distance between the plates of the capacitor and area of the plates are 1 mm and 20 cm2 respectively. Calculate the displacement current at $t=1\,\mathrm{s}$.
- 18. Explain the types of emission spectrum.

PART-D

IV. Answer the following questions:

 $3 \times 5 = 15$

- 19. Write down Maxwell equations in integral form.
- 20. Explain the Maxwell's modification of Ampere's circuital law.
- 21.Discuss the Hertz experiment.

All the best