

N K MATHS ACADEMY

TIRUPUR-98434 34491

12

IKUFUK-90434 3449

UNIT TEST-2022-23 MATHEMATICS

UNIT TEST -5

MARKS: 40 TIME: 1.00 HR

I. CHOOSE THE BEST ANSWER:

8X1=8

1. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is

- $(1)\frac{4}{3}$ $(2)\frac{4}{\sqrt{3}}$ $(3)\frac{2}{\sqrt{3}}$ $(4)\frac{3}{2}$
- 2. The length of the diameter of the circle which touches the x-axis at point (1,0) and passes through the point (2,3).
 - $(1)\frac{6}{5} \qquad (2)\frac{5}{3} \qquad (3)\frac{10}{3} \qquad (4)\frac{2}{3}$
- 3. If P(x, y) be any point on $16x^2 + 25y^2 = 400$ with foci $F_1(3, 0)$ and $F_2(-3, 0)$ then $PF_1 + PF_2$ is
 - (1)8 (2)6 (3)10 (4)12
- 4. The area of quadrilateral formed with foci of the hyberbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} \frac{y^2}{b^2} = -1$ is
 - $(1)4(a^2+b^2) (2)2(a^2+b^2) (3)a^2+b^2 (4)\frac{1}{2}(a^2+b^2)$
- 5. Tangents are drawn to the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ parallel to the straight line 2x y = 1. one of the point of contact of tangent on the hyperbola is
 - $(1)\left(\frac{9}{2\sqrt{2}}, \frac{-1}{\sqrt{2}}\right) \qquad (2)\left(\frac{-9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad (3)\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad (4)\left(3\sqrt{3}, -2\sqrt{2}\right)$
- 6. The circle passing through (1,-2) and touching the axis of x at (3,0) passing through the point
 - (1) (-5, 2) (2) (2,-5) (3) (5,-2) (4) (-2, 5)
- 7. The focus of the parabola $x^2 = 16y$ is.
 - (1) (4,0) (2) (0,4) (3) (-4,0) (4) (0,-4)
- 8. The distance between the foci of the ellipse $9x^2 + 5y^2 = 180$ is.
- (1) 4 (2) 6 (3) 8 (4) 2.

II. ANSWER ANY 4 QUESTIONS:

4X2=8

9. Examine the position of the point (2,3) with respect to the circle $x^2 + y^2 - 6x - 8y + 12 = 0$.

- 10. Find the equation of the parabola with vertex (1,-2) and focus (4,-2).
- 11. Obtain the equation of the circle for which (3,4) and (2,-7) are the ends of a diameter.
- 12. Find the length of latus rectum of the parabola $y^2 = 4 a x$.
- 13. Find the equation of tangent at t=2 to the parabola $y^2 = 8x$. (Use parametric form)

III. ANSWER ANY 3 QUESTIONS:

3X3=9

- 14. If the equation $3x^2 + (3-p)xy + qy^2 2px = 8pq$ represents a circle, find p and q. Also determine the center and radius of the circle.
- 15. Find the vertices, foci for the hyperbola $9x^2 16y^2 = 144$
- 16. Identify the type of conic and find centre, foci, vertices and directrices of $\frac{x^2}{25} + \frac{y^2}{9} = 1$.
- 17. The equation $y = \frac{1}{32}x^2$ models cross section of the parabolic mirrors that are used for solar energy there is a heating tube located at the focus of each parabola; how high is this tube located above the vertex of the parabola?

IV. ANSWER ANY 3 QUESTIONS:

3X5=15

- 18. Find the equation of the circle passing through the points (1,1),(2,-1),(3,2).
- 19. Find the foci, vertices and length of major and minor axis of the conic $4x^2 + 36y^2 + 40x 288y + 532 = 0$.
- 20. Identify the type of conic and find center, foci, vertices and directrix of $9x^2 y^2 36x 6y + 18 = 0$.
- 21. At a water fountain, water attains a maximum height of 4m at horizontal distance of 0.75m from the point of orgin. If the path of water is a parabola, find the height of water at a horizontal distance of 0.75m from the point of origin.