

N K MATHS ACADEMY

12

TIRUPUR-98434 34491

UNIT TEST-2022-23

MATHEMATICS

UNIT TEST -7				
	MARKS: 40			TIME: 1.00 HR
I. CHOOSE THE BEST ANSWER:				8X1=8
1.	The angle betw	even the lines $\frac{x-2}{3} = \frac{y+1}{-2}$, $z = \frac{y+1}{2}$	= 2 and $\frac{x-1}{1} = \frac{2y+3}{3}, \frac{z+2}{2}$	5 is
	$(1)\frac{\pi}{6}$	$(2)\frac{\pi}{4}$	$(3)\frac{\pi}{3}$	$(4)\frac{\pi}{2}$
2. The angle between the line $\vec{r} = (\hat{i} + 2j - 3k) + t(2\hat{i} + j - 2k)$ meets the plane $\vec{r} \cdot (\hat{i} + j) + 4 = 0$ is				
	(1) 0°	(2) 30°	(3) 45°	(4) 90°
3.	Distance from	the origin to the plane $3x - 6y$	y + 2z + 7 = 0 is	
	(1) 0	(2)1	(3)2	(4)3
4.	If the direction	cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$	- then	
	(1) $c = \pm 3$	$(2) c = \pm \sqrt{3}$	(3) $c > 0$	$(4) \ 0 < c < 1$
5.	If the distance of the point $(1,1,1)$ from the origin is half its distance from the plane $x+y+z+k=0$, then the value of k are			
	$(1) \pm 3$	(2) ±6	(3)-3,9 (4)3	,-9
6.	If the length of the perpendicular from the origin to the plane $2x+3\lambda+\lambda z=1, \lambda>0$ is $\frac{1}{5}$, the			
	the value of λ	is		<i>/</i>
	(1) $2\sqrt{3}$	(2) $3\sqrt{2}$	(3)0	(4)1
7.	The point of inter	resection of the line $\vec{r} = (\vec{i} - \vec{k})$	$+t(3\vec{i}+2\vec{j}+7\vec{k})$ and the p	plane $\vec{r} \cdot (\vec{i} + \vec{j} - \vec{k}) = 8$ is
			(3) (4, 3, 11)	
8.	The angle between the line $r = a + t \bar{b}$ and the plane $r \cdot \bar{n} = q$ is connected by the relation.			
	$(1)\cos\theta = \frac{\vec{a}\cdot\vec{b}}{q}$	$\frac{n}{2}\cos\theta = \frac{b}{ \vec{b} }$	$\frac{\cdot n}{\left \ \vec{n} \ \right } (3)\sin \theta = \frac{a \cdot b}{\left \vec{n} \ \right }$	$(4)\sin\theta = \frac{b \cdot n}{\left \vec{b} \mid \left \vec{n} \right }$
II.	ANSWER ANY	4 QUESTIONS:		4X2=8
9.	Show that the l	ines $\frac{x-1}{4} = \frac{2-y}{6} = \frac{z-4}{12}$ and	$\frac{x-3}{-2} = \frac{y-3}{3} = \frac{5-z}{6}$ are p	parallel.

10. Find the angle between the straight line $\vec{r} = (2\hat{i} + 3\hat{j} + \hat{k}) + t(\hat{i} - \hat{j} + \hat{k})$ and the plane 2x - y + z = 5.

- 11. Find the distance of a point (2,5,-3) from the plane $\vec{r} \cdot (6\hat{i} 3\hat{j} + 2\hat{k}) = 5$.
- 12. Find the distance between the planes $\vec{r} \cdot (2\hat{i} \hat{j} 2\hat{k}) = 6$ and $\vec{r} \cdot (6\hat{i} 3\hat{j} 6\hat{k}) = 27$.
- 13. Find the intercepts cut off by the plane $\vec{r} \cdot (6\hat{i} + 4\hat{j} 3\hat{k}) = 12$

III. ANSWER ANY 3 QUESTIONS:

3X3=9

- 14. Find the vector equation in parametric form and Cartesian equation of the line passing through (-4,2,-3) and is parallel to the line $\frac{-x-2}{4} = \frac{y+3}{-2} = \frac{2z-6}{3}$.
- 15. If the straight line joining the points (2,1,4) and (a-1,4,-1) is parallel to the line joining the points (0,2,b-1) and (5,3,-2) Find the value of and b.
- 16. Find the direction cosines of the normal to the plane and length of the perpendicular form the origin to the plane $\vec{r} \cdot (3\hat{i} 4j + 12k) = 5$.
- 17. If the straight line $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{m^2}$ and $\frac{x-3}{1} = \frac{y-2}{m^2} = \frac{z-1}{2}$ are coplanar, find the distinct real values of m.
- 18. Find the coordinate of the point where the straight line $\vec{r} \cdot (2\hat{i} j + 2k) + t(3\hat{i} 4j + 2k)$ intersects the plane x y + z 5 = 0.

IV. ANSWER ANY3 QUESTIONS:

3X5=15

- 19. Find the shortest distance between the two given straight line $\vec{r} = (2\hat{i} + 3j + 4k) + t(-2\hat{i} + j 2k)$ and $\frac{x-3}{2} = \frac{y}{-1} = \frac{z+2}{2}$.
- 20. Show that the lines $\frac{x-3}{3} = \frac{y-3}{-1}$, z-1 = 0 and $\frac{x-6}{2} = \frac{z-1}{3}$, y-2 = 0 intersect. Also find the point of intersection.
- 21. Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$.
- 22. Find the parametric vector, non-parametric vector and Cartesian form of the equations of the plane passing through the points (3,6,-2), (-1,-2,6) and (6,-4,-2).
- 23. Show that the lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{3}$ and $\frac{x-1}{-3} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar. Also, find the plane contain these lines.