CENTUM ACHIEVERS' ACADEMY

56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.NO. 7667761819

Choose the Correct or the most suitable answer from the given four alternatives :
$(125 \times 1=125)$

1. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$ are $(11,2)$. the coordinates of the other end are
(1) $(-5,2)$
(2) $(2,-5)$
(3) $(5,-2)$
(4) $(-2,5)$
2. If $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$, then the order of the square matrix A is
(1) 3
(2) 4
(3) 2
(4) 5
3. If $\sin ^{-1} x=2 \sin ^{-1} \alpha$ has a solution, then
(1) $|\alpha| \leq \frac{1}{\sqrt{2}}$
(2) $|\alpha| \geq \frac{1}{\sqrt{2}}$
(3) $|\alpha|<\frac{1}{\sqrt{2}}$
(4) $|\alpha|>\frac{1}{\sqrt{2}}$
4. If $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right]$ then $|\operatorname{adj}(A B)|=$
(1) -40
(2) -80
(3) -60
(4) -20
5. If the length of the perpendicular from the origin to the plane $2 x+3 y+\lambda z=1, \lambda>0$ is $\frac{1}{5}$, then the value of λ is
(1) $2 \sqrt{3}$
(2) $3 \sqrt{2}$
(3) 0
(4) 1
6. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is
(1) $\frac{\pi}{2}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{4}$
(4) π
7. Area of the greatest rectangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(1) $2 a b$
(2) $a b$
(3) $\sqrt{a b}$
(4) $\frac{a}{b}$
8. If A, B and C are invertible matrices of some order, then which one of the following is not true?
(1) adj $A=|A| A^{-1}$
(2) $\operatorname{adj}(A B)=(\operatorname{adj} A)(\operatorname{adj} B)$
(3) $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
(4) $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
9. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$, then the value of k is
(1) 3
(2) -1
(3) 1
(4) 9
10. The locus of a point whose distance from $(-2,0)$ is $\frac{2}{3}$ times its distance from the line $x=\frac{-9}{2}$ is
(1) a parabola
(2) a hyperbola
(3) an ellipse
(4) a circle
11. If $(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$, then $B^{-1}=$
(1) $\left[\begin{array}{cc}2 & -5 \\ -3 & 8\end{array}\right]$
(2) $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
(3) $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
(4) $\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$
12. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ having centre at $(0,3)$ is
(1) $x^{2}+y^{2}-6 y-7=0$
(2) $x^{2}+y^{2}-6 y+7=0$
(3) $x^{2}+y^{2}-6 y-5=0$
(4) $x^{2}+y^{2}-6 y+5=0$
13. The vector equation $\vec{r}=(\hat{\imath}-2 \hat{\jmath}-\hat{k})+t(6 \hat{\jmath}-\hat{k})$ represents a straight line passing through the points
(1) $(0,6,-1)$ and $(1,-2,-1)$
(2) $(0,6,-1)$ and $(-1,-4,-2)$
(3) $(1,-2,-1)$ and $(1,4,-2)$
(4) $(1,-2,-1)$ and $(0,-6,1)$
14. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $A(\operatorname{adj} A)=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, then $k=$
(1) 0
(2) $\sin \theta$
(3) $\cos \theta$
(4) 1
15. If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then
(1) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=1$
(2) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=-1$
(3) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=0$
(4) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=2$
16. If adj $A=\left[\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right]$ and $\operatorname{adj} B=\left[\begin{array}{cc}1 & -2 \\ -3 & 1\end{array}\right]$ then $\operatorname{adj}(A B)$ is
(1) $\left[\begin{array}{cc}-7 & -1 \\ 7 & -9\end{array}\right]$
(2) $\left[\begin{array}{cc}-6 & 5 \\ -2 & -10\end{array}\right]$
(3) $\left[\begin{array}{cc}-7 & 7 \\ -1 & -9\end{array}\right]$
(4) $\left[\begin{array}{cc}-6 & -2 \\ 5 & -10\end{array}\right]$
17. The equation of the normal to the circle $x^{2}+y^{2}-2 x-2 y+1=0$ which is parallel to the line $2 x+4 y=3$ is
(1) $x+2 y=3$
(2) $x+2 y+3=0$
(3) $2 x+4 y+3=0$
(4) $x-2 y+3=0$
18. If α, β, and γ are the zeros of $x^{3}+p x^{2}+q x+r$, then $\sum \frac{1}{\alpha}$ is
(1) $-\frac{q}{r}$
(2) $-\frac{p}{r}$
(3) $\frac{q}{r}$
(4) $-\frac{q}{p}$
19. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}]=3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^{2}$ is equal to
(1) 81
(2) 9
(3) 27
(4) 18
20. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellipse is
(1) $\frac{\sqrt{2}}{2}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{2}$
(4) $\frac{3}{4}$
21. The value of $\sum_{n=1}^{13}\left(i^{n}+i^{n-1}\right)$ is
(1) $1+i$
(2) i
(3) 1
(4) 0
22. The conjugate of a complex number is $\frac{1}{i-2}$. Then, the complex number is
(1) $\frac{1}{i+2}$
(2) $\frac{-1}{i+2}$
(3) $\frac{-1}{i-2}$
(4) $\frac{1}{i-2}$
23. If $A\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$, then $A=$
(1) $\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$
(2) $\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$
(3) $\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$
(4) $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$
24. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $\lambda A^{-1}=A$, then λ is
(1) 17
(2) 14
(3) 19
(4) 21
25. If $\left|z-\frac{3}{z}\right|=2$, then the least value of $|z|$ is
(1) 1
(2) 2
(3) 3
(4) 5
26. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{2}+(y+2)^{2}=r^{2}$, then the value of r^{2} is
(1) 2
(2) 3
(3) 1
(4) 4
27. If $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is
(1) $|\vec{a}||\vec{b}||\vec{c}|$
(2) $\frac{1}{3}|\vec{a}||\vec{b}||\vec{c}|$
(3) 1
(4) -1
28. If A is a 3×3 non-singular matrix such that $A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then $B B^{T}=$
(1) A
(2) B
(3) I_{3}
(4) B^{T}
29. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]=\frac{1}{4}$, then the angle between \vec{a} and \vec{b} is
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
30. If $\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$ and $\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=12$, then the value of $\left|z_{1}+z_{2}+z_{3}\right|$ is
(1) 1
(2) 2
(3) 3
(4) 4
31. If z is a complex number such that $z \in \mathbb{C} \backslash \mathbb{R}$ and $z+\frac{1}{z} \in \mathbb{R}$, then $|z|$ is
(1) 0
(2) 1
(3) 2
(4) 3
32. The number of real numbers in $[0,2 \pi]$ satisfying $\sin ^{4} x-2 \sin ^{2} x+1$ is
(1) 2
(2) 4
(3) 1
(4) ∞
33. If $z=x+i y$ is a complex number such that $|z+2|=|z-2|$, then the locus of z is
(1) real axis
(2) imaginary axis
(3) ellipse
(4) circle
34. The principal argument of $\left(\sin 40^{\circ}+i \cos 40^{\circ}\right)^{5}$ is
(1) -110°
(2) -70°
(3) 70°
(4) 110°
35. Consider the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be the planes determined by the pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d} respectively. Then the angle between P_{1} and P_{2} is
(1) 0°
(2) 45°
(3) 60°
(4) 90°
36. If $(1+i)(1+2 i)(1+3 i) \cdots(1+n i)=x+i y$, then $2 \cdot 5 \cdot 10 \cdots\left(1+n^{2}\right)$ is
(1) 1
(2) i
(3) $x^{2}+y^{2}$
(4) $1+n^{2}$
37. If $\cot ^{-1} 2$ and $\cot ^{-1} 3$ are two angles of a triangle, then the third angle is
(1) $\frac{\pi}{4}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{3}$
38. If $0 \leq \theta \leq \pi$ and the system of equations $x+(\sin \theta) y-(\cos \theta) z=0,(\cos \theta) x-y+z=0$,
$(\sin \theta) x+y-z=0$ has a non-trivial solution then θ is
(1) $\frac{2 \pi}{3}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{4}$
39. If α and β are the roots of $x^{2}+x+1=0$, then $\alpha^{2020}+\beta^{2020}$ is
(1) -2
(2) -1
(3) 1
(4) 2
40. If $\omega \neq 1$ is a cubic root of unity and $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k$, then k is equal to
(1) 1
(2) -1
(3) $\sqrt{3} i$
(4) $-\sqrt{3} i$
41. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then
(1) $c= \pm 3$
(2) $c= \pm \sqrt{3}$
(3) $c>0$
(4) $0<c<1$
42. The value of $\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{10}$ is
(1) $\operatorname{cis} \frac{2 \pi}{3}$
(2) $\operatorname{cis} \frac{4 \pi}{3}$
(3) $-\operatorname{cis} \frac{2 \pi}{3}$
(4) $-\operatorname{cis} \frac{4 \pi}{3}$
43. If $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}+\hat{\jmath}, \vec{c}=\hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c}=\lambda \vec{a}+\mu \vec{b}$, then the value of $\lambda+\mu$ is
(1) 0
(2) 1
(3) 6
(4) 3
44. If $\omega=\operatorname{cis} \frac{2 \pi}{3}$, then the number of distinct roots of $\left|\begin{array}{ccc}z+1 & \omega & \omega^{2} \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega\end{array}\right|=0$
(1) 1
(2) 2
(3) 3
(4) 4
45. If f and g are polynomials of degrees m and n respectively, and if $h(x)=(f \circ g)(x)$, then the degree of h is
(1) $m n$
(2) $m+n$
(3) m^{n}
(4) n^{m}
46. If $A=\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$, then $9 I_{2}-A=$
(1) A^{-1}
(2) $\frac{A^{-1}}{2}$
(3) $3 A^{-1}$
(4) $2 A^{-1}$
47. The area of the triangle formed by the complex numbers $z, i z$, and $z+i z$ in the Argand's diagram is
(1) $\frac{1}{2}|z|^{2}$
(2) $|z|^{2}$
(3) $\frac{3}{2}|z|^{2}$
(4) $2|z|^{2}$
48. According to the rational root theorem, which number is not possible rational zero of $4 x^{7}+2 x^{4}-10 x^{3}-5 ?$
(1) -1
(2) $\frac{5}{4}$
(3) $\frac{4}{5}$
(4) 5
49. If z is a non zero complex number, such that $2 i z^{2}=\bar{z}$ then $|z|$ is
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) 3
50. The eccentricity of the ellipse $(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9}$ is
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{3 \sqrt{2}}$
(4) $\frac{1}{\sqrt{3}}$
51. If $P=\left[\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then x is
(1) 15
(2) 12
(3) 14
(4) 11
52. If $x^{3}+12 x^{2}+10 a x+1999$ definitely has a positive zero, if and only if
(1) $a \geq 0$
(2) $a>0$
(3) $a<0$
(4) $a \leq 0$
53. The number of positive zeros of the polynomial $\sum_{j=0}^{n}{ }^{n} C_{r}(-1)^{r} x^{r}$ is
(1) 0
(2) n
(3) $<n$
(4) r
54. The value of $\sin ^{-1}(\cos x), 0 \leq x \leq \pi$ is
(1) $\pi-x$
(2) $x-\frac{\pi}{2}$
(3) $\frac{\pi}{2}-x$
(4) $x-\pi$
55. If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$; then $\cos ^{-1} x+\cos ^{-1} y$ is equal to
(1) $\frac{2 \pi}{3}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{6}$
(4) π
56. If $A=\left[\begin{array}{ll}\frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5}\end{array}\right]$ and $A^{2}=A^{-1}$, then the value of x is
(1) $\frac{-4}{5}$
(2) $\frac{-3}{5}$
(3) $\frac{3}{5}$
(4) $\frac{4}{5}$
57. If the two tangents drawn from a point P to the parabola $y^{2}=4 x$ are at right angles then the locus of P is
(1) $2 x+1=0$
(2) $x=-1$
(3) $2 x-1=0$
(4) $x=1$
58. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, the value of $x^{2017}+y^{2018}+z^{2019}-\frac{9}{x^{101}+y^{101}+z^{101}}$ is
(1) 0
(2) 1
(3) 2
(4) 3
59. If $|z|=1$, then the value of $\frac{1+z}{1+\bar{z}}$ is
(1) Z
(2) \bar{Z}
(3) $\frac{1}{Z}$
(4) 1
60. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is
(1) $[1,2]$
(2) $[-1,1]$
(3) $[0,1]$
(4) $[-1,0]$
61. The principal argument of the complex number $\frac{(1+i \sqrt{3})^{2}}{4 i(1-i \sqrt{3})}$ is
(1) $\frac{2 \pi}{3}$
(2) $\frac{\pi}{6}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{2}$
62. If $x=\frac{1}{5}$, the value of $\cos \left(\cos ^{-1} x+2 \sin ^{-1} x\right)$ is
(1) $-\sqrt{\frac{24}{25}}$
(2) $\sqrt{\frac{24}{25}}$
(3) $\frac{1}{5}$
(4) $-\frac{1}{5}$
63. If the planes $\vec{r} \cdot(2 \hat{\imath}-\lambda \hat{\jmath}+\hat{k})=3$ and $\vec{r} \cdot(4 \hat{\imath}+\hat{\jmath}-\mu \hat{k})=5$ are parallel, then the value of λ and μ are
(1) $\frac{1}{2},-2$
(2) $-\frac{1}{2}, 2$
(3) $-\frac{1}{2},-2$
(4) $\frac{1}{2}, 2$
64. $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)$ is equal to
(1) $\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
(2) $\frac{1}{2} \sin ^{-1}\left(\frac{3}{5}\right)$
(3) $\frac{1}{2} \tan ^{-1}\left(\frac{3}{5}\right)$
(4) $\tan ^{-1}\left(\frac{1}{2}\right)$
65. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
(1) $\frac{4}{3}$
(2) $\frac{4}{\sqrt{3}}$
(3) $\frac{2}{\sqrt{3}}$
(4) $\frac{3}{2}$
66. $\sin ^{-1}\left(\tan \frac{\pi}{4}\right)-\sin ^{-1}\left(\sqrt{\frac{3}{x}}\right)=\frac{\pi}{6}$. Then x is a root of the equation
(1) $x^{2}-x-6=0$
(2) $x^{2}-x-12=0$
(3) $x^{2}+x-12=0$
(4) $x^{2}+x-6=0$
67. If A is a non-singular matrix such that $A^{-1}=\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$, then $\left(A^{\tau}\right)^{-1}=$
(1) $\left[\begin{array}{cc}-5 & 3 \\ 2 & 1\end{array}\right]$
(2) $\left[\begin{array}{cc}5 & 3 \\ -2 & -1\end{array}\right]$
(3) $\left[\begin{array}{cc}-1 & -3 \\ 2 & 5\end{array}\right]$
(4) $\left[\begin{array}{ll}5 & -2 \\ 3 & -1\end{array}\right]$
68. $\sin ^{-1}\left(2 \cos ^{2} x-1\right)+\cos ^{-1}\left(1-2 \sin ^{2} x\right)=$
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{6}$
69. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} ae
(1) perpendicular
(2) parallel
(3) inclined at angle $\frac{\pi}{3}$
(4) inclined at angle $\frac{\pi}{6}$
70. If $\cot ^{-1}(\sqrt{\sin \alpha})+\tan ^{-1}(\sqrt{\sin \alpha})=u$, then $\cos 2 u$ is equal to
(1) $\tan ^{2} \alpha$
(2) 0
(3) -1
(4) $\tan 2 \alpha$
71. If the distance of the point $(1,1,1)$ from the origin is half of its distance from the plane $x+y+z+k=0$, then the values of k are
(1) ± 3
(2) ± 6
(3) $-3,9$
(4) $3,-9$
72. If $|x| \leq 1$, then $2 \tan ^{-1} x-\sin ^{-1} \frac{2 x}{1+x^{2}}$ is equal to
(1) $\tan ^{-1} x$
(2) $\sin ^{-1} x$
(3) 0
(4) π
73. The equation $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ has
(1) no solution
(2) unique solution
(3) two solutions
(4) infinite number of solutions
74. If $\sin ^{-1} x+\cot ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}$, then x is equal to
(1) $\frac{1}{2}$
(2) $\frac{1}{\sqrt{5}}$
(3) $\frac{2}{\sqrt{5}}$
(4) $\frac{\sqrt{3}}{2}$
75. If $A^{T} A^{-1}$ is symmetric, then $A^{2}=$
(1) A^{-1}
(2) $\left(A^{T}\right)^{2}$
(3) A^{τ}
(4) $\left(A^{-1}\right)^{2}$
76. The equation of the circle passing through $(1,5)$ and $(4,1)$ and touching y-axis is $x^{2}+y^{2}-5 x-6 y+9+\lambda(4 x+3 y-19)=0$ where λ is equal to
(1) $0,-\frac{40}{9}$
(2) 0
(3) $\frac{40}{9}$
(4) $\frac{-40}{9}$
77. If $\cot ^{-1} x=\frac{2 \pi}{5}$ for some $x \in R$, the value of $\tan ^{-1} x$ is
(1) $-\frac{\pi}{10}$
(2) $\frac{\pi}{5}$
(3) $\frac{\pi}{10}$
(4) $-\frac{\pi}{5}$
78. The polynomial $x^{3}-k x^{2}+9 x$ has three real zeros if and only if, k satisfies
(1) $|k| \leq 6$
(2) $k=0$
(3) $|k|>6$
(4) $|k| \geq 6$
79. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct points if
(1) $15<m<65$
(2) $35<m<85$
(3) $-85<m<-35$
(4) $-35<m<15$
80. The length of the diameter of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$.
(1) $\frac{6}{5}$
(2) $\frac{5}{3}$
(3) $\frac{10}{3}$
(4) $\frac{3}{5}$
81. The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
(1) 1
(2) 3
(3) $\sqrt{10}$
(4) $\sqrt{11}$
82. z_{1}, z_{2}, and z_{3} are complex numbers such that $z_{1}+z_{2}+z_{3}=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ then $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}$ is
(1) 3
(2) 2
(3) 1
(4) 0
83. If $\rho(A)=\rho([A \mid B])$, then the system $A X=B$ of linear equations is
(1) consistent and has a unique solution
(2) consistent
(3) consistent and has infinitely many solution
(4) inconsistent
84. If $P(x, y)$ be any point on $16 x^{2}+25 y^{2}=400$ with foci $F_{1}(3,0)$ and $F_{2}(-3,0)$ then $P F_{1}+P F_{2}$ is
(1) 8
(2) 6
(3) 10
(4) 12
85. The radius of the circle passing through the point $(6,2)$ two of whose diameter are $x+y=6$ and $x+2 y=4$ is
(1) 10
(2) $2 \sqrt{5}$
(3) 6
(4) 4
86. If $x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$, then the values of x and y are
(1) $e^{\left(\Delta_{2} / \Delta_{1}\right)}, e^{\left(\Delta_{3} / \Delta_{1}\right)}$
(2) $\log \left(\Delta_{1} / \Delta_{3}\right), \log \left(\Delta_{2} / \Delta_{3}\right)$
(3) $\log \left(\Delta_{2} / \Delta_{1}\right), \log \left(\Delta_{3} / \Delta_{1}\right)$
(4)) $e^{\left(\Delta_{1} / \Delta_{3}\right)}, e^{\left(\Delta_{2} / \Delta_{3}\right)}$
87. The solution of the equation $|z|-z=1+2 i$ is
(1) $\frac{3}{2}-2 i$
(2) $-\frac{3}{2}+2 i$
(3) $2-\frac{3}{2} i$
(4) $2+\frac{3}{2} i$
88. The product of all four values of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$ is
(1) -2
(2) -1
(3) 1
(4) 2
89. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is
(1) $4\left(a^{2}+b^{2}\right)$
(2) $2\left(a^{2}+b^{2}\right)$
(3) $a^{2}+b^{2}$
(4) $\frac{1}{2}\left(a^{2}+b^{2}\right)$
90. If the function $f(x)=\sin ^{-1}\left(x^{2}-3\right)$, then x belongs to
(1) $[-1,1]$
(2) $[\sqrt{2}, 2]$
(3) $[-2,-\sqrt{2}] \cup[\sqrt{2}, 2]$
(4) $[-2,-\sqrt{2}]$
91. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ parallel to the straight line $2 x-y=1$. One of the points of contact of tangents on the hyperbola is
(1) $\left(\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$
(2) $\left(\frac{-9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(3) $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(4) $(3 \sqrt{3},-2 \sqrt{2})$
92. If $z=\frac{(\sqrt{3}+i)^{3}(3 i+4)^{2}}{(8+6 i)^{2}}$, then $|z|$ is equal to
(1) 0
(2) 1
(3) 2
(4) 3
93. The coordinates of the point where the line $\vec{r}=(6 \hat{\imath}-\hat{\jmath}-3 \hat{k})+t(-\hat{\imath}+4 \hat{k})$ meets the plane $\vec{r} \cdot(\hat{\imath}+\hat{\jmath}-\hat{k})=3$ are
(1) $(2,1,0)$
(2) $(7,-1,-7)$
(3) $(1,2,-6)$
(4) $(5,-1,1)$
94. The polynomial $x^{3}+2 x+3$ has
(1) one negative and two imaginary zeros
(2) one positive and two imaginary zeros
(3) three real zeros
(4) no zeros
95. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centered at $(0, y)$ passing through the origin and touching the circle C externally, then the radius of T is equal
(1) $\frac{\sqrt{3}}{\sqrt{2}}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{2}$
(4) $\frac{1}{4}$
96. $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
(1) $\frac{x}{\sqrt{1-x^{2}}}$
(2) $\frac{1}{\sqrt{1-x^{2}}}$
(3) $\frac{1}{\sqrt{1+x^{2}}}$
(4) $\frac{x}{\sqrt{1+x^{2}}}$
97. If $\omega \neq 1$ is a cubic root of unity and $(1+\omega)^{7}=A+B \omega$, then (A, B) equals
(1) $(1,0)$
(2) $(-1,1)$
(3) $(0,1)$
(4) $(1,1)$
98. An ellipse has $O B$ as semi minor axes, F and F^{\prime} its foct and the angle $F B F^{\prime}$ is a right angle. Then the eccentricity of the ellipse is
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{1}{\sqrt{3}}$
99. If $A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ and $A B=I_{2}$, then $B=$
(1) $\left(\cos ^{2} \frac{\theta}{2}\right) A$
(2) $\left(\cos ^{2} \frac{\theta}{2}\right) A^{T}$
(3) $\left(\cos ^{2} \theta\right) I$
(4) $\left(\sin ^{2} \frac{\theta}{2}\right) A$
100. The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ passing through the point
(1) $(-5,2)$
$(2)(2,-5)$
(3) $(5,-2)$
(4) $(-2,5)$
101. If $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then the value of a_{23} is
(1) 0
(2) -2
(3) -3
(4) -1
102. The values of m for which the line $y=m x+2 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$ are the roots of $x^{2}-(a+b) x-4=0$, then the value of $(a+b)$ is
(1) 2
(2) 4
(3) 0
(4) -2
103. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to
(1) 2
(2) -1
(3) 1
(4) 0
104. The principal argument of $\frac{3}{-1+i}$ is
(1) $\frac{-5 \pi}{6}$
(2) $\frac{-2 \pi}{3}$
(3) $\frac{-3 \pi}{4}$
(4) $\frac{-\pi}{2}$
105. If $\sin ^{-1} \frac{x}{5}+\operatorname{cosec}^{-1} \frac{5}{4}=\frac{\pi}{2}$, then the value of x is
(1) 4
(2) 5
(3) 2
(4) 3
106. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b}, and is parallel to \vec{c} then $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
(1) \vec{a}
(2) \vec{b}
(3) \vec{c}
(4) $\overrightarrow{0}$
107. $\sin ^{-1} \frac{3}{5}-\cos ^{-1} \frac{12}{13}+\sec ^{-1} \frac{5}{3}-\operatorname{cosec}^{-1} \frac{13}{12}$ is equal to
(1) 2π
(2) π
(3) 0
(4) $\tan ^{-1} \frac{12}{65}$
108. If $A=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right], B=\operatorname{adj} A$ and $C=3 A$, then $\frac{|\operatorname{adj} B|}{|C|}=$
(1) $\frac{1}{3}$
(2) $\frac{1}{9}$
(3) $\frac{1}{4}$
(4) 1
109. If $[\vec{a}, \vec{b}, \vec{c}]=1$, then the value of $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}}+\frac{\vec{c} \cdot(\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$ is
(1) 1
(2) -1
(3) 2
(4) 3
110. $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$ is
(1) 0
(2) 1
(3) -1
(4) i
111. The volume of the parallelepiped with its edges represented by the vectors $\hat{\imath}+\hat{\jmath}, \hat{\imath}+2 \hat{\jmath}, \hat{\imath}+\hat{\jmath}+\pi \hat{k}$ is
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{3}$
(3) π
(4) $\frac{\pi}{4}$
112. $\sin ^{-1}(\cos x)=\frac{\pi}{2}-x$ is valid for
(1) $-\pi \leq x \leq 0$
(2) $0 \leq x \leq \pi$
(3) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(4) $-\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$
113. A polynomial equation in x of degree n always has
(1) n distinct roots
(2) n real roots
(3) n complex roots
(4) at most one root.
114. If $|z-2+i| \leq 2$, then the greatest value of $|z|$ is
(1) $\sqrt{3}-2$
(2) $\sqrt{3}+2$
(3) $\sqrt{5}-2$
(4) $\sqrt{5}+2$
115. If $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-5 \hat{k}, \vec{c}=3 \hat{\imath}+5 \hat{\jmath}-\hat{k}$, then a vector perpendicular to \vec{a} and lies in the plane containing \vec{b} and \vec{c} is
(1) $-17 \hat{\imath}+21 \hat{\jmath}-97 \hat{k}$
(2) $17 \hat{\imath}+21 \hat{\jmath}-123 \hat{k}$
(3) $-17 \hat{\imath}-21 \hat{\jmath}+97 \hat{k}$
(4) $-17 \hat{\imath}-21 \hat{\jmath}-97 \hat{k}$
116. The angle between the lines $\frac{x-2}{3}=\frac{y+1}{-2}, z=2$ and $\frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2}$ is
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
117. If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$, then (α, β) is
(1) $(-5,5)$
(2) $(-6,7)$
(3) $(5,-5)$
(4) $(6,-7)$
118. The angle between the line $\vec{r}=(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})+t(2 \hat{\imath}+\hat{\jmath}-2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{\imath}+\hat{\jmath})+4=0$ is
(1) 0°
(2) 30°
(3) 45°
(4) 90°
119. The centre of the circle inscribed in a square formed by the lines $x^{2}-8 x-12=0$ and $y^{2}-14 y+45=0$ is
(1) $(4,7)$
$(2)(7,4)$
$(3)(9,4)$
$(4)(4,9)$
120. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
(1) 0
(2) 1
(3) 2
(4) 3
121. If $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1\end{array}\right]$ and $A^{-1}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then the value of a_{23} is
(1) 0
(2) -2
(3) -3
(4) -1
122. The distance between the planes $x+2 y+3 z+7=0$ and $2 x+4 y+6 z+7=0$ is
(1) $\frac{\sqrt{7}}{2 \sqrt{2}}$
(2) $\frac{7}{2}$
(3) $\frac{\sqrt{7}}{2}$
(4) $\frac{7}{2 \sqrt{2}}$
123. The rank of the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right]$ is
(1) 1
(2) 2
(3) 4
(4) 3
124. A zero of $x^{3}+64$ is
(1) 0
(2) 4
(3) $4 i$
(4) -4
125. If $\frac{z-1}{z+1}$ is purely imaginary, then $|z|$ is
(1) $\frac{1}{2}$
(2) 1
(3) 2
(4) 3
