CENTUM ACHIEVERS' ACADEMY

56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.NO.7667761819

C	LASS	:	XII
---	------	---	-----

ONE MARK TEST (VOLUME.1)

SUB: MATHEMATICS

Choose the Correct or the most suitable answer from the given four alternatives :

 $(125 \times 1 = 125)$

- 1. If the coordinates at one end of a diameter of the circle $x^2 + y^2 8x 4y + c = 0$ are (11,2). the coordinates of the other end are
 - (1)(-5,2)
- (2)(2,-5)
- (3)(5,-2)
- 2. If $|adj(adj A)| = |A|^9$, then the order of the square matrix *A* is
- (2)4
- (3)2
- 3. If $\sin^{-1} x = 2\sin^{-1} \alpha$ has a solution, then

 - $(1) |\alpha| \le \frac{1}{\sqrt{2}} \qquad (2) |\alpha| \ge \frac{1}{\sqrt{2}}$
- (3) $|\alpha| < \frac{1}{\sqrt{2}}$
- $(4) |\alpha| > \frac{1}{\sqrt{2}}$
- 4. If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then |adj(AB)| =
 - (1) -40
- (2) 80
- (3) 60
- (4) 20
- 5. If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, then the value of λ is
 - $(1) 2\sqrt{3}$
- (2) $3\sqrt{2}$
- (3)0
- (4)1
- 6. If \vec{a} , \vec{b} , \vec{c} are three non-coplanar unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is
- $(2)\frac{3\pi}{4}$
- $(3)^{\frac{\pi}{4}}$
- $(4) \pi$
- 7. Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 - (1) 2ab
- (2) ab
- $(3) \sqrt{ab}$

- $(4)\frac{a}{b}$
- 8. If *A*, *B* and *C* are invertible matrices of some order, then which one of the following is not true?
 - (1) adj $A = |A|A^{-1}$
- $(2) \operatorname{adj}(AB) = (\operatorname{adj} A)(\operatorname{adj} B)$
- (3) det $A^{-1} = (\det A)^{-1}$ (4) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
- 9. If x + y = k is a normal to the parabola $y^2 = 12x$, then the value of k is
- (2) -1
- (3) 1
- (4)9
- 10. The locus of a point whose distance from (-2,0) is $\frac{2}{3}$ times its distance from the line $x=\frac{-9}{2}$ is
 - (1) a parabola
- (2) a hyperbola
- (3) an ellipse
- (4) a circle

11. If
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

$$(1)\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix} \qquad (2)\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix} \qquad (3)\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \qquad (4)\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$$

$$(2)\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$$

$$(3)\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

$$(4)\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$$

12. The equation of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ having centre at (0,3) is

(1)
$$x^2 + y^2 - 6y - 7 = 0$$
 (2) $x^2 + y^2 - 6y + 7 = 0$

$$(2) x^2 + y^2 - 6y + 7 = 0$$

$$(3) x^2 + y^2 - 6y - 5 = 0$$

(3)
$$x^2 + y^2 - 6y - 5 = 0$$
 (4) $x^2 + y^2 - 6y + 5 = 0$

13. The vector equation $\vec{r} = (\hat{\imath} - 2\hat{\jmath} - \hat{k}) + t(6\hat{\jmath} - \hat{k})$ represents a straight line passing through the points

(1)
$$(0,6,-1)$$
 and $(1,-2,-1)$ (2) $(0,6,-1)$ and $(-1,-4,-2)$

$$(2)$$
 $(0,6,-1)$ and $(-1,-4,-2)$

(3)
$$(1,-2,-1)$$
 and $(1,4,-2)$ (4) $(1,-2,-1)$ and $(0,-6,1)$

$$(4)$$
 $(1, -2, -1)$ and $(0, -6, 1)$

14. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 and $A(\operatorname{adj} A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = 0$

(2)
$$\sin \theta$$

(3)
$$\cos \theta$$
 (4) 1

15. If a vector $\vec{\alpha}$ lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then

(1)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$$

(2)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$$

(3)
$$[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$$

$$(4) \left[\vec{\alpha}, \vec{\beta}, \vec{\gamma} \right] = 2$$

16. If adj $A = \begin{bmatrix} 2 & 3 \\ A & -1 \end{bmatrix}$ and adj $B = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then adj (AB) is

$$(1)\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix}$$

$$(1)\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix} \qquad (2)\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix} \qquad (3)\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad (4)\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$$

$$(3)\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix}$$

$$(4)\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$$

17. The equation of the normal to the circle $x^2 + y^2 - 2x - 2y + 1 = 0$ which is parallel to the line

$$2x + 4y = 3 \text{ is}$$

$$(1) x + 2y = 3$$

$$(2) x + 2y + 3 = 0$$

$$(3) 2x + 4y + 3 = 0$$

$$(4) x - 2y + 3 = 0$$

18. If α , β , and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum_{\alpha=1}^{\infty} a$ is

$$(1)-\frac{q}{r}$$

$$(2) - \frac{p}{r} \tag{3} \frac{q}{r}$$

$$(3) \frac{q}{r}$$

$$(4)-\frac{q}{p}$$

19. If \vec{a} , \vec{b} , \vec{c} are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}] = 3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is equal to

- (1)81
- (2) 9 (3) 27 (4) 18

20. The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inscribed in a rectangle *R* whose sides are parallel to the coordinate axes. Another ellipse E_2 passing through the point (0,4) circumscribes the rectangle R. The eccentricity of the ellipse is

- $(1)\frac{\sqrt{2}}{2}$
- $(2)\frac{\sqrt{3}}{2} \qquad (3)\frac{1}{2} \qquad (4)\frac{3}{4}$

21. The value of $\sum_{n=1}^{13} (i^n + i^{n-1})$ is

- $(1) 1 + i \quad (2) i$
 - (3) 1
- (4) 0

22.	The conjugate of a	complex number	is $\frac{1}{i-2}$. Then,	the comp	lex numbe	r is		
	$(1)\frac{1}{i+2} \qquad (2)\frac{-1}{i+2}$	$(3)\frac{-1}{i-2}$	$(4)\frac{1}{i-1}$	- 2				
23.	If $A \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 6 \end{bmatrix}$, then $A =$						
	$(1)\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$	$(2)\begin{bmatrix}1\\-1\end{bmatrix}$	2 4	$(3)\begin{bmatrix} 4\\-1 \end{bmatrix}$	² ₁]	$(4)\begin{bmatrix} 4\\2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$	
24.	If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be	such that $\lambda A^{-1} =$	A , then λ is					
	(1) 17	(2) 14	(3) 19	(4) 21	R	0		
25.	If $\left z - \frac{3}{z}\right = 2$, then	the least value o	f z is					
	(1) 1	(2) 2	(3) 3	(4) 5				
26.	If the normals of the circle $(x-3)^2 + (x-3)^2 + (x-3)$	V	n the value o	=	oints of its	latus rectu	m are tangen	ts to the
27.	If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c}$	6			(a) 1	-	(4) 1	
	$(1) \vec{a} \vec{b} \vec{c} $	$(2)\frac{1}{3} \vec{a} $			(3) 1		(4) -1	
28.	If <i>A</i> is a 3×3 non-	1		W. P. Lie	$\operatorname{id} B = A^{-1}$	A^T , then B	$B^T =$	
	(1) A	$(2) B \qquad ($. , ,	$(4) B^T$		\	_	
29.	If \vec{a} and \vec{b} are unit	vectors such that	$[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]$	$=\frac{1}{4}$, then	the angle b	etween \vec{a} a	nd <i>b</i> is	
1	$(1)\frac{\pi}{6}$	$(2)\frac{\pi}{4}$	$(3)\frac{\pi}{3}$		(4)	$\frac{\pi}{2}$		
30.	If $ z_1 = 1$, $ z_2 = 2$	$ z_3 = 3 \text{ and } 9z_3 $	$z_1 z_2 + 4 z_1 z_3$	$+z_2z_3 =$	12, then tl	ne value of	$ z_1 + z_2 + z_3 $	is
	(1) 1	(2) 2	(3) 3	(4) 4				
31.	If z is a complex nu	umber such that a	$z \in \mathbb{C} \setminus \mathbb{R}$ and	$z + \frac{1}{z} \in \mathbb{R}$	\mathbb{R} , then $ z $ i	is	وي	
	(1) 0 (2) 1		(4) 3	2			on	
32.	The number of rea	l numbers in [0,2	$[\pi]$ satisfying	$\sin^4 x -$	$2\sin^2 x +$	1 is _ ()		
	(1) 2 (2) 4	600	(4) ∞					
33.	If $z = x + iy$ is a co	omplex number s	uch that $ z $	2 = z - z	2 , then th	ne locus of z	z is	
	(1) real axis	(2) imaginary as) circle		
34.	The principal argu	ment of (sin 40°	$+ i\cos 40^{\circ})^{5}$	is				
	$(1) -110^{\circ}$	$(2) - 70^{\circ}$	(3) 70)°	(4)) 110°		
35.	Consider the vecto	ors \vec{a} , \vec{b} , \vec{c} , \vec{d} such t	that $(\vec{a} \times \vec{b}) \times$	$(\vec{c} \times \vec{d}) =$	$= \vec{0}$. Let P_1	and P_2 be t	he planes det	ermined
	by the pairs of vec	tors \vec{a} , \vec{b} and \vec{c} , \vec{d}	respectively.	Then the	angle betw	veen P_1 and	P_2 is	
	(1) 0°	(2) 45°	(3) 60)°	(4) 90°			

36. If $(1+i)(1+2i)(1+3i)\cdots(1+ni) = x+iy$, then $2\cdot 5\cdot 10\cdots(1+n^2)$ is

(1) 1

(3) $x^2 + y^2$ (4) $1 + n^2$

37. If cot⁻¹ 2 and cot⁻¹ 3 are two angles of a triangle, then the third angle is

 $(1)^{\frac{\pi}{4}}$

 $(2)\frac{3\pi}{4}$ $(3)\frac{\pi}{6}$ $(4)\frac{\pi}{3}$

38. If $0 \le \theta \le \pi$ and the system of equations $x + (\sin \theta)y - (\cos \theta)z = 0$, $(\cos \theta)x - y + z = 0$,

 $(\sin \theta)x + y - z = 0$ has a non-trivial solution then θ is

 $(1)^{\frac{2\pi}{2}}$

 $(2)\frac{3\pi}{4} \qquad (3)\frac{5\pi}{6} \qquad (4)\frac{\pi}{4}$

39. If α and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^{2020} + \beta^{2020}$ is

(1) -2

(2) -1

(4)2

40. If $\omega \neq 1$ is a cubic root of unity and $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then k is equal to

(1) 1

(2) -1

41. If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then

(1) $c = \pm 3$

(2) $c = \pm \sqrt{3}$

42. The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is

(1) cis $\frac{2\pi}{2}$

(2) cis $\frac{4\pi}{2}$

(3) $-\cos\frac{2\pi}{3}$ (4) $-\cos\frac{4\pi}{3}$

43. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath}$, $\vec{c} = \hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then the value of $\lambda + \mu$ is

(1)0

(3) 6

44. If $\omega = \operatorname{cis} \frac{2\pi}{3}$, then the number of distinct roots of $\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0$

(1) 1

(3)3

45. If f and g are polynomials of degrees m and n respectively, and if $h(x) = (f \circ g)(x)$, then the degree of h is

(2) m + n (3) m^n

46. If $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then $9I_2 - A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$

 $(1) A^{-1}$

 $(2)^{\frac{A^{-1}}{2}}$ (3) $3A^{-1}$ (4) $2A^{-1}$

47. The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand's diagram is

 $(1)\frac{1}{2}|z|^2$ $(2)|z|^2$ $(3)\frac{3}{2}|z|^2$ $(4)2|z|^2$

48. According to the rational root theorem, which number is not possible rational zero of

 $4x^7 + 2x^4 - 10x^3 - 5$?

(1) -1

 $(2)\frac{5}{4}$ $(3)\frac{4}{5}$

(4)5

4 Q	If z ic	non zor	o complex	number	cuch t	that 2122	- 7thon	lal ic
サフ.	11 2 15 6	a non zen	J COHIDIEX	number.	Such	llial Z <i>iz</i>	— z uien	12115

- $(1)^{\frac{1}{2}}$
- (2) 1 (3) 2 (4) 3

50. The eccentricity of the ellipse
$$(x-3)^2 + (y-4)^2 = \frac{y^2}{9}$$
 is

- $(1)\frac{\sqrt{3}}{2}$
- $(2)^{\frac{1}{2}}$
- $(3)\frac{1}{3\sqrt{2}}$
- $(4)\frac{1}{\sqrt{2}}$

51. If
$$P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$$
 is the adjoint of 3×3 matrix A and $|A| = 4$, then x is

- (1)15
- (2)12
- (3) 14
- (4)11

52. If
$$x^3 + 12x^2 + 10ax + 1999$$
 definitely has a positive zero, if and only if

- (2) a > 0
- (3) a < 0

53. The number of positive zeros of the polynomial
$$\sum_{j=0}^{n} {}^{n}C_{r}(-1)^{r}x^{r}$$
 is

- (2) n
- (3) < n

54. The value of
$$\sin^{-1}(\cos x)$$
, $0 \le x \le \pi$ is

- (1) πx (2) $x \frac{\pi}{2}$ (3) $\frac{\pi}{2} x$

55. If
$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$$
; then $\cos^{-1} x + \cos^{-1} y$ is equal to

- $(1)^{\frac{2\pi}{2}}$
- $(2)\frac{\pi}{3}$ $(3)\frac{\pi}{6}$

56. If
$$A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{bmatrix}$$
 and $A^2 = A^{-1}$, then the value of x is

- $(1)\frac{-4}{5}$ $(2)\frac{-3}{5}$ $(3)\frac{3}{5}$

57. If the two tangents drawn from a point P to the parabola $y^2 = 4x$ are at right angles then the locus of P is

- (1) 2x + 1 = 0
- (2) x = -1
- (3) 2x 1 = 0

58. If
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$$
, the value of $x^{2017} + y^{2018} + z^{2019} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is

- (1) 0
- (2)1
- (3) 2

(1) 0 (2) 1 (3) 2 (4) 3
59. If
$$|z| = 1$$
, then the value of $\frac{1+z}{1+\bar{z}}$ is
(1) Z (2) \bar{Z} (3) $\frac{1}{z}$ (4) 1

60. The domain of the function defined by
$$f(x) = \sin^{-1} \sqrt{x-1}$$
 is

- (1)[1,2]
- (2)[-1,1]
- (3)[0,1]
- (4)[-1,0]

61. The principal argument of the complex number
$$\frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$$
 is

- $(1)^{\frac{2\pi}{2}}$
- $(2)\frac{\pi}{\epsilon}$
- $(3)\frac{5\pi}{\epsilon}$
- $(4)^{\frac{\pi}{2}}$

52. If $x = \frac{1}{5}$, the value of $\cos(\cos^{-1} x)$	+ 2sin ⁻¹	<i>x</i>) is
---	----------------------	---------------

$$(1) - \sqrt{\frac{24}{25}} \qquad (2) \sqrt{\frac{24}{25}}$$

$$(2)\sqrt{\frac{24}{25}}$$

$$(3)\frac{1}{5}$$

$$(4)-\frac{1}{5}$$

63. If the planes $\vec{r} \cdot (2\hat{\imath} - \lambda \hat{\jmath} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{\imath} + \hat{\jmath} - \mu \hat{k}) = 5$ are parallel, then the value of λ and μ are

$$(1)^{\frac{1}{2}}, -2$$

$$(2)-\frac{1}{2},2$$

$$(1)\frac{1}{2},-2$$
 $(2)-\frac{1}{2},2$ $(3)-\frac{1}{2},-2$ $(4)\frac{1}{2},2$

$$(4)\frac{1}{2},2$$

64. $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is equal to

$$(1)\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$$

$$(2)\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$$
 $(3)\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ $(4)\tan^{-1}\left(\frac{1}{2}\right)$

$$(3) \frac{1}{2} \tan^{-1} \left(\frac{3}{5}\right)$$

(4)
$$\tan^{-1} \left(\frac{1}{2}\right)$$

65. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is

$$(1)\frac{4}{3}$$

$$(2)\frac{4}{\sqrt{3}}$$

$$(2)\frac{4}{\sqrt{3}} \qquad (3)\frac{2}{\sqrt{3}} \qquad (4)\frac{3}{2}$$

$$(4)\frac{3}{2}$$

66. $\sin^{-1}\left(\tan\frac{\pi}{4}\right) - \sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$. Then x is a root of the equation

$$(1) x^2 - x - 6 = 0$$

(1)
$$x^2 - x - 6 = 0$$
 (2) $x^2 - x - 12 = 0$ (3) $x^2 + x - 12 = 0$ (4) $x^2 + x - 6 = 0$

$$(3) x^2 + x - 12 = 0$$

$$(4) x^2 + x - 6 = 0$$

67. If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^{\tau})^{-1} =$

$$(1)\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$

$$(2)\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$$

$$(2)\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix} \qquad (3)\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix} \qquad (4)\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$$

$$(4)\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$$

68. $\sin^{-1} (2\cos^2 x - 1) + \cos^{-1} (1 - 2\sin^2 x) =$

$$(1)\frac{\pi}{2}$$

$$(2)\frac{\pi}{3}$$

$$(3)\frac{\pi}{4}$$

$$(4)\frac{\pi}{6}$$

69. If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, where \vec{a} , \vec{b} , \vec{c} are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are

- (1) perpendicular
- (2) parallel
- (3) inclined at angle $\frac{\pi}{3}$
- (4) inclined at angle $\frac{\pi}{6}$

70. If $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha}) = u$, then $\cos 2u$ is equal to

(1)
$$tan^2 \alpha$$

$$(3) -1$$

(4) tan
$$2\alpha$$

71. If the distance of the point (1,1,1) from the origin is half of its distance from the plane

x + y + z + k = 0, then the values of k are

$$(1) \pm 3$$

$$(2) \pm 6$$

$$(3) - 3,9$$

$$(4) 3, -9$$

72. If $|x| \le 1$, then $2\tan^{-1} x - \sin^{-1} \frac{2x}{1+x^2}$ is equal to

(1) $\tan^{-1} x$

(1)
$$\tan^{-1} x$$

(2)
$$\sin^{-1} x$$

$$(4) \pi$$

73. The equation $\tan^{-1} x - \cot^{-1} x = \tan^{-1} \left(\frac{1}{\sqrt{3}}\right)$ has

- (1) no solution
- (2) unique solution
- (3) two solutions
- (4) infinite number of solutions

74.	If $\sin^{-1} x + \cot^{-1}$	$\left(\frac{1}{2}\right) = \frac{\pi}{2}$, then x	is equal to			
	$(1)\frac{1}{2}$	$(2)\frac{1}{\sqrt{5}}$	$(3)\frac{2}{\sqrt{5}}$	$(4)\frac{\sqrt{3}}{2}$		
75.	If $A^T A^{-1}$ is symme	tric, then $A^2 =$				
	$(1) A^{-1}$	$(2) (A^T)^2$	(3) A^{τ}		$(4) (A^{-1})^2$	
76.) and touching y-axis is	
	$x^2 + y^2 - 5x - 6y$	$y + 9 + \lambda(4x +$	3y - 19) = 0 w	here λ i	s equal to	
	(1) $0, -\frac{40}{9}$	(2) 0	$(3)\frac{40}{9}$	$(4)\frac{-40}{9}$	R's	
77.	If $\cot^{-1} x = \frac{2\pi}{5}$ for	some $x \in R$, th	e value of tan ^{–1}	x is	. 9.	
	$(1)-\frac{\pi}{10}$	$(2)\frac{\pi}{5}$	$(3)\frac{\pi}{10}$	$(4)-\frac{\pi}{5}$	A	
78.	The polynomial x^3	$x^2 - kx^2 + 9x$ ha	s three real zero	os if and	only if. k satisfies	
	$(1) k \le 6$	W	Vo. 1000. A		$(4) k \ge 6$	31/4
70						toif
79.	(1) $15 < m < 65$	=4x+6y+5	(2) $35 < m <$		4y = m at two distinct poin	its II
	(3) -85 < m < -3	35	(4) -35 < m < 6		000	
00				1		
	the point $(2,3)$.	nameter of the (circie which tou	ches the	ex-axis at the point $(1,0)$ and	a passes throug
		(2) 5	(2) 10	3		
			$(3)\frac{10}{3}$			
81.	The radius of the c	Fircle $3x^2 + by^2$	+4bx-6by+	$b^2 = 0$	is	
	(1) 1	(2) 3	$(3)\sqrt{10}$		$(4)\sqrt{11}$	\
82.	z_1, z_2 , and z_3 are co	omplex number	s such that z_1 +	$z_2 + z_3$	$= 0$ and $ z_1 = z_2 = z_3 =$	= 1 then
	$z_1^2 + z_2^2 + z_3^2$ is					0
	(1) 3 (2) 2	(3) 1	(4) 0		11010	
83.	If $\rho(A) = \rho([A \mid B])$]), then the syst	em AX = B of li	near eq	uations is	£.
	(1) consistent and	has a unique so	olution		(2) consistent	
	(3) consistent and	has infinitely n	nany solution	der	(4) inconsistent	
84.	If $P(x, y)$ be any po	point on $16x^2 + 3$	$25y^2 = 400$ wit	h foci F ₁	$(3,0)$ and $F_2(-3,0)$ then PF_1	$_{\rm L} + PF_{\rm 2}$ is
	(1) 8	(2) 6	(3) 10		(4) 12	
85.	The radius of the c	ircle passing th	rough the point	(6,2) tv	vo of whose diameter are x -	+y=6
	and $x + 2y = 4$ is					
	(1) 10	(2) $2\sqrt{5}$	(3) 6		(4) 4	

86. If $x^a y^b = e^m, x^c y^d = e^n, \Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}, \Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}, \Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$, then the values of x and y are $(1) e^{(\Delta_2/\Delta_1)}, e^{(\Delta_3/\Delta_1)} \qquad \qquad (2) \log (\Delta_1/\Delta_3), \log (\Delta_2/\Delta_3)$ $(3) \log (\Delta_2/\Delta_1), \log (\Delta_3/\Delta_1) \qquad \qquad (4)) e^{(\Delta_1/\Delta_3)}, e^{(\Delta_2/\Delta_3)}$ 87. The solution of the equation |z| - z = 1 + 2i is

 $(4) 2 + \frac{3}{2}i$

67. The solution of the equation |z| - z = 1 + 2i is $(1)\frac{3}{2} - 2i \qquad (2) - \frac{3}{2} + 2i \qquad (3) 2 - \frac{3}{2}i$

88. The product of all four values of $\left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$ is

(1) -2 (2) -1 (3) 1 (4) 2

89. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is

(1) $4(a^2 + b^2)$ (2) $2(a^2 + b^2)$ (3) $a^2 + b^2$ (4) $\frac{1}{2}(a^2 + b^2)$

90. If the function $f(x) = \sin^{-1}(x^2 - 3)$, then x belongs to

(1) [-1,1] (2) $[\sqrt{2},2]$ (3) $[-2,-\sqrt{2}] \cup [\sqrt{2},2]$ (4) $[-2,-\sqrt{2}]$

91. Tangents are drawn to the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ parallel to the straight line 2x - y = 1. One of the points of contact of tangents on the hyperbola is

 $(1)\left(\frac{9}{2\sqrt{2}}, \frac{-1}{\sqrt{2}}\right) \qquad (2)\left(\frac{-9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad (3)\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad (4)\left(3\sqrt{3}, -2\sqrt{2}\right)$

92. If $z = \frac{(\sqrt{3}+i)^3(3i+4)^2}{(8+6i)^2}$, then |z| is equal to

(2) 1 (3) 2

93. The coordinates of the point where the line $\vec{r} = (6\hat{\imath} - \hat{\jmath} - 3\hat{k}) + t(-\hat{\imath} + 4\hat{k})$ meets the plane

(4)3

 $\vec{r} \cdot (\hat{\imath} + \hat{\jmath} - \hat{k}) = 3$ are

 $(1) (2,1,0) \qquad (2) (7,-1,-7) \qquad (3) (1,2,-6) \qquad (4) (5,-1,1)$

94. The polynomial $x^3 + 2x + 3$ has

(1) one negative and two imaginary zeros (2) one positive and two imaginary zeros

(3) three real zeros (4) no zeros

95. Let C be the circle with centre at (1,1) and radius = 1. If T is the circle centered at (0,y) passing through the origin and touching the circle C externally, then the radius of T is equal

 $(1)\frac{\sqrt{3}}{\sqrt{2}}$ $(2)\frac{\sqrt{3}}{2}$ $(3)\frac{1}{2}$ $(4)\frac{1}{4}$

96. $\sin(\tan^{-1} x)$, |x| < 1 is equal to

 $(1)\frac{x}{\sqrt{1-x^2}} \qquad (2)\frac{1}{\sqrt{1-x^2}} \qquad (3)\frac{1}{\sqrt{1+x^2}} \qquad (4)\frac{x}{\sqrt{1+x^2}}$

97. If $\omega \neq 1$ is a cubic root of unity and $(1 + \omega)^7 = A + B\omega$, then (A, B) equals

(1) (1,0) (2) (-1,1) (3) (0,1) (4) (1,1)

98. An ellipse has OB as semi minor axes, F and F' its foct and the angle FBF' is a right angle. Then the eccentricity of the ellipse is

$$(1)\frac{1}{\sqrt{2}}$$

$$(2)\frac{1}{2}$$

$$(3)^{\frac{1}{4}}$$

$$(4)\frac{1}{\sqrt{3}}$$

99. If $A = \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$ and $AB = I_2$, then $B = I_2$

$$(1)\left(\cos^2\frac{\theta}{2}\right)A$$

$$(2)\left(\cos^2\frac{\theta}{2}\right)A^T \qquad (3)\left(\cos^2\theta\right)I \qquad (4)\left(\sin^2\frac{\theta}{2}\right)A$$

(3)
$$(\cos^2 \theta)I$$

$$(4)\left(\sin^2\frac{\theta}{2}\right)A$$

100. The circle passing through (1, -2) and touching the axis of x at (3,0) passing through the point

$$(1)(-5,2)$$

$$(2)(2,-5)$$

$$(3)(5,-2)$$

$$(4)(-2,5)$$

101. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

$$(2) - 2$$

$$(3) - 3$$

$$(4) -1$$

102. The values of m for which the line $y = mx + 2\sqrt{5}$ touches the hyperbola $16x^2 - 9y^2 = 144$ are the roots of $x^2 - (a + b)x - 4 = 0$, then the value of (a + b) is

$$(4) - 2$$

103. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to

$$(2)-1$$

104. The principal argument of $\frac{3}{-1+i}$ is

$$(1)\frac{-5\pi}{6} \qquad (2)\frac{-2\pi}{3} \qquad (3)\frac{-3\pi}{4}$$

$$(2)^{\frac{-2\pi}{2}}$$

$$(3)\frac{-3\pi}{4}$$

$$(4)\frac{-\pi}{2}$$

105. If $\sin^{-1} \frac{x}{5} + \csc^{-1} \frac{5}{4} = \frac{\pi}{2}$, then the value of x is

- (1)4
- (2)5
- (3) 2
- (4)3

106. If \vec{a} , \vec{b} , \vec{c} are three unit vectors such that \vec{a} is perpendicular to \vec{b} , and is parallel to \vec{c} then $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to

$$(1) \vec{a}$$

$$(2)\bar{l}$$

$$(3)$$
 \dot{a}

$$(4)\vec{0}$$

 $(3) \vec{c}$ $(4) \vec{0}$ $107. \sin^{-1} \frac{3}{5} - \cos^{-1} \frac{12}{13} + \sec^{-1} \frac{5}{3} - \csc^{-1} \frac{13}{12} \text{ is equal to}$ $(1) 2\pi$ $(2) \pi$ $(3) \vec{c}$ $(4) \vec{0}$

108. If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, B = adj A and C = 3A, then $\frac{|\text{adj } B|}{|C|} =$

- $(1)^{\frac{1}{2}}$
- $(2)\frac{1}{0}$ $(3)\frac{1}{4}$

109. If $[\vec{a}, \vec{b}, \vec{c}] = 1$, then the value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$ is

- (1) 1
- (2) -1
- (3)2
- (4) 3

110. $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is

$$(1) 0 \qquad (2) 1 \qquad (3) -1$$

111. The volume of the parallelepiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{i} + \hat{j} + \pi \hat{k}$ is

$$(1)^{\frac{\pi}{2}}$$

$$(2)\frac{\pi}{2}$$

$$(3) \pi$$

$$(4)\frac{\pi}{4}$$

112. $\sin^{-1}(\cos x) = \frac{\pi}{2} - x$ is valid for

$$(1) -\pi \le x \le 0$$

$$(2) \ 0 \le x \le \pi$$

(2)
$$0 \le x \le \pi$$
 (3) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

$$(4) - \frac{\pi}{4} \le x \le \frac{3\pi}{4}$$

113. A polynomial equation in x of degree n always has

$$(2)$$
 n real roots

(4) at most one root.

114. If $|z - 2 + i| \le 2$, then the greatest value of |z| is

$$(1)\sqrt{3} - 2 \qquad (2)\sqrt{3} + 2$$

$$(2)\sqrt{3}+2$$

$$(3)\sqrt{5} - 2 (4)\sqrt{5} + 2$$

$$(4)\sqrt{5}+2$$

115. If $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$, $\vec{b} = \hat{\imath} + 2\hat{\jmath} - 5\hat{k}$, $\vec{c} = 3\hat{\imath} + 5\hat{\jmath} - \hat{k}$, then a vector perpendicular to \vec{a} and lies in the plane containing \vec{b} and \vec{c} is

$$(1) -17\hat{i} + 21\hat{j} - 97\hat{k}$$
 (2) $17\hat{i} + 21\hat{j} - 123\hat{k}$

(2)
$$17\hat{\imath} + 21\hat{\jmath} - 123\hat{k}$$

$$(3) - 17\hat{\imath} - 21\hat{\jmath} + 97\hat{k}$$

$$(4) -17\hat{\imath} - 21\hat{\jmath} - 97\hat{k}$$

116. The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$, z = 2 and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is

$$(1)^{\frac{\pi}{6}}$$

$$(2)^{\frac{\pi}{4}}$$

$$(2)\frac{\pi}{4}$$
 $(3)\frac{\pi}{3}$ $(4)\frac{\pi}{2}$

$$(4)^{\frac{\pi}{2}}$$

117. If the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is

$$(1)(-5,5)$$

$$(2)(-6,7)$$

$$(2) (-6,7) (3) (5,-5) (4) (6,-7)$$

$$(4)(6,-7)$$

118. The angle between the line $\vec{r} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) + t(2\hat{\imath} + \hat{\jmath} - 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{\imath} + \hat{\jmath}) + 4 = 0$ is

$$(1) 0^{\circ}$$

$$(2) 30^{\circ}$$

119. The centre of the circle inscribed in a square formed by the lines $x^2 - 8x - 12 = 0$ and

$$y^2 - 14y + 45 = 0$$
 is

120. Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is

(1) 0

121. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

(1) 0

$$(2) -2$$
 $(3) -3$

$$(3) - 3$$

$$(4) -1$$

122. The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is

$$(1)\frac{\sqrt{7}}{2\sqrt{2}}$$

$$(2)\frac{7}{2}$$

$$(3)\frac{\sqrt{7}}{3}$$

$$(4) \frac{7}{2\sqrt{2}}$$

123. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$ is

- (1) 1
- (2)2
- (3) 4
- (4) 3

124. A zero of $x^3 + 64$ is

- (1) 0
- (2)4
- (3) 4i
- (4) -4

125. If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is

- $(1)^{\frac{1}{2}}$
- (2) 1
- (3) 2
- (4) 3

Ezzie of academic excollence