Time: 1.30 Hrs .

I. Choose the best option:

Standard 10

 MATHSPART - A

1) Transpose of a row matrix is
a) Diagonal matrix
b) Unit matrix
c) Row matrix
d) Column matrix
2) If A is a 3×4 matrix and B is a 4×5 matrix, how many columns does $A B$ have
a) 2
b) 3
c) 4
d) 5
3) In the adjacent figure $\angle B A C=900$ and $A D \perp B C$ then

a) $B D \cdot D C=B C^{2}$
b) $A B \cdot A C=B C^{2}$
c) $B D \cdot D C=A D^{2}$
d) $A B \cdot A C=A D^{2}$
4) In the figure is $P R$ is a tangent to the circle at P, and ' O ' is the centre of the circle, then $\angle \mathrm{POQ}$ is

a) 120°
b) 100°
c) 110°
d) 90°
5) If the ratio of the height of a tower and the length of its shadow is $1: \sqrt{3}$, then the angle of elevation of the sun is
a) 30°
b) 45°
c) 60°
d) 90°
6) The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is
a) $\frac{9}{8} \pi h^{2}$ sq.units
b) 24π sq.units
c) $\frac{8}{9} \pi h^{2}$ sq.units
d) $\frac{56}{9} \pi h^{2}$ sq.units
7) A spherical ball of radius r_{1} units is melted to make 8 new identical balls each of radius r_{2} units, then $r_{1}: r_{2}$ is
a) $1: 2$
b) $2: 1$
c) $1: 8$
d) $8: 1$

PART - B

Answer any 5 questions only. Qn.No. 14 is compulsory:
8) Construct a 3×2 matrix whose elements are $\left(a_{i j}\right)=|i-2 j|$. What length of ladder is needed to reach a height of 7 ft along the wall
Kindly send me your district question papersito tour whatsapp number: 7358965593

V10M

10) The angle of elevation of the toP of a tower 48 m away from the foot of the tower is 30°. Find the height of the tower.
11) The horizontal distance between two buildings in 70 m . The angle of depression of the top of the first building when seen from the top of the second building is 45°. If the height of the second building is 120 m . Find the height of the first building.
12) The curved surface area of a right circular cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$. Find the diameter of the cylinder.
13) 4 persons live in a conical tent whose slant height is 19 m . If each person require $22 \mathrm{~m}^{2}$ of the floor area, then find the height of the tent.
14) Verify that $A^{2}=I$ when $A=\left(\begin{array}{ll}5 & -4 \\ 6 & -5\end{array}\right)$.

PART - C

Answer any 5 questions only. [Qn.No. 21 is compulsory]:

15) Find X and Y if $X+Y=\left(\begin{array}{ll}7 & 0 \\ 3 & 5\end{array}\right)$ and $X-Y=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$.
16) If $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & -1 \\ -1 & 4 \\ 0 & 2\end{array}\right)$ show that $(A B)^{\top}=B^{\top} A^{\top}$.
17) State and Prove Pythagoras Theorem.
18) To a man standing outside his house, the angle of elevation of the top and bottom of a window are 60° and 40° respectively. If the height of the man is 1.8 m and if he is 5 m away from the wall, what is the height of the window?
19) From the top of a 12 m high building, the angle of elevation of the top of a cable tower is 30° and the angle of depression of its foot is 30°. Determine the height of the tower.
20) From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm , a conical cavity of the same height and base is hollowed out. Find the total surface area of the remaining solid.
21) A solid sphere of radius 6 cm is melted into a hollow cylinder of uniform thickness. If the external radius of the base of the cylinder is 5 cm and its height is 32 cm , then find the thickness of the cylinder.

PART-D

IV. Answer any one question only:

$1 \times 8=8$
22) Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.
Discuss the nature of solutions of the quadratic equation $x^{2}-8 x+16=0$ using graph.

프-MATHS
1)(d) 田 5 ar
2) $($ d $) 5$
3) $\left(\right.$ c) $B D \cdot D C=A D^{2}$
4) (a) 120°
5) (a) 30°
b) (c) $\frac{8}{9} \pi h^{2} \cdot \pi$.
7) (b) $2: 1$
$A=\left(\begin{array}{ll}1 & 3 \\ 0 & 2 \\ 1 & 1\end{array}\right)_{3 \times 2}$
2 mARKS

$$
\begin{align*}
& 9 \\
& x=\sqrt{4^{2}+7^{2}} \\
&=\sqrt{16+49} \quad \times r_{-14}^{B} \\
&=\sqrt{65} \tag{2}\\
& x=8.1=14
\end{align*}
$$

(10)
$\tan 30^{\circ}=\frac{h}{48}$

$$
\frac{1}{\sqrt{3}}=\frac{r}{48}
$$

$$
h=\frac{48}{\sqrt{3}}=16 \sqrt{3}
$$

(1)
\qquad

$$
h=27.7128
$$

(II)

$\tan 45^{\circ}=\frac{120-h}{70}$

$$
\begin{aligned}
& h=120-70 \\
& h=50 \mathrm{Bl}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } 2 \pi \gamma h=88 \\
& 2 \times \frac{22}{7} \times \gamma \times 14=88 \\
& \gamma=1
\end{aligned}
$$

$$
\text { (13) } \begin{aligned}
& \pi r^{2}=4 \times 22=88 \\
& \gamma^{2}=28 \\
& \therefore h=\sqrt{l^{2}-r^{2}} \\
&=\sqrt{19^{2}-28} \\
&=\sqrt{333} \\
& h=18.25 \boxed{B}
\end{aligned}
$$

(16) $A B=\left(\begin{array}{cc}0 & 9 \\ 5 & -4\end{array}\right)$
$(A B)^{\top}=\left(\begin{array}{cc}0 & 5 \\ 9 & -4\end{array}\right)$

$$
\therefore \sin 6=2(1)=2006
$$

$B^{\top}=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 4 & 2\end{array}\right)$
$A^{\top}=\left(\begin{array}{cc}1 & 2 \\ 2 & -1 \\ 1 & 1\end{array}\right)$
(4)

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{cc}
25-24 & -20+20 \\
30-30 & -24+25
\end{array}\right) \\
& A^{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=I
\end{aligned}
$$

(17) Synasin 6singin

$\triangle B E$ Dad

$$
\sqrt{3}=\frac{h-112}{12 \sqrt{3}} \Rightarrow h=4815
$$

$$
\begin{aligned}
& A B^{2}=B C \times B D \rightarrow D \\
& A C^{2}=B C \times D C \rightarrow 2
\end{aligned}
$$

$\therefore A B^{2}+A C^{2}=B C^{2}$
(8)

Kindly send me your district question papers to our whatsapp number: 7358565593

