FULL PORTION TEST - 2022 -2023

CLASS : X	SUBJEC	T : MATHEMA	TICS N	1ARKS : 100	TIME: 3 HRS
			Q. NO : 5		
			PART – A		
CHOOSE THE	CORRECT AN	SWER			14 X 1 = 14
1. If $g = \{(1, 1), (1, 2), ($	1, 1), (2, 3), (3, 5	5), (4, 7)} is a fo	unction given b	$y g(x) = \alpha x + \mu$	3 then the
values of a	lpha and eta are	(A) (1, 2)	(B) (-1, 2)	(C) (2, -1)	(D) (-1, -2)
2. An A.P. co	nsists of 31 ter	ms. If its 16 th	term is m , the	n the sum of al	I the terms of this
A.P. is (A) 3. The radioa		salai	Poáda	31/2m	Posdasala
W	WW.Pada	hen b is = 9 is equal to	(A) 0 (B) 1	(c) $\frac{1}{\sqrt{2}}$ (d) $\frac{1}{2}$	
(A) -	1, 2	(B) -1	(C)	2 alai Net	(D) None of these
5. Which of t	he following sl	hould be added	d to make x^4 +	64 is a perfect s	square
(A) 4 <i>x</i>	.2 _{(MMM} .Padas	(B) $8x^2$	(C) -	-8 <i>x</i> ²	(D) $16x^2$
6. For a matr	ix A, B is called	the additive i	nverse of A if		
(A) A + B ≠	B + A (B) B +	+ A = A +B = 0	(C) $B + A =$	$A + B \neq 0$	(D) $A + B = 0 \neq B + A$
7. If Δ <i>ABC</i>	s an isosceles	triangle with 4	∠C = 90° and A	AC = 5 cm, then	AB is
(A) 5	√2 <i>cm</i>	(B) 10 cm	(C) 2	2.5 <i>cm</i>	(D) 5 <i>cm</i>
8. When prov	ing that a qua	drilateral is a t	rapezium, it is i	necessary to sh	ow
(A) Two para	llel and two no	on-parallel side	es. (B) Two side	es are parallel.	
(C) Opposite	sides are para	llel. (D) A	All sides are of e	equal length.	
9. If the poin	ts (0,0), (a,0) a	nd (0,b) are co	llinear, then		
(A)a=b	(B) a+b	(C) ab=0	(D) a≠b		
10. (1 + tan 6	$\theta + \sec \theta$)(1+	$cot\theta$ – $cosec\theta$) is equal to		
(A) -1	L	(B) 0	(C) 1		(D) 2

11. If the radius of the base of a right circular cylinder is halved keeping the same height,

then the ratio of the volume of the cylinder thus obtained to the volume of original

- cylinder is (A) 1:6
- (B) 1:8
- (C) 1:2
- (D) 1:4
- 12. A solid frustum is of height 8 cm. If the radii of its lower and upper ends are 3 cm and 9 cm respectively, then its slant height is:
 - (a) 15 cm (b) 12 cm (c) 10 cm (d) 17 cm
- 13. If the standard deviation of x, y, z is p then the standard deviation of

3x + 5, 3y + 5, 3z + 5 is (A) 3p (B) 3p + 5 (C) 9p + 15

- (D) p + 5

- 14. Which of the following is incorrect?
- (A) $P(A) + P(\overline{A}) = 1$ (B) $P(\emptyset) = 0$
- (C) $0 \le P(A) \le 1$ (D) P(A > 1)

PART - B

ANSWER ANY 10 QUESTIONS (QUESTION NUMBER 28 IS COMPULSORY)

10 X 2 = 20

- 15. Let A= $\{1,2,3,4,5\}$,B=N and f:A->B be defined by $f(x)=x^2$. Find the range of f. Identify the type of function.
- 16. 'a' and 'b' are two positive integers such that $a^b \times b^a = 800$. Find 'a' and 'b'.
- 17. Which term of an A.P. 16, 11, 6, 1,... is -54?
- 18. Find the quotient and remainder when $x^3 + x^2 7x 3$ is divided by x 3.
- 19. A has 'a' rows and 'a+3' columns. B has 'b' rows and '17-b' columns, and if bothproducts AB and BA exist, find a, b?
- 20. Find the area of the triangle whose vertices are (-3,5), (5,6) and (5,-2).
- 21. Find the equation of a straight line passing through (5,-3) and (7,-4).
- 22. Prove that $\sec\theta \cos\theta = \tan\theta \sin\theta$
- 23. A tower stands vertically on the ground. From a point on the ground, which is 48 m awayfrom the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.
- 24. If the radii of the circular ends of a frustum which is 45 cm high are 28 cm and 7 cm, find the volume of the frustum.
- 25. If the ratio of radii of two spheres is 4:7, find the ratio of their volumes.

Kindly Send me your district Questions & Keys to email id - Padasalai.net@gmail.com

- 26. If the standard deviation of a data is 3.6 and each value of the data is divided by 3, then find thenew variance and new standard deviation.
- 27. If the standard deviation of a data is 3.6 and each value of the data is divided by 3, then find thenew variance and new standard deviation.
- 28. In ΔPQR , given that S is a point on PQ such that ST||QR and $\frac{PS}{SO} = \frac{3}{5}$. If PR =5.6cm. then find PT.

PART - C

ANSWER ANY 10 QUESTIONS (QUESTION NUMBER 42 IS COMPULSORY)

- 29. Let A = The set of all natural numbers less than 8, B = The set of all prime numbers less than 8, C = The set of even prime number. Verify that $A \times (B - C) = (A \times B) - (A \times C)$.
- 30. If d is the Highest Common Factor of 32 and 60, find x and y satisfying d = 32x + 60 y.
- 31. In a G.P. the 9^{th} term is 32805 and 6^{th} term is 1215. Find the 12^{th} term.

32. Simplify
$$\frac{2a^2+5a+3}{2a^2+7a+6} \div \frac{a^2+6a+5}{-5a^2-35a-50}$$
.

33. Find the value of a and b if the following polynomial is a perfect square

$$4x^4 - 12x^3 + 37x^2 + bx + a$$
.

34. Solve
$$\begin{pmatrix} 1 & 2 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} x & 0 \\ 9 & 0 \end{pmatrix}$$
.

- 35. The perpendicular PS on the base QR of a ΔPQR intersects QR at S, such that QS=3 SR.Prove that $2PQ^2 = 2PR^2 + QR^2$.
- 36. Find the area of the quadrilateral formed by the points (8,6), (5,11), (-5,12) and (-4,3).
- 37. Find the equation of the median of ΔABC through A where the vertices are A (6,2), B(-5, -1) and C(1,9).
- 38. Prove the identity $(\sin\theta + \csc\theta)^2 + (\cos\theta + \sec\theta)^2 = 7 + \tan^2\theta + \cot^2\theta$
- 39. A vessel is in the form of a frustum of a cone. Its radius at one end and the height are 8 cm and 14 cm respectively. If its volume is $\frac{5676}{3}$ cm³, then find the radius at the other end.

- 40. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tanks will rise by 21 cm.
- 41. Two dice are rolled together. Find the probability of getting a doublet or sum of faces as 4.
- 42. Given $\sum x = 99$, n = 9, $\sum (x 10)^2 = 79$, then find $\sum x^2$ and $\sum (x \overline{x})^2$.

PART - C

ANSWER THE FOLLOWING QUESTIONS

 $2 \times 2 = 16$

- 43. (a) Construct a $\triangle PQR$ in which QR = 5 cm, $\angle P = 40^\circ$ and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR. (OR)
- (b) Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm. Also, measure the lengths of the tangents.
- 44. (a) Draw the graph of $y=x^2-4x+3$ and use it to solve $x^2-6x+9=0$. (OR)
 - (b) A school announces that for a certain competition, the cash price will be distributed for all the participants equally as show below

No. of participants(x)	2	4	6	8	10
Amount for each participants in Rs (y)	180	90	60	45	36

- (i) Find the constant of variation
- (ii) Graph the above and hence, find how much will each participant get if the number of participants are 12

Prepared by:

S. Sakthivel (B.T Assistant Maths)

P.K.D Matric Hr Sec School,

Pollachi

Cell: 8883335659(WA), 9843560615.