Sun Juition Center -9629216361 ...

STD:X	moaei	questio	m
SUB: MATHS			,

TIME: 5 HRS

S MARKS 100 PART-I I. Answer all the questions: $14 \times 1 = 14$ 1. If the ordered pairs (a+2, 4) and (5, 2a+b) are equal than (a, b) is a (2-2) b. (5, 1) c(2,3)d (3, -2) 2. Using Euclid's division lemma, if the cubes of any positive integers is divided by 9 then the possible remainders are 20, 1, 8 b. 1, 4, 8 c. 0, 1, 3 d. 1, 3, 5 3. If 6 time of the 6th term of an A P is equal to 7 times the 7th term then the 13th term of the A P is 4. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is b. $\frac{9y^3}{21y-21}$ c. $\frac{21y^2-42y+21}{3y^3}$ d. $\frac{7(y^2-2y+1)}{y^2}$ 5. The solution of $(2x-1)^2 = 9$ is equal to c, -1, 2d. none 6. In Δ LMN, $\underline{L} = 60^{\circ}$, $\underline{M} = 50^{\circ}$. If Δ LMN \sim Δ PQR then the value of \underline{R} is b. 70° c. 30° 7. The area of triangle formed by the points (-5, 0), (0, -5) and (5, 0) is b. 25 sq. units c. 5 sq. units d None 8. A straight line has equation 8y = 4x + 21. Which of the following is true? a. The slope is 0.5 and y - intercept 2.6 b. The slope is 0.5 and y - intercept 1.6 d. The slope is 5 and y - intercept 2.6 c. The slope is 5 and y - intercept 1.6 9. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure. a 45° b. 30° c. 90° 10. The height of a right circular cone whose radius 5 cm and slant height is 13cm will be b. 10 cm c. 13 cm d 5 cm 11. Which of the following is incorrect? d. P(A) + P(A) = 1b. $0 \ 0 \le P(A) \le 1$ c. P(A) = 0a P(A)>112. A quadratic polynomial whose one zero 5 and sum of the zeroes is 0 is given by b. $x^2 - 5$ c. $x^2 - 5x$ dx^2-5x+5 a. $x^2 - 25$ 13. If the points (0, 0) (a, 0) and (0, b) are collinear, then b. a + b = 0c. ab = 0da = 014. When three coins are tossed, the probability of getting the same face on all the three coins is d 1/3 b. 1/4 c. 3/8 a. 1/8 $10 \times 2 = 20$

Answer the following questions. Question no. 28 is compulsory.

15. If B \times A = {-2, 3}, (-2, 4), (0, 3), (0, 4), (3, 3), (3, 4) find A and B.

16. Let $A = \{1, 2, 3, 7\}$ and $B = \{3, 0, -1, 7\}$, which of the following are relation from A to B? (ii) $R_2 = \{(2, -1), (7, 7), (1, 3)\}$ (i) $R_1 = \{(2, 1)\}, (7, 1)\}$

17. Is 7 x 5 x 3 x 2 + 3 a composite number? Justify your answer.

19. Simplify $\frac{5t^3}{4t-8} \times \frac{6t-12}{10t}$

20. Solve the quadratic equation $2x^2 - 5x + 2 = 0$ by formula method.

21. In $\triangle ABC$, D and E are points on the sides AB and AC respectively such that DE || BC. If $\frac{AD}{DB} = \frac{3}{4}$ and AC = 15cm find AE.

22. Find the area of the triangle formed by the point. (1, -1), (-4, 6) and (-3, -5).

23. Find the slope of a line joining the given points (-6, 1) and (-3, 2).

24. Find the intercepts made by the line 4x - 9y + 36 = 0 on the coordinate exes. Kindly send me your district question papers to our whatsapp number: 7358965593

25. From the top of a tree of height 13m the angle of elevation and depression of the top and bottom of another tree are 45° and 30° respectively. Find the height of the second tree. ($\sqrt{3} = 1.732$).

26. The external radius and the length of a hallow wooden log are 16cm and 13cm respectively. If its thickness

is 4 cm then find its T.S.A.

27. What is the probability that a leep year selected at random will contain 53 Saturdays.

28. The roots of the equation $x^2 + 6x - 4 = 0$ are α, β . Find the quadratic equation whose roots are α^2 and β^2 .

A solid sphere and a solid hemisphere have equal total surface area. Prove that the ratio of their volume is $3\sqrt{3}:4.$

PART-III

III. Answer the following questions. Question No. 42 is compulsory. $10 \times 5 = 50$

29. Let A = The set of all natural numbers less than 8, B = The set of all Prime numbers less than 8, C = the set of even prime number. Verify that $(A \cap B) \times C = (A \times C) \cap (B \times C)$.

30. Represent the given relation $\{(x, y) \mid y = x + 3, x, y \text{ are natural numbers} < 10\}$ by c) a set in roster form. b) a graph and a) an arrow diagram,

31. If $P_1^{x_1}$ $P_1^{x_1} \times P_2^{x_2} \times P_3^{x_3} \times P_4^{x_4} = 113400$ where P_1 , P_2 , P_3 , P_4 are primes in ascending order and x_1 , x_2 , x_3 , x_4 are integers, find the values of P1, P2, P3, P4 and x1, x2, x3, x4.

32. Find the values of 'a' and 'b' if the $4x^4 - 12x^3 + 37x^2 + bx + a$ is a perfect squares.

33. Solve: x + y + z = 5; 2x - y + z = 9, x - 2y + 3z = 16.

34. A ball rolls down a slope and travels a distance $d = t^2 - 0.75t$ feet in t seconds. Find the time when the distance travelled by the ball is 11.25 feet.

35. State and prove Pythagoras theorem.

36. Find the area of the quadrilateral whose vertices are at (-9, 0), (-8, 6), (-1, -2) and (-6, -3).

37. Without using Pythagoras theorem, show that the points (1, -4), (2, -3) and (4, -7) form a right angled triangle.

38. An aeroplane at an altitude of 1800 m finds that two boats are sailing towards it in the same direction. The angles of depression of the boats as observed from the aeroplane are 60° and 30° respectively. Find the distance between the two boats. ($\sqrt{3} = 1.732$).

39. A line makes positive intercepts on coordinates axes whose sum is 7 and it passes through (-3, 8). Find the

equation.

40. The Frustum shaped outer position of the table lamp has to be painted including the top part. Find the total cost of painting the lamp if the cost of paining 1 sq. cm is Rs. 2.

41. The outer and the inner surface areas of a spherical copper shell are 576 π cm² and 324 π cm² respectively. Find the volume of the material required to make the shell.

42. From a well shuffled pack of 52 cards, one card is drawn at random. Find the probability of getting (i) red card (ii) heart card (iii) red King (iv) face card (v) number card

43. In an A.P. sum of four consecutive terms is 28 and their sum of their squares is 276. Find the four numbers. (OR)

The angles of elevation and depression of the top and bottom of a lamp post from the top of a 66m high apartment are 60° and 30° respectively. Find

The height of the lamp post (i)

The difference between height of the lamp post and the apartment. (ii)

The distance between the lamp post and the apartment. ($\sqrt{3} = 1.732$), (iii)

PART-IV

IV. Answer all the questions:

44. Draw the two tangents from a point which is 10cm away from the centre of a circle of radius 5cm. Also, measure the length of the tangents. Draw a triangle/ABC of base BC = 5.6cm, $\underline{A} = 40^{\circ}$ and the bisector of \underline{A} meets BC at D such that CD = 4

45. Graph the following quadratic equation $x^2 - 4x + 4 = 0$ and state their nature of solutions

OR)

Draw the graph of $y = x^2 + 3x - 4$ and hence use it to solve $x^2 + 3x - 4 = 0$.

w the graph of y *****

Kindly send me your district question papers to our whatsapp number: 7358965593

Sun Tuition Center -9629216361

STD: X

SUB: MATHEMATICS

model question paper

TIME: 3 HRS MARKS: 100

PART-I

Choose the correct answer from the given four alternatives and write the option code and corresponding answer.

 $14 \times 1 = 14$ 1. If $n(A \times B) = 6$ and $A = \{1, 3\}$ then n(B) is c. 3 d. 6 2. Given $F_1=1$, $F_2=3$ and $F_n=F_{n-1}+F_{n-2}$ then F_5 is

c. 8 3. The sum of the exponents of prime factors in the prime factorization of 1729 is

4. Graph of a quadratic equation is a. straight line

c. parabola

d. hyperbola

5. The square root of $\frac{256x^8y^4z^{10}}{25x^6v^6z^6}$ is equal to

b. $\frac{16}{5} \left| \frac{xz^2}{y} \right|$ c. $\frac{16}{5} \left| \frac{y^2}{x^2 z^4} \right|$

6. If in $\triangle ABC$, DE || BC. AB = 3.6cm, AC = 2.4cm and AD = 2.1cm the length of AE is

a. 1.4cm

b. 1.8cm

c. 1.2cm

d. 1.05cm

7. How many tangents can be drawn to the circle from an exterior point?

b. two

c. infinite

d. zero

The area of triangle formed by the points (-5, 0) (0, -5) and (5,0) is

a. 0 sq. units

b. 25sq. units

c. 5. Sq. units

d. none of these

9. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}$: 1, then the angle of elevation of the sun has measure.

a. 45°

b. 30°

c. 90°

d. 60°

10. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be

a. 12cm

b. 10cm

c. 13cm

d. 5cm

11. The total surface area of a hemi-sphere is how much times the square of its radius.

b. 4π

c. 3 π

12. A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is

a. 3/10

b. 7/10

d. 7/9

13. The perimeter of a triangle formed by the points (0, 0) (1, 0) and (0, 1) is

c. $2 + \sqrt{2}$

d. 2- $\sqrt{2}$

14. The GCD of a^m, a^{m+1}, a^{m+2} is

d. 1

PART - II

Answer any 10 questions. Question No. 28 is compulsory.

 $10 \times 2 = 20$

15. If $A = \{1, 3, 5\}$ $B = \{2, 3\}$ then find A x B and B x A.

16. For the given relation $R = \{(1, 3), (2, 5), (4, 7), (5, 9), (3, 1)\}$ write the domain and Range.

17. If $800 = a^b \times b^a$ then find the value of a and b.

18. Find the square root

19. Determine the nature of the root of $x^2 - x - 1 = 0$.

20. If $\triangle ABC \sim \triangle DEF$ such that area of $\triangle ABC$ is 9cm^2 and the area of $\triangle DEF$ is 16cm^2 and BC = 2.1 cm. Find the length of EF.

21. Find the equation of the line passing through the point (3, -4) having slope = -5/7

22. Find the area of the triangle whose vertices are (-3, 5) (5, 6) and (5, -2). 23. From the top of a rock $50\sqrt{3}$ m high the angle of depression of a car on the ground is observed to be 30°.

Find the distance of the car from the rock. 24. Find the angle of elevation of the top of a tower from a point on the ground which is 30m away from the

foot of a tower of height $10 \sqrt{3}$ m.

- 25. Find the diameter of a sphere whose surface area is 154m².
- 26. Write the sample space for selecting two balls from a bag containing 6 balls numbered 1 to 6 using tree
- 27. In two concentric circles a chord of length 16cm of larger circle becomes tangent to the smaller circle whose radius is 6cm, Find the radius of the larger circle,

12 m

- 28. a, If the highest common factor of 210 and 55 is expressible in the form 55x 325 find x
 - b. The heights of two circular cones are in the ratio 1/2 and the perimeters of their bases are in the ratio 3/2
 - 4. Find the ratio of their volumes.

PART - III

Answer any 10 questions, Question No. 42 is compulsory.

$$10 \times 5 = 50$$

29. Let $A = \{x \in N \mid 1 < x < 4\}$, $B = \{x \in W \mid 0 \le x < 2\}$ and $C = \{x \in N \mid x < 3\}$, then verify that $A \times (B \cup C)$

$$= (A \times B) \cup (A \times C)$$

30. Let $X = \{1, 2, 3, 4, 5\}$ $Y = \{1, 3, 5, 7, 9\}$ which of the following are relation from X to Y?

- (i) $R_1 = \{(1, 3), (2, 4), (3, 5), (4, 6), (5, 7)\}$
- (ii) $R_2 = \{(1, 1)(2, 1)(3, 3)(4, 3)(5, 5)\}$
- (iii) $R_3 = \{(1,3)(2,5)(4,7)(5,6)(3,1)\}$
- 31. Use Euclid's Division Algorithm to find the highest common factor of 396, 504, and 636.
- 32. Find the square root of $37x^2 28x^3 + 4x^4 + 42x + 9$
- 33. If α and β are the $2x^2 7x + 5 = 0$ find the values of i) $\frac{1}{\alpha} + \frac{1}{\beta}$ (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
- 34. State and prove Thales theorem.
- 35. Find the area of the quadrilateral formed by the points (8, 6) (5, 11) (-5, 12) and (-4, 3).
- 36. A line makes positive intercepts on co-ordinate axes whose sum is 7 and its passes through (-3, 8) find its
- 37. From the top of the tower 60m high the angles of depression of the top and bottom of a vertical lamp post are observed to be 38° and 60° respectively. Find the height of the lamp post (tan 38° = 0.7813°, $\sqrt{3}$ =
- 38. A vessel is in the form of a hemispherical bowl mounted by a hollow cylinder. The diameter is 14cm and height of the vessel is 13cm. Find the capacity of the vessel.
- 39. If the circumference of a conical wooden piece is 484cm then find its volume when its height is 105cm.
- 40. A bag contains 5 red balls, 6 white balls, 7 green balls, 8 black balls. One ball is drawn at random from the bag. Find the probability that ball drawn is
 - (ii) black or red (i) white
- d. neithér white nor black c. not white
- 41. A-status 1.6m tall stands on the top of a pedestal from a point on the ground the angle of elevation of the top of the statue is 60 and from the same point the angle of elevation of the top of the pedestal is 40. Find the height of the pedestal. (tan 40 = 0.8391 $\sqrt{3} = 1.732$).

42. a. If
$$A = \frac{x}{x+1}$$
, $B = \frac{1}{x+1}$ prove that $\frac{(A+B)^2 + (A-B)^2}{A \div B} = \frac{2(x^2+1)}{x(x+1)^2}$

(OR)

b. Show that the angle bisectors of a triangle are concurrent.

$$2 \times 8 = 10$$

43. Draw a tangent to the circle from the point P having radius 3.6cm and centre at a point P is at the distance 7.2 cm from the centre.

b. construct a triangle similar to a given triangle PQR with its sides are equal to 2/3 of the corresponding sides of the triangle PQR (Scale factor 2/3 < 1).

44. a. Draw the graph of $x^2 + x - 12 = 0$ and state the nature of their solution.

b. Draw the graph y = (x-1)(x+3) and hence use it to solve $x^2 - x - 6 = 0$.

www.Padasalai.Not Sun Juition Center -9629216361 model question paper

STD: X

SU	B: MATHS		ART – I		MARKS: 100		
ĭ	Choose the correct answe		AKI – I		14 x1 =14		
	If $n(A \times B) = 6$ and $A = \{$						
	a 1	h 2	c. 3	d. 6			
2.	If 6 times of 6 th term of a	n A.P. is equal to 7 ti	intes the 7 th term,	then the 13 th term	of the A.P is		
	a. 0	b. 6	c. 7	d. 13	is A Dis		
3.	An A.P consists of 31 ter	ms. If its 16" term is	c. 31m	d. 31/2m	IIS A.P IS		
4	a. 16m The number of points of	b. 62m			the x-axis is		
4.	a. 0	b. 1	c. 0 or 1	$\frac{d}{d}$, $\frac{d}{d}$			
5.	If $(x-6)$ is the HCF of		kx - 6 then the val	ue of k is			
	a. 3	b. 5	c. 6	d. 8			
6	L = AI MAN L = 600 M		OR then the value	of \mathbb{R} is			
0.	In Δ LMN, $\underline{L} = 60^{\circ}$, $\underline{M} = 60^{\circ}$	50°. II ∆LWIN ~ДГ h 70°	c. 30°	d. 110°			
7	In a given figure ST Q	R. $PS = 2 \text{ cm} \text{ and } SC$) = 3cm. Then the	ratio of the area	of ΔPQR to the area		
•	of ΔPST is				$ \wedge^Q $		
	a. 25:4	b. 25:7					
	c. 25:11	d. 25:13	0) (0, 5) 1(5,0	, p	$\frac{r}{r}$		
8.	The area of triangle form	ned by the points (-5,	0), (0,-5) and (5,0	d. none o			
	a. 0 sq. units	b. 25 sq. units					
9.	The slope of the line is	$\frac{1}{\sqrt{3}}$ then slope of the	e perpendicular bis	sector of <i>PQ</i> is			
	a. $\sqrt{3}$	b $\sqrt{3}$	c. $\frac{1}{\sqrt{3}}$	d. 0			
10	If the ratio of the height	of a tower and the le	ngth of its shadov	v is $\sqrt{3}$: 1, then the	ne angle of elevation		
10	of the sun has measure.			(1997) 25년 125년 (1997) 127일 2018 - 128일 - 128일 (1997) 128일			
	a 45°	b. 30° .	c. 90°	d. 60°			
11.	The height of a right circ	cular cone whose rad	lius is 5 cm and sla	ant height is 13 cr	n will be		
	a 12cm	b. 10cm	c. 13cm	d. 5cm			
12.	The total surface area of	a cylinder whose rad	dius is 1/3 of its h	eight is			
	a. $\frac{9\pi h^2}{8}$ sq.uts	b $24\pi h^2$ sq.uts	c. $\frac{8\pi h^2}{}$ sq.ut	s d. $\frac{56\pi h^2}{}$ sq.uts			
			9 1	9 .			
13.	Which of the following i	s incorrect?					
	a. P(A)>1	b. $0 \le P(A) \le 1$	c. $P(\phi) = 0$	d. $P(A)+P(A)$)=1		
14.	The probability of gettin	g a job for a person	is $\frac{x}{3}$. If the proba	bility of not getti	ng the job $\frac{2}{3}$. Then th		
	value of x is						
,	a, 2	b. 1	c. 3	d. 1.5			
			PART – B				
11	Answer the following au	estions. Questions I	No. 28 is compuls	ory: 10 x 2	= 20		
15	I. Answer the following questions. Questions No. 28 is compulsory: $10 \times 2 = 20$ 5. If $A = \{2, -2, 3\}$, $B = \{1, -4\}$ then find (i) $A \times B$, (ii) $B \times A$						
16	Find all positive integers	which when divide	ed by 5 and leaves	remainder 2.	M		
17	Find the first terms and	common difference	of the AP, whose	n^{th} term is, tn = -	3 + 2n.		
18	Find the LCM of the exp	pression, $p^2 - 3p + 2$	$p^2 - 4$.				
19	Solve the quadratic equa	tion by factorization	n method $4x^2 - 7x$	c - 2 = 0.			
20	Is $\triangle ABC \sim \triangle PQC$? If	so find x.		-18			

(OR)

PART - III

 $10 \times 5 = 50$

(iv) atmost two tails

26. Two dice are rolled once. Find the probability of getting (i) a doublet (ii) the sum as 1

ii) P (not B).

29. If $A = \{0, 1, 2\}$, $B = \{2, 3, 4\}$, $C = \{3, 5\}$ verify $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

31. If ratio of 6th and 8th term of an A.P is 7:9. Find the ratio of 9th term to 13th term.

30. If $a_1 = 1$, $a_2 = 1$ and $a_n = 2a_{n-1} + a_{n-2}$, $n \ge 3$, $n \in \mathbb{N}$, then find first six terms of the sequence.

35. Find the area of the quadrilateral whose vertices are (-9, 0), (-8, 6) (-1, -2) and (-6, -3).

36. If the points A (2,2), B(-2, -3), C(1, -3), D(x, y) form a parallelogram then find the values of x and y. 37. The top of a 15m high tower makes an angle of elevation of 60° with the bottom of an electronic pole and angle of elevation of 30° with the top of the pole. What is the height of the electric pole? 38. An aeroplane at an attitude of 1800m finds that two boats are sailing towards it in the same directions. The angle of depression of the boats as observed from the aeroplane is 60° and 30° respectively. Find

39. A solid iron cylinder has T.S.A of 1848 m². Its C.S.A. is five - sixth of its total surface Area. Find the

27. A and B are two events such that P(A) = 0.42 P(B) = 0.48 then find

III. Answer the following questions. Question No. 42 is compulsory.

(i) all heads (ii) atleast one tail (iii) atmost one head 41. Represent the given relation by

radius and height of the cylinder.

i) P(not A)

32. Solve the linear equations.

x+y+z=52x - y + z = 9x - 2y + 3z = 10

28. Find the 19th term of an Ap, -11, -15, -19,

Find the square root of $4x^2 + 20x + 25$.

33. Find the square root of $4x^{24}$ $28x^{3} + 37x^{2} + 42x + 9$. 34. State and prove Basic Proportionality Theorem.

the distance between the two boats. ($\sqrt{3} = 1.732$)

a. An arrow diagram

b. A graph

c. A set in roster form

 $R = \{(x, y) / y = x + 3, x, y \text{ are natural numbers} < 10\}$

40. Three fair coins are tossed together. Find the probability of getting.

42 a Find the G.C.D of the polynomials. $x^4 + 3x^3 - x - 3$, $x^3 + x^2 - 5x + 3$

(OR)

b. Show that the given points form a right angled triangle and check whether they satisfies Pythagoras Theorem. A (1, -4), B(2, -3), C(4, -7)

PART - IV

IV. Answer the following questions: $2 \times 8 = 16$

43. Draw the two tangents from a point which is 5cm away from the centre of a circle of radius 3cm. Also measure the Length of the tangents.

(OR)

Construct \triangle PQR, such that QR = 6.5 cm, $P = 60^{\circ}$ and the attitude from P to QR is of length 4.5 cm.

44. Graph the following quadratic equation and state the nature of solution $x^2 - 9 = 0$

Draw the graph of $y = x^2 - 4$ and hence solve $x^2 - x - 12 = 0$.

Kindly send me your district question papers to our whatsapp number: 7358965593