SUN TUITION CENTER

Poon thotta pathai Hindu mission Hospital opposite villupuram

Cell: 9629216361, 8667807693.

ONE MARK QUESTION BANK

10th & +2 Admission going on....

Life is a good circle,

You choose the best radius

1.RELATIONS AND FUNCTIONS

1	. If $n(A \times B) =$	6 and $A = \{1, 3\}$	$\}$ then $n(B)$ is	
	(1) 1	(2) 2	(3) 3	(4) 6
2.	$A = \{a, b, p\}, B = \{2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	$\{2,3\}, C = \{p,q,r,s\} $ t	then $n[(A \cup C) \times B]$ is	
	(1) 8	(2) 20	(3) 12	(4) 16
3.	If $A = \{1, 2\}$, $B = \{1, 2\}$ following statement		and $D = \{5, 6, 7, 8\}$ the	en state which of the
	$(1) (A \times C) \subset (B \times D)$))	(2) $(B \times D) \subset (A \times C)$) www.padasara
	$(3)(A\times B)\subset (A\times D)$		$(4) (D \times A) \subset (B \times A)$)
4.	If there are 1024 rel elements in B is	ations from a set A :	$= \{1, 2, 3, 4, 5\}$ to a set	B, then the number of
	(1) 3	(2) 2	(3) 4	(4) 8
5.	The range of the rel	ation $R = \{(x, x^2) \mid x \in \mathbb{R}^n : x \in \mathbb{R}^n \}$	x is a prime number le	ess than 13} is
	(1) {2,3,5,7}	(2) {2,3,5,7,11}		
	(3) {4,9,25,49,121}	(4) {1,4,9,25,49,12	i}	
6.	If the ordered pairs	(a+2,4) and $(5,2a)$	(a, b) are equal then (a, b)	b) is
	(1)(2,-2)	(2) (5,1)	(3) (2,3)	(4) (3, -2)
7.	Let $n(A) = m$ and n be defined from A t		otal number of non-er	npty relations that can
	(1) m^n	(2) n^m	(3) $2^{mn}-1$	$(4) 2^{mn}$
8.	If $\{(a,8),(6,b)\}$ repre	sents an identity fun	ction, then the value of	a and b are respectively
	(1) (8,6)	(2) (8,8)	(3) (6,8)	(4) (6,6)
9.	Let $A = \{1, 2, 3, 4\}$ a $f = \{(1, 4), (2, 8), (3, 4)\}$		A function $f: A \to B$ gi	ven by
	(1) Many-one fund	ction	(2) Identity funct	ion
	(3) One-to-one fu	inction	(4) Into function	
10.	If $f(x) = 2x^2$ and g	$g(x) = \frac{1}{3x}$, Then $f \circ$	g is	
	(1) $\frac{3}{2x^2}$	$(2)\frac{2}{3x^2}$	(3) $\frac{2}{9x^2}$	$(4)\frac{1}{6x^2}$

11.	If $f: A \to B$ is a	bijective function a	and if $n(B) = 7$, then n	(A) is equal to
	(1) 7		(3) 1	(4) 14
12.	Let f and g be t	wo functions given l	by	
	$f = \{(0,1), (2,0),$	(3,-4),(4,2),(5,7)		
	$g = \{(0,2), (1,0),$	$(2,4),(-4,2),(7,0)$ } th	hen the range of $f \circ g$ is	S
	(1) {0,2,3,4,5}	(2) {-4,1,0,2,7}	(3) {1,2,3,4,5}	(4) {0,1,2}
13.	Let $f(x) = \sqrt{1+}$	x^2 then		
	$(1) \ f(xy) = f(x).$		$(2) f(xy) \ge f(x).f(x)$	(y)
	$(3) f(xy) \le f(x).$	f(y)	(4) None of these	2
14.	If $g = \{(1,1), (2,3)\}$ α and β are	(3,5),(4,7) is a fur	nction given by $g(x) = 0$	$\alpha x + \beta$ then the values of
	(1) $(-1,2)$	(2)(2,-1)	(3) (-1, -2)	(4) (1,2)
15.	$f(x) = (x+1)^3 -$	$(x-1)^3$ represents a	function which is	
	(1) linear	(2) cubic	(3) reciprocal	(4) quadratic
	SUN	TUITION CEN	ITER - 96292163	861
			and Sequence	
1	VWWW.	W	WW. Co	nd <i>b</i> , there exist unique
			where r must satisfy.	na o, there exist unique
			(3) $0 \le r < b$	$(4) 0 < r \leq b$
2.	Using Euclid's div	rision lemma, if the o	cube of any positive int	eger is divided by 9 then
	the possible rema		(2) 0 1 0	(4) 1 0 5
	(1) 0, 1, 8	(2) 1, 4, 8	(3) 0, 1, 3	(4) 1, 3, 5
		480a94 <u> </u>		17, then the value of m is
	(1) 4	(2) 2	(3) 1	(4) 3
4.	The sum of the ex	xponents of the prin	ne factors in the prime	factorization of 1729 is
	(1) 1	(2) 2	(3) 3	(4) 4
5.	The least number	that is divisible by	all the numbers from 1	to 10 (both inclusive) is
	(1) 2025	(2) 5220	(3) 5025	(4) 2520

6.	$7^{4k} \equiv _{}$ (mo	d 100)		www.padasalai.N
asa	(1) 1		(3) 3	(4) 4
7.	Given $F_1 = 1$, F_2	$F_n = 3$ and $F_n = F_{n-1}$	$+F_{n-2}$ then F_{5} is	
	(1)3	(2)5	(3)8	(4)11
8.		f an arithmetic prog lowing will be a te		e common difference is 4.
	(1) 4551	(2) 10091	(3) 7881	(4) 13531
9.	If 6 times of 6 th ter	m of an A.P is equal	to 7 times the 7 th term, the	n the 13 th term of the A.P. is
	(1) 0	(2) 6	(3) 7	(4) 13
10.	An A.P consists this A.P. is			e sum of all the terms of
	(1) 16 m	(2) 62 m	(3) 31 m	(4) $\frac{31}{2}$ m
11.			he common difference i n to be equal to 120?	s 4. How many terms of
	(1) 6	(2) 7	(3) 8	(4) 9
12.	If $A = 2^{65}$ and E	$B = 2^{64} + 2^{63} + 2^{62} + 2^{64}$	$+2^{0}$ which of the follo	owing is true?
	(1) B is 2^{64} more	than A	(2) A and B are e	equal
	(3) B is larger th	an A by 1	(4) A is larger tha	an <i>B</i> by 1
13.	The next term	of the sequence $\frac{3}{16}$	$\frac{1}{8}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots $ is	
	$(1) \frac{1}{24}$	(2) $\frac{1}{27}$	(3) $\frac{2}{3}$	$(4) \frac{1}{81}$
14.	If the sequence (1) a Geometric	2.5.67 d 120 1	.P. then the sequence t_6 (2) an Arithm	t_{12}, t_{18}, \dots is etic Progression
			ssion nor a Geometric I	
	(4) a constant s			Padasalai.Net
15.	The value of (1	$3^3 + 2^3 + 3^3 + \dots + 3^3$	$(15^3) - (1+2+3+\cdots+1)$	15) is
	(1) 14400	(2) 14200	(3) 14280	(4) 14520

3. ALGEBRA

- 1. A system of three linear equations in three variables is inconsistent if their planes
 - (1) intersect only at a point

- (2) intersect in a line
- (3) coincides with each other
- (4) do not intersect
- The solution of the system x + y 3x = -6, -7y + 7z = 7, 3z = 9 is
 - (1) x = 1, y = 2, z = 3

(2) x = -1, y = 2, z = 3

- (3) x = -1, y = -2, z = 3
- (4) x = 1, y = 2, z = 3
- 3. If (x-6) is the HCF of $x^2-2x-24$ and x^2-kx-6 then the value of k is
 - (1) 3

- (2)5
- (3)6

(4) 8

- 4. $\frac{3y-3}{u} \div \frac{7y-7}{3u^2}$ is

- (1) $\frac{9y}{7}$ (2) $\frac{9y^3}{(21y-21)}$ (3) $\frac{21y^2-42y+21}{3y^3}$ (4) $\frac{7(y^2-2y+1)}{y^2}$

- 5. $y^2 + \frac{1}{x^2}$ is not equal to

 - (1) $\frac{y^4 + 1}{y^2}$ (2) $\left[y + \frac{1}{y}\right]^2$
- (3) $\left(y \frac{1}{y}\right)^2 + 2$ (4) $\left(y + \frac{1}{y}\right)^2 2$

- 6. $\frac{x}{x^2 25} \frac{8}{x^2 + 6x + 5}$ gives
 - (1) $\frac{x^2-7x+40}{(x-5)(x+5)}$

(2) $\frac{x^2 + 7x + 40}{(x-5)(x+5)(x+1)}$

(3) $\frac{x^2 - 7x + 40}{(x^2 - 25)(x + 1)}$

- (4) $\frac{x^2+10}{(x^2-25)(x+1)}$
- The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$ is equal to
 - (1) $\left| \frac{16x^2z^4}{5u^2} \right|$ (2) $\left| \frac{16y^2}{x^2z^4} \right|$ (3) $\left| \frac{16y}{5xz^2} \right|$

- $(4) \left| \frac{16xz^2}{5u} \right|$
- Which of the following should be added to make $x^4 + 64$ a perfect square
 - $(1) 4x^2$

(2) $16x^2$

(3) $8x^2$

9.	The solution of $(2$	$(x-1)^2 = 9$ is	equal	to		WV	ww.padasalai.N
	(1) -1	(2) 2	1	(3)	-1, 2	(4) None	e of these
10.	The values of a an	d b if $4x^4 - 2$	$24x^{3} + 7$	$76x^2 + ax$	+b is a per	rfect square ar	·e
	(1) 100,120						
11.	If the roots of the equation $qx^2 + px$					squares of the	roots of the
	(1) A.P	(2) G.P		(3) E	Both A.P an	$\operatorname{nd} G.P \qquad (4)$	none of these
12.	Graph of a linear p	oolynomial i	s a				
	(1) straight line	(2) circle		(3) p	arabola	(4) hype	rbola
13.	The number of po X axis.	ints of inter	section	of the qu	adratic po	lynomial $(x +$	2)2 with the
	(1) 0			10	or 1		
		1	3 5	7			
14.	For the given mate	$\operatorname{rix} \mathbf{A} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$	4 6 11 13	8 the 15	order of th	e matrix A is	
	(1) 2×3	(2) 3×2		(3) 3	3×4	(4) 4×3	
15.	If A is a 2×3 mat	rix and B is	a 3×4	matrix, l	now many o	columns does	AB have
	(1) 3	(2) 4		(3) 2	isalai.Net	(4) 5	
16.	If number of co.	lumns and r	ows ar	e not equ	ıal in a mat	trix then it is	said to be a
	(1) diagonal ma	trix		(:	2) rectangu	ılar matrix	
	(3) square matri	ix		(4) identity	matrix	
17.	Transpose of a c	column matı	ix is				
	(1) unit matrix			(:	2) <mark>d</mark> iagonal	l matrix	
	(3) column mat	rix		(4) row mat	rix	
18.	Find the matrix	X if $2X +$	$\begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} =$	$= \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$			
	$(1) \begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$	$(2) \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	(;	$3) \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$	(4)	$\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$
	SOM Control	N ČENT	EtiRns &	962921	maid id 1 Pada 0301 , 0	86780769	3°.

www.padasalai.Net

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^2 (ii) B^2 (iii) AB (iv) BA$$

(1) (i) and (ii) only

(2) (ii) and (iii) only

(3) (ii) and (iv) only

- (4) all of these
- 20. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 1 \\ -2 & 5 \end{bmatrix}$. Which of the following statements

are correct? (i)
$$AB + C = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$$
 (ii) $BC = \begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$

(iii)
$$BA + C = \begin{bmatrix} 2 & 5 \\ 3 & 0 \end{bmatrix}$$
 (iv) $ABC = \begin{bmatrix} -8 & 20 \\ -8 & 13 \end{bmatrix}$

(1) (i) and (ii) only

(2) (ii) and (iii) only

(3) (iii) and (iv) only

(4) all of these

SUN TUITION CENTER - 9629216361, 8667807693. **4.GEOMETRY**

If in triangles ABC and EDF, $\frac{AB}{DE} = \frac{BC}{ED}$ then they will be similar, when

- (1) $\angle B = \angle E$ (2) $\angle A = \angle D$ (3) $\angle B = \angle D$
- (4) / A = / F
- 2. In ΔLMN , $\angle L = 60^{\circ}$, $\angle M = 50^{\circ}$. If $\Delta LMN \sim \Delta PQR$ then the value of $\angle R$ is
 - $(1) 40^{\circ}$
- $(2) 70^{\circ}$

- $(3) 30^{\circ}$
- (4) 110°
- 3. If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$ and AC = 5 cm, then AB is
 - (1) 2.5 cm
- (2) 5 cm
- (3) 10 cm
- (4) $5\sqrt{2}$ cm
- 4. In a given figure $ST \parallel QR$, PS = 2 cm and SQ = 3 cm. Then the ratio of the area of $\triangle PQR$ to the area of $\triangle PST$ is
 - (1) 25:4
- (2) 25 : 7

Kindly Send me your district Questions & Keys to email id - Padasalai.net@gmail.com

lasa	ilai.Net	dasalal.Ne	www.padasalal.Nev	padasalal.Ne.
5.		two similar triangl = 10 cm, then the l		www.padasalai.Net are 36 cm and 24 cm
	(1) $6\frac{2}{3}$ cm	(2) $\frac{10\sqrt{6}}{3}$ cm	(3) $66\frac{2}{3}$ cm	(4) 15 cm
6.	If in $\triangle ABC$, DE length of AE is	$\parallel BC$. $AB = 3.6$ c	m, $AC = 2.4$ cm and	AD = 2.1 cm then the
	(1) 1.4 cm	(2) 1.8 cm	(3) 1.2 cm	(4) 1.05 cm
_	1 1 1 2 1 5 1	3 1	0 TC 4 D D D D D	1.00

- (1) 6 cm
- (2) 4 cm
- (3) 3 cm
- (4) 8 cm
- In the adjacent figure $\angle BAC = 90^{\circ}$ and $AD \perp BC$ then
 - $(1) BD \cdot CD = BC^2 \qquad (2) AB.AC = BC^2$

 - $(3) BD \cdot CD = AD^2 \qquad (4) AB \cdot AC = AD^2$

- 9. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?
 - (1) 13 m
- (2) 14 m
- (3) 15 m
- (4) 12.8 m
- In the given figure, PR = 26 cm, QR = 24 cm, $\angle PAQ = 90^{\circ}$, PA = 6 cm and QA = 8 cm. Find $\angle PQR$
 - (1) 80°
- $(2)~85^{\circ}$
- $(3) 75^{\circ}$

- A tangent is perpendicular to the radius at the
 - (1) centre
- (2) point of contact (3) infinity
- (4) chord
- 12. How many tangents can be drawn to the circle from an exterior point?
 - (1) one
- (2) two
- (3) infinite
- (4) zero
- 13. The two tangents from an external points P to a circle with centre at O are PA and PB. If $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is
 - $(1)\ 100^{\circ}$
- (2) 110°
- (3) 120°
- (4) 130°

15. In figure if PR is tangent to the circle at P and O is the centre of the circle, then $\angle POQ$ is

- (1) 120°
- $(2)\ 100^{\circ}$
- (3) 110°
- $(4) 90^{\circ}$

SUN TUITION CENTER - 9629216361, 8667807693.

5. COORDINATE GEOMETRY

1.	The area of triang	gle formed by the poin	nts (-5,0) , (0,-5) ai	(-5,0), $(0,-5)$ and $(5,0)$ is		
	(1) 0 sq.units	(2) 25 sq.units	(3) 5 sq.units	(4) none of these		

- 2. A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the *Y* axis. The path travelled by the man is
 - (1) x = 10
- (2) y = 10
- (3) x = 0
- (4) y = 0

- 3. The straight line given by the equation x = 11 is
 - (1) parallel to X axis

- (2) parallel to Y axis
- (3) passing through the origin
- (4) passing through the point (0,11)
- 4. If (5,7), (3,p) and (6,6) are collinear, then the value of p is
 - (1) 3

(2)6

(3)9

- (4) 12
- 5. The point of intersection of 3x y = 4 and x + y = 8 is
 - (1)(5,3)
- (2)(2.4)
- (3)(3,5)
- (4)(4,4)
- 6. The slope of the line joining (12,3), (4,a) is $\frac{1}{8}$. The value of 'a' is
 - (1) 1

(2)4

(3) -5

- (4)2
- 7. The slope of the line which is perpendicular to line joining the points (0,0) and (-8,8) is
 - (1) -1

(2) 1

 $(3) \frac{1}{3}$

(4) -8

Kindly Send me your district Questions & Keys to email id - Padasalai.net@gmail.com

	(1) $\sqrt{3}$	$(2) -\sqrt{3}$	(3) $\frac{1}{\sqrt{3}}$	(4) 0	
9.			ate is 8 and B is a poin	nt on the X axis whose	
	(1) 8x + 5y = 40	(2) 8x - 5y = 40	(3) $x = 8$	(4) $y = 5$	
0.	The equation of a $7x - 3y + 4 = 0$ is	line passing through	the origin and per	pendicular to the line	
	(1) 7x - 3y + 4 = 0	$(2) \ 3x - 7y + 4 = 0$	(3) $3x + 7y = 0$	$(4) \ 7x - 3y = 0$	
1.	Consider four straig	tht lines			
	(i) $l_1: 3y = 4x + 5$	(ii) $l_2: 4y = 3x - 1$	(iii) $l_3: 4y + 3x = 7$	(iv) $l_4: 4x + 3y = 2$	
	Which of the follow	ing statement is not	true ?		
	(1) l_1 and l_3 are	perpendicular	(2) l_1 and l_4 are no	ot parallel	
	(3) l_2 and l_4 are no	ot perpendicular	(4) l_2 and l_3 are n	ot parallel	
12.	A straight line has e	quation $8y = 4x + 21$. Which of the follow	ving is true	
	(1) The slope is 0.5	and the y intercept is	2.6		
	(2) The slope is 5 an	nd the y intercept is 1	.6		
	(3) The slope is 0.5	and the y intercept is	1.6		
	(4) The slope is 5 an	and the y intercept is 2	2.6		
13.	. When proving that a quadrilateral is a trapezoid, it is necessary to show (1) Two lines are parallel.				
	(2) Two parallel and	l two non-parallel sid	les.		
	(3) Opposite sides a	re parallel.			
	(4) All sides are of e	qual length.			
14.	When proving that a (1) The slopes of all		arallelogram by using	slopes you must find	
	(2) The slopes of an	y one pair of opposit	e sides		
	(3) The lengths of a	ll four sides			
	(4) Both the lengths	and slopes of all for	ır sides		
15.	(2, 1) is the point of	f intersection of two	lines.		
	(1) $x - y - 3 = 0$; 33		(2) $x + y = 3$; $3x +$	y = 7	
	(3) $3x + y = 3$; $x +$	y = 7	(4) $x + 3y - 3 = 0$;	x - y - 7 = 0	

SUNTENTER & 9629246361ada 8667807693.

8. If slope of the line PQ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of PQ is

(4) 0

 $(4) \cot \theta$

1. The value of $\sin^2 \theta + \frac{6.\text{TRIGONOMETRY}}{1 + \tan^2 \theta}$ is equal to

(3) $\cot^2 \theta$

(3) $\sin \theta$

(1) $\tan^2 \theta$

(1) $\sec \theta$

(2) 1

(2) $\cot^2 \theta$

2. $\tan \theta \csc^2 \theta - \tan \theta$ is equal to

3.	If $(\sin \alpha + \csc \alpha)^2$ equal to	$+(\cos\alpha+\sec\alpha$	$(\alpha)^2 = k + \tan^2 \alpha + \cot^2 \alpha$, then the value of k is
	(1) 9	(2) 7	(3) 5	(4) 3
4.	If $\sin \theta + \cos \theta = a$	and $\sec \theta + \csc \theta$	$\mathrm{ec} heta=b$, then the value o	f $b(a^2-1)$ is equal to
	(1) $2a$	(2) 3 a	(3) 0	(4) 2 a b
5.	If $5x = \sec \theta$ and $\frac{5}{3}$	$\frac{5}{c} = \tan \theta$, then	$x^2 - \frac{1}{x^2}$ is equal to	
	(1) 25	(2) $\frac{1}{25}$	(3) 5	(4) 1
6.	If $\sin \theta = \cos \theta$, the	$\tan^2 \theta + \sin^2 \theta$	$\theta - 1$ is equal to	
	(1) $\frac{-3}{2}$	(2) $\frac{3}{2}$	(3) $\frac{2}{3}$	$(4) \frac{-2}{3}$
7.	If $x = a \tan \theta$ and	$y = b \sec \theta$ then		
	$(1) \ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$	$(2) \ \frac{x^2}{a^2} - \frac{y^2}{b^2} =$	$(3) \ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$(4) \ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$
8.	$(1 + \tan \theta + \sec \theta)(1$	$+\cot\theta-\mathrm{cosec}\theta$) is equal to	
	(1) 0	(2) 1	(3) 2	(4) -1
9.	$a \cot \theta + b \csc \theta =$	$= p$ and $b \cot \theta$	$+a \csc \theta = q $ then p^2 –	q^2 is equal to
	(1) $a^2 - b^2$	(2) $b^2 - a^2$	(3) $a^2 + b^2$	(4) $b - a$
10.	If the ratio of the angle of elevation			shadow is $\sqrt{3}:1$, then the
	(1) 45°	(2) 30°	$(3) 90^{\circ}$	$(4) 60^{\circ}$
11.	The second of th	metres above the	he first, the depression	ne same level as its foot. At of the foot of the tower is
	$(1)\sqrt{3} b$ Kindly Send me v	(2) $\frac{b}{3}$	(3) $\frac{b}{2}$ ons & Keys to email id - Pao	$(4) \frac{b}{\sqrt{3}}$ lasalai net@gmail.com
cak		The district Questi	The state of the s	Similar C Billion

12.		eight. Its shadow is x been 30° , then x is eq		the sun's all wurde is alai Ne
	(1) 41.92 m	(2) 43.92 m	(3) 43 m	(4) 45.6 m
13.	a multistoried bui	lding are 30° and 60°		uilding from the top of ght of the multistoried is
	$(1)\ 20,\ 10\sqrt{3}$	(2) 30, $5\sqrt{3}$	(3) 20, 10	$(4)\ 30,\ 10\sqrt{3}$
14.	person is double t feet an observer fi	hat of the other. If fr	om the middle point o tions of their tops to b	d the height of the first of the line joining their e complementary, then
	$(1) \sqrt{2} x$	$(2) \frac{x}{2\sqrt{2}}$	$(3) \ \frac{x}{\sqrt{2}}$	(4) 2 <i>x</i>
15.	Charles and Charle		er Ber i den er i den	we a lake is β . The angle of location of the cloud
	$(1) \frac{h(1+\tan\beta)}{1-\tan\beta}$	$(2) \frac{h(1-\tan\beta)}{1+\tan\beta}$	(3) $h \tan(45^\circ - \beta)$	(4) none of these
		7. MENS	<u>URATION</u>	
1.	. The curved so	urface area of a ri		of height 15 cm and
	(1) $60\pi \text{ cm}^2$		(3) c) 120π cm ²	(4) $136\pi \text{ cm}^2$
2.	The state of the s	oheres of same base r surface area of this r	200	ed together along their
	$(1) 4\pi r^2$ sq. units	(2) $6\pi r^2$ sq. units	(3) $3\pi r^2$ sq. units	(4) $8\pi r^2$ sq. units
3.	The height of a righ	t circular cone whose	radius is 5 cm and slan	t height is 13 cm will be
	(1) 12 cm	(2) 10 cm	(3) 13 cm	(4) 5 cm
4.	then the ratio of th			eping the same height, the volume of original
	cylinder is (1) 1:2	(2) 1:4	(3) 1:6	(4) 1:8

Kindly Send me your district Questions & Keys to email id - Padasalai.net@gmail.com

5.	The total surface a $(1)\frac{9\pi h^2}{8}$ sq.units	rea of a cylinder who	se radius is $\frac{1}{3}$ of its horizontal (2) $24\pi h^2$ sq.units	www.padasalai.Ne eight is
	$(3)\frac{8\pi h^2}{q}$ sq.units		$(4)\frac{56\pi h^2}{q}$ sq.units	
6.	Occupied and the state of the contract	der, the sum of the ex s height is 20 cm, the		radii is 14 cm and the
	(1) $5600\pi \text{ cm}^3$	(2) 11200π cm ³	(3) 56π cm ³	(4) 3600π cm ³
	If the radius of the volume is	ne base of a cone is t	ripled and the heigh	at is doubled then the
	(1) made 6 times	(2) made 18 times	(3) made 12 times	(4) unchanged
8.	The total surface a	rea of a hemi-sphere i	is how much times th	e square of its radius.
	(1) π	(2) 4π	(3) 3π	$(4)2\pi$
9.	A solid sphere of radius. The heigh		and cast into a shape o	of a solid cone of same
	(1) $3x \text{ cm}$	(2) $x \text{ cm}$	(3)4x cm	(4)2x cm
10.	AGAIN PARKETS AND	tht circular cone is of holomore of the frustum	, The	of its ends as 8cm and
	(1) 3328π cm ³	(2) $3228\pi \text{ cm}^3$	(3) 3240π cm ³	(4) 3340π cm ³
11.	A shuttle cock use	ed for playing badmint	on has the shape of th	ne combination of
	(1) a cylinder and (3) a sphere and a		(2) a hemisphere an(4) frustum of a con	
12.	A spherical ball of radius r_2 units. The		elted to make 8 new	identical balls each of
	(1) 2:1	(2) 1:2	(3) 4:1	(4) 1:4
13.		m³) of the greatest sph adius 1 cm and height		from a cylindrical log
	$(1) \frac{4}{\pi}$	$(2)\frac{10}{\pi}$	(3) 5π	$(4)\frac{20}{\pi}\pi$

14. The height and radius of the cone of which the frustum is a part are h_1 units and r_1 units respectively. Height of the frustum is h_2 units and radius of the smaller base is r_2 units. If $h_2:h_1=1:2$ then $r_2:r_1$ is

(1) Kindly Send me your district Questions & Keys to email id - Padasalai.net @ginait.com

15.	. The ratio of the v	volumes of a cylinde e height is	r, a cone and a sph	www.padasalai.Net ere, if each has the same
	(1) 1:2:3	(2) 2:1:3	(3) 1:3:2	(4) 3:1:2
	8.5	STATISTICS A	ND PROBABIL	<u>ITY</u>
1.	Which of the fo	llowing is not a n	neasures of disper	rsion?
	(1) Range		(2) Stan	dard deviation
	(3) Arithmetic	mean	(4) Varia	ance
2.	The range of the dat	ta 8, 8, 8, 8, 8 8 is	S	
	(1) 0	(2) 1	(3) 8	(4) 3
3.	The sum of all devia	ations of the data from	n its mean is	
	(1) Always positive	(2) always negative	(3) zero	(4) non-zero integer
4.	The mean of 100 of squares of all deviat		their standard devi	ation is 3. The sum of
	(1) 40000	(2) 160900	(3) 160000	(4) 30000
5.	Variance of first 20	natural numbers is		
	(1) 32.25	(2) 44.25	(3) 33.25	(4) 30
6.	The standard deviation variance is	tion of a data is 3. If	each value is multip	lied by 5 then the new
	(1) 3	(2) 15	(3) 5	(4) 225
7.	If the standard devia $3z + 5$ is	ation of x , y , z is p the	en the standard devia	tion of $3x + 5$, $3y + 5$,
	(1) $3p + 5$	(2) 3 <i>p</i>	(3) $p + 5$	(4) 9p + 15
8.	If the mean and coed deviation is	efficient of variation of	of a data are 4 and 87	7.5% then the standard
	(1) 3.5	(2) 3	(3) 4.5	(4) 2.5
9.	Which of the follow			
	(1) $P(A) > 1$	(2) $0 \le P(A) \le 1$	(3) $P(\phi) = 0$	(4) $P(A) + P(\overline{A}) = 1$
10.	The probability a reand r green marbles		random from a jar c	ontaining p red, q blue
	$(1)\frac{q}{p+q+r}$	$(2) \frac{p}{p+q+r}$	$(3) \frac{p+q}{p+q+r}$	$(4) \ \frac{p+r}{p+q+r}$

SUNTEMENTER & 9629246364448667807693.

11.		ected at random from a b number chosen is less tha		that the digit at units place
	10	10	(3) $\frac{3}{9}$	(4) $\frac{7}{9}$
12.	The probability is $\frac{2}{2}$ the	ility of getting a job for a x is	person is $\frac{x}{3}$. If the pr	obability of not getting the
	(1) 2	n the value of x is (2) 1	(3) 3	(4) 1.5
13.	Kamalam w	vent to play a lucky draw	contest. 135 tickets of	f the lucky draw were sold.
	If the proba	ability of Kamalam winns	ing is $\frac{1}{9}$, then the nu	mber of tickets bought by
	(1) 5	(2) 10	(3) 15	(4) 20
14.		is chosen at random fro that the letter chosen pre		bets $\{a,b,,z\}$, then the
15.			15 notes of ₹500, and	(4) $\frac{3}{26}$ 25 notes of ₹200. One note te is either a ₹500 note or
	₹200 note?			
	(1) $\frac{1}{5}$	(2) $\frac{3}{10}$	(3) $\frac{2}{3}$	$(4) \frac{4}{5}$
	Sl	JN TUITI	ON CEN	ITER
	Poon tl	hotta pathai Hindu	mission Hospita	al opposite
		villupuram	_{kww} .padasalai.ivet	WWW.Padasalal.Net
		Cell: 9629216	5361 , 86678076	93.

Kindly Send me your district Questions & Keys to email id - Padasalai.net@gmail.com