# Sun Tuition Center - villupuram

10th Std | MATHEMATICS

poon thotta pathai hindu mission hospital opposite - villupuram

# 1. Relation and function

# **Worked Examples**

III If  $A = \{1, 3, 5\}$  and  $B = \{2, 3\}$  then

(i) find  $A \times B$  and  $B \times A$ .

(ii) Is  $A \times B \neq B \times A$ ? If not why?

Sol: Given that  $A = \{1, 3, 5\}$  and  $B = \{2, 3\}$   $A \times B = \{1, 3, 5\} \times \{2, 3\}$   $= \{(1, 2), (1, 3), (3, 2), (3, 3), (5, 2), (5, 3)\}$  ... (1)  $B \times A = \{2, 3\} \times \{1, 3, 5\}$  $= \{(2, 1), (2, 3), (2, 5), (3, 1), (3, 3), (3, 5)\}$  ... (2)

(iii) Show that  $n(A \times B) = n(B \times A) = n(A) \times n(B)$ 

From (1) and (2) we conclude that  $A \times B \neq B \times A$  as  $(1, 2) \neq (2, 1)$  and  $(1, 3) \neq (3, 1)$ , etc.

n(A) = 3; n(B) = 2

From (1) and (2) we observe that,

 $n(A \times B) = n(B \times A) = 6$ 

we see that,  $n(A) \times n(B) = 3 \times 2 = 6$  and

 $n(B) \times n(A) = 2 \times 3 = 6$ 

Hence,

 $n (A \times B) = n (B \times A) = n (A) \times n (B) = 6$ Thus,  $n (A \times B) = n (B \times A) = n (A) \times n (B).$ 

If  $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$  then find A and B.

**Sol:**  $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$ 

We have  $A = \{\text{set of all first co-ordinates}$  of elements of  $A \times B\}$ .

Therefore,  $A = \{3, 5\}$ 

B = {set of all second co-ordinates

of elements of  $A \times B$ }.

Therefore,  $B = \{2, 4\}$ 

Thus  $A = \{3, 5\}$  and  $B = \{2, 4\}$ .

Let  $A = \{x \in \mathbb{N} \mid 1 < x < 4\}$ ,  $B = \{x \in \mathbb{W} \mid 0 \le x < 2\}$  and  $C = \{x \in \mathbb{N} \mid x < 3\}$ . Then verify that

(i)  $A \times (B \cup C) = (A \times B) \cup (A \times C)$ 

(ii)  $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 

SoI: A =  $\{x \in \mathbb{N} \mid 1 < x < 4\} = \{2, 3\}$ B =  $\{x \in \mathbb{W} \mid 0 \le x < 2\} = \{0, 1\}$ C =  $\{x \in \mathbb{N} \mid x < 3\} = \{1, 2\}$ 

(i)  $A \times (B \cup C) = (A \times B) \cup (A \times C)$   $B \cup C = \{0, 1\} \cup \{1, 2\}$  $= \{0, 1, 2\}$ 

 $A \times (B \cup C) = \{2, 3\} \times \{0, 1, 2\}$ = \{(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)\} ... (1)

 $A \times B = \{2, 3\} \times \{0, 1\}$ 

 $= \{(2,0), (2,1), (3,0), (3,1)\}$ 

 $A \times C = \{2, 3\} \times \{1, 2\}$ 

 $=\{(2,1),(2,2),(3,1),(3,2)\}$ 

 $(A \times B) \cup (A \times C) = \{(2,0), (2,1), (3,0), (3,1)\}\$  $\cup \{(2,1), (2,2), (3,1), (3,2)\}$ 

 $(A \times B) \cup (A \times C) = \{(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)\}$  ... (2)

From (1) and (2),

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$  is verified.

(ii)  $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 

 $B \cap C = \{0, 1\} \cap \{1, 2\} = \{1\}$ 

 $A \times (B \cap C) = \{2, 3\} \times \{1\} = \{(2, 1), (3, 1)\} \dots (1)$ 

 $A \times B = \{2, 3\} \times \{0, 1\} = \{(2, 0), (2, 1), (3, 0), (3, 1)\}$ 

(2, 1), (3, 0), (3, 1)

 $A \times C = \{2 \times 3\} \times \{1, 2\}$ 

 $= \{(2,1), (2,2), (3,1), (3,2)\}$ 

 $(A \times B) \cap (A \times C) = \{(2,0), (2,1), (3,0), (3,1)\} \cap \{(2,1), (2,2), (3,1), (3,2)\}$ 

 $(A \times B) \cap (A \times C) = \{(2, 1), (3, 1)\}$  ... (2)

From (1) and (2),

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$  is verified.

Life is a good circle,

Kindly send megorialstre programme programme of the control of the

# Progress Check

1. For any two non-empty sets A and B,  $A \times B$  is called as \_\_\_\_\_

Cartesian Product

- 2. If  $n(A \times B) = 20$  and n(A) = 5 then n(B) is \_\_\_\_\_ Answip n(B) = 4
- 3. If  $A = \{-1, 1\}$  and  $B = \{-1, 1\}$  then geometrically describe the set of points of  $A \times B$ ANS  $A \times B = \{(-1, -1), (-1, 1), (1, -1), (1, 1)\}$

4. If A, B are the line segments given by the intervals (-4, 3) and (-2, 3) respectively, represent the cartesian product of A and B.

Arts: 
$$A \times B = \{(-4, -2), (-4, 3), (3, -2), (3, 3)\}$$

# Thinking Corner

1. When will  $A \times B$  be equal to  $B \times A$ ?

AND  $A \times B = B \times A$ , When A = B.

# **Exercise 1.1**

- 1. Find  $A \times B$ ,  $A \times A$  and  $B \times A$  if
  - (i)  $A = \{2, -2, 3\}$  and  $B = \{1, -4\}$
  - (ii)  $A = B = \{p, q\}$
  - (iii)  $A = \{m, n\}; B = \emptyset$ Sol:
    - (i)  $A=\{2, -2, 3\}$  and  $B=\{1, -4\}$   $A \times B = \{2, -2, 3\} \times \{1, -4\}$   $= \{(2, 1), (2, -4), (-2, 1),$   $(-2, -4), (3, 1), (3, -4)\}$ 
      - $A \times A = \{2, -2, 3\} \times \{2, -2, 3\}$
    - $= \{(2, 2), (2, -2), (2, 3), (-2, 2), (-2, -2), (-2, 3), (3, 2), (3, -2), (3, 3)\}$   $B \times A = \{1, -4\} \times \{2, -2, 3\}$   $= \{(1, 2), (1, -2), (1, 3), (-4, 2), (-4, -2), (-4, 3)\}$
    - (ii)  $A = B = \{p, q\}$   $A \times B = \{p, q\} \times \{p, q\}$   $= \{(p, p), (p, q), (q, p), (q, q)\}$ 
      - $A \times A = \{p, q\} \times \{p, q\}$   $= \{(p, p), (p, q), (q, p), (q, q)\}$   $B \times A = \{p, q\} \times \{p, q\}$   $= \{(p, p), (p, q), (q, p), (q, q)\}$
      - $\therefore$  A × B = A × A = B × A

Since A = B

(iii)  $A = \{m, n\}, B = \emptyset$ 

If either A or B are null sets, then  $A \times B$  will also be an empty set.

i.e., 
$$A = \phi \text{ (or) } B = \phi$$
  
then  $A \times B = \phi$ ,  $B \times A = \phi$   
and  $A \times A = \{m, n\} \times \{m, n\}$   
 $= \{(m, m), (m, n), (n, m), (n, n)\}$ 

2. Let  $A = \{1, 2, 3\}$  and  $B = \{x \mid x \text{ is a prime number less than } 10\}$ . Find  $A \times B$  and  $B \times A$ .

**Sol**: 
$$A = \{1, 2, 3\}; B = \{2, 3, 5, 7\}$$

$$A \times B = \{(1, 2), (1, 3), (1, 5), (1, 7), (2, 2), (2, 3), (2, 5), (2, 7), (3, 2), (3, 3), (3, 5), (3, 7)\}$$

$$B \times A = \{(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (5, 1), (5, 2), (5, 3), (7, 1), (7, 2), (7, 3)\}$$

3. If  $B \times A = \{(-2, 3), (-2, 4), (0, 3), (0, 4), (3, 3), (3, 4)\}$  find A and B.

**Sol**: From  $B \times A$ , All the first entries belong to the set B and all the second entries belong to A.

$$A = \{3, 4\}$$

$$B = \{-2, 0, 3\}$$

4. If  $A = \{5, 6\}$ ,  $B = \{4, 5, 6\}$ ,  $C = \{5, 6, 7\}$ , Show that  $A \times A = (B \times B) \cap (C \times C)$ .

**Sol**: 
$$A = \{5, 6\}, B = \{4, 5, 6\}, C = \{5, 6, 7\}$$

**LHS:** 
$$A \times A = \{5, 6\} \times \{5, 6\}$$

$$= \{(5,5), (5,6), (6,5), (6,6)\}$$

$$B \times B = \{4, 5, 6\} \times \{4, 5, 6\}$$

$$= \{(4,4), (4,5), (4,6), (5,4), (5,5), (5,6), (6,4), (6,5), (6,6)\}$$

RHS:

$$C \times C = \{5, 6, 7\} \times \{5, 6, 7\}$$

$$= \{(5,5), (5,6), (5,7), (6,5), (6,6), (6,7), (7,5), (7,6), (7,7)\}$$

$$(B\times B)\cap (C\times C) = \{(5, 5), (5, 6), (6, 5), (6, 6)\}$$

$$\therefore$$
 LHS = RHS

$$A \times A = (B \times B) \cap (C \times C)$$

Hence proved.

```
5. Given A = \{1, 2, 3\}, B = \{2, 3, 5\}, C = \{3, 4\}
   and D = \{1, 3, 5\}, check if
    (A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D) is true?
        Sol: A = \{1, 2, 3\}, B = \{2, 3, 5\}, C = \{3, 4\}, D = \{1, 3, 5\}
                          A \cap C = \{3\}
                          B \cap D = \{3, 5\}
           (A \cap C) \times (B \cap D) = \{3\} \times \{3, 5\}
                                    = \{(3,3),(3,5)\}
                                                                ....(1)
                           A \times B = \{(1, 2), (1, 3), (1, 5), (2, 2), \}
                                                (2, 3), (2, 5), (3, 2),
                                                        (3, 3), (3, 5)
                           C \times D = \{(3, 1), (3, 3), (3, 5), (4, 1), \}
                                                        (4, 3), (4, 5)
            (A \times B) \cap (C \times D) = \{(3, 3), (3, 5)\}
                                                                ....(2)
   From (1) and (2), it is clear that
           (A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)
                           Hence it is true.
```

- 6. Let  $A = \{x \in \mathbb{W} \mid x < 2\}, B = \{x \in \mathbb{N} \mid 1 < x \le 4\}$  and  $C = \{3, 5\}$ . Verify that
  - (i)  $A \times (B \cup C) = (A \times B) \cup (A \times C)$
  - (ii)  $A \times (B \cap C) = (A \times B) \cap (A \times C)$
  - (iii)  $(A \cup B) \times C = (A \times C) \cup (B \times C)$ Sol: Given  $A = \{x \in \mathbb{W} \mid x < 2\} \Rightarrow A = \{0, 1\}$  $B = \{x \in \mathbb{N} / 1 < x \le 4\} \Rightarrow B = \{2, 3, 4\}$  $C = \{3, 5\}$

(i) 
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
  
 $B \cup C = \{2, 3, 4, 5\}$   
 $A \times (B \cup C) = \{0, 1\} \times \{2, 3, 4, 5\}$   
 $= \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\} \dots (1)$   
 $A \times B = \{0, 1\} \times \{2, 3, 4\}$   
 $= \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}$   
 $A \times C = \{0, 1\} \times \{3, 5\}$   
 $= \{(0, 3), (0, 5), (1, 3), (1, 5)\}$   
 $(A \times B) \cup (A \times C) = \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\} \dots (2)$ 

From  $(1) \times (2)$ , it is clear that  $A \times (B \cup C) = (A \times B) \cup (A \times C)$ 

Hence verified.

(ii) 
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
  
 $A = \{0, 1\}, B = \{2, 3, 4\}, C = \{3, 5\}$   
 $B \cap C = \{3\}$   
 $A \times (B \cap C) = \{0, 1\} \times \{3\}$   
 $= \{(0, 3), (1, 3)\} \dots (1)$   
 $A \times B = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}$ 

 $A \times C = \{(0, 3), (0, 5), (1, 3), (1, 5)\}$  $(A \times B) \cap (A \times C) = \{(0, 3), (1, 3)\} \dots (2)$ 

From (1) and (2), it is clear that  $A \times (B \cap C) = (A \times B) \cap (A \times C)$ Hence verified.

(iii) 
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
  
 $A = \{0, 1\}, B = \{2, 3, 4\}, C = \{3, 5\}$   
 $(A \cup B) = \{0, 1, 2, 3, 4\}$   
 $(A \cup B) \times C = \{0, 1, 2, 3, 4\} \times \{3, 5\}$   
 $= \{(0, 3), (0, 5), (1, 3), (1, 5), (2, 3), (2, 5), (3, 3), (3, 5), (4, 3), (4, 5)\}$  ... (1)  
 $A \times C = \{0, 1\} \times \{3, 5\}$   
 $= \{(0, 3), (0, 5), (1, 3), (1, 5)\}$   
 $B \times C = \{2, 3, 4\} \times \{3, 5\}$   
 $= \{(2, 3), (2, 5), (3, 3), (3, 5), (4, 3), (4, 5)\}$   
 $(A \times C) \cup (B \times C) = \{(0, 3), (0, 5), (1, 3), (1, 5), (2, 3), (2, 5), (3, 3), (3, 5), (4, 3), (4, 5)\}$  ... (2)  
From (1) and (2), it is clear that  
 $(A \cup B) \times C = (A \times C) \cup (B \times C)$   
Hence verified.

- 7. Let A is the set of all natural numbers less than 8, B is the set of all prime numbers less than 8, C is the set of even prime number. Verify that
  - (i)  $(A \cap B) \times C = (A \times C) \cap (B \times C)$
  - (ii)  $A \times (B C) = (A \times B) (A \times C)$

**Sol**: Given: 'A' is the set of all natural numbers less than 8.

 $A = \{1, 2, 3, 4, 5, 6, 7\}$ 

'B' is the set of all prime numbers less than 8  $B = \{2, 3, 5, 7\}$ 

'C' is the set of all even prime number  $C = \{2\}$ 

(i) Verify

$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

$$A \cap B = \{2, 3, 5, 7\}$$

$$(A \cap B) \times C = \{2, 3, 5, 7\} \times \{2\}$$

$$= \{(2, 2), (3, 2), (5, 2), (7, 2)\} \dots (1)$$

$$A \times C = \{1, 2, 3, 4, 5, 6, 7\} \times \{2\}$$

$$= \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\}$$

$$B \times C = \{2, 3, 5, 7\} \times \{2\}$$

$$= \{(2, 2), (3, 2), (5, 2), (7, 2)\}$$

$$(A \times C) \cap (B \times C) = \{(2, 2), (3, 2), (5, 2), (7, 2)\}$$
From (1) and (2) it is clear that

From (1) and (2) it is clear that  $(A \cap B) \times C = (A \times C) \cap (B \times C)$ 

Hence verified.

(ii) Verify

$$A \times (B - C) = (A \times B) - (A \times C)$$
  
 $B - C = \{2, 3, 5, 7\} - \{2\} = \{3, 5, 7\}$ 

$$A \times (B - C) = \{1, 2, 3, 4, 5, 6, 7\} \times \{3, 5, 7\} \\ = \{(1, 3), (1, 5), (1, 7), (2, 3), (2, 5), (2, 7), (3, 3), (3, 5), (3, 7), (4, 3), (4, 5), (4, 7), (5, 3), (5, 5), (5, 7), (6, 3), (6, 5), (6, 7), (7, 2)\} \\ (A \times B) = \{1, 2, 3, 4, 5, 6, 7\} \times \{2, 3, 5, 7\} \\ = \{(1, 2), (1, 3), (1, 5), (1, 7), (2, 2), (2, 3), (2, 5), (2, 7), (3, 3), (3, 5), (3, 7), (4, 3), (4, 5), (4, 7), (5, 2), (5, 3), (5, 5), (5, 7), (6, 2), (6, 3), (6, 5), (6, 7), (7, 2), (7, 3), (7, 5), (7, 7)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (6, 3), (6, 5), (6, 7), (7, 3), (7, 5), (7, 7)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (7, 2), (7, 2), (7, 2), (7, 2), (7, 3), (7, 5), (7, 7)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\} \\ (A \times B) - (A \times C) = \{(1, 3), (1, 5), (1, 7), (2, 3), (2, 5), (2, 7), (3, 3), (3, 5), (3, 7), (4, 3), (4, 5), (4, 7), (5, 3), (5, 5), (5, 7), (6, 3), (6, 5), (6, 7), (7, 2), (7, 7)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\} \\ (A \times B) - (A \times C) = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6, 2), (6$$

#### RELATIONS

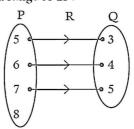
#### Key Points

- A and B are two non-empty sets having 'm' and 'n' number of elements respectively. Then A × B will have 'mn' elements. Total number of relations is  $2^{nm}$ .
- A relation from set A to a set B can be represented in any one of the following forms.
  - (i) Roster form
- (ii) Set-Builder form
- (iii) An Arrow diagram
- (iv) A set of ordered pairs
- A is a relation from set A to set B, then the set of all first components or co-ordinates of the ordered pairs belonging to R is called the domain of R, while the set of all second components or co-ordinates of the ordered pairs in R is called the range of R.
- $\Rightarrow$  In a non-empty set A, a relation from A to itself i.e., a subset of A  $\times$  A is called a relation on set A.

# **Worked Examples**

- Let  $A = \{3, 4, 7, 8\}$  and  $B = \{1, 7, 10\}$ . Which of the following sets are relations from A to B?
  - (i)  $\mathbb{R}_1 = \{(3, 7), (4, 7), (7, 10), (8, 1)\}$
  - (ii)  $\mathbb{R}$ , = {(3, 1), (4, 12)}
  - (iii)  $\mathbb{R}_3 = \{(3,7), (4,10), (7,7), (7,8), (8,11), (8,7), (8,10)\}$
  - Sol:  $A \times B = \{(3, 1), (3, 7), (3, 10), (4, 1), (4, 7), (4, 10), (7, 1), (7, 7), (7, 10), (8, 1), (8, 7), (8, 10)\}$
  - (i) We note that,  $\mathbb{R}_1 \subseteq A \times B$ . Thus,  $\mathbb{R}_1$  is a relation from A to B.
  - (ii) Here,  $(4,12) \in \mathbb{R}_2$ , but  $(4,12) \notin A \times B$ . So,  $\mathbb{R}_2$  is not a relation from A to B.
  - (iii) Here,  $(7, 8) \in \mathbb{R}_3$ , but  $(7, 8) \notin A \times B$ . So,  $\mathbb{R}_3$  is not a relation from A to B.

The arrow diagram shows a relationship between the sets P and Q. Write the relation in (i) Set builder form (ii) Roster form (iii) What is the domain and range of  $\mathbb{R}$ ?



Sol:

(i) Set builder form of

$$\mathbb{R} = \{(x, y) \mid y = x-2, x \in P, y \in Q\}$$

- (ii) Roster form  $\mathbb{R} = \{(5, 3), (6, 4), (7, 5)\}$
- (iii) Domain of  $\mathbb{R} = \{5, 6, 7\}$ ; Range of  $\mathbb{R} = \{3, 4, 5\}$

# To achieve your target plan well

# Progress Check

- 1. Which of the following are relations from A to B?
  - (i)  $\{(1, b), (1, c), (3, a), (4, b)\}$
  - (ii)  $\{(1, a), (b, 4), (c, 3)\}$
  - (iii)  $\{(1, a), (a, 1), (2, b), (b, 2)\}$

Let  $A = \{1, 2, 3, 4\}$  and  $B = \{a, b, c\}$ Relations from A to B

- (i)  $\{(1, b), (1, c), (3, a), (4, b)\}$
- 2. Which of the following are relations from B to A?
  - (i)  $\{(c, a), (c, b), (c, 1)\}$
  - (ii)  $\{(c, 1), (c, 2), (c, 3), (c, 4)\}$
  - (iii)  $\{(a, 4), (b, 3), (c, 2\}\}$

Let  $A = \{1, 2, 3, 4\}$  and  $B = \{a, b, c\}$ Relations from B to A

(iii) {(a, 4), (b, 3), (c, 2)}

# **Exercise 1.2**

- 1. Let  $A = \{1, 2, 3, 7\}$  and  $B = \{3, 0, -1, 7\}$ , which of the following are relation from A to B?
  - (i)  $\mathbb{R}_1 = \{(2, 1), (7, 1)\}$
  - (ii)  $\mathbb{R}$ , = {(-1, 1)}
  - (iii)  $\mathbb{R}_3 = \{(2, -1), (7, 7), (1, 3)\}$
  - (iv)  $\mathbb{R}_4 = \{(7, -1), (0, 3), (3, 3), (0, 7)\}$

Sol:  $A = \{1, 2, 3, 7\}, B = \{3, 0, -1, 7\}$  $A \times B = \{(1, 3), (1, 0), (1, -1), (1, 7), (2, 3), (2, 0), (2, -1), (2, 7), (3, 3), (3, 0), (3, -1), (3, 7), (7, 3), (7, 0), (7, -1), (7, 7)\}$ 

- (i)  $R_1 = \{(2, 1), (7, 1)\}$ Since (2, 1) and (7, 1) are not the elements of  $A \times B$ ,  $R_1$  is not a relation from A to B. Moreover  $1 \notin B$ .
- (ii)  $R_2 = \{(-1, 1)\}, (-1, 1) \notin A \times B,$   $\therefore R_2 \text{ is not a relation from A to B.}$ But  $(-1, 1) \in (B \times A)$  as  $-1 \in B$  and  $1 \in A$ .
- (iii)  $R_3 = \{(2, -1), (7, 7), (1, 3)\}$ It is clear that  $R_3 \subseteq A \times B$  $\therefore R_3$  is a relation from A to B.
- (iv)  $R_4 = \{(7, -1), (0, 3), (3, 3), (0, 7)\}$ In this (0, 3) and  $(0, 7) \in R_4$ But (0, 3) and (0, 7) are not the elements of

 $A\times B.$  Hence  $R_4$  is not a relation from A to B.

2. Let  $A = \{1, 2, 3, 4, ..., 45\}$  and R be the relation defined as "is square of" on A. Write  $\mathbb R$  as a subset of  $A \times A$ . Also, find the domain and range of  $\mathbb R$ .

Sol:  $A = \{1, 2, 3, 4, ..., 45\}$ Relation is "is square of" and  $A \rightarrow A$  on A  $A \times A = \{(1, 1), (1, 2), (1, 3), (1, 4), ..., (45, 45)\}$ The square of '1' is  $1 \in A$  and  $(1, 1) \in A \times A$ The square of 2 is  $4 \in A$  and  $(4, 2) \in A \times A$ The square of 3 is  $9 \in A$  and  $(9, 3) \in A \times A$ The square of 4 is  $16 \in A$  and  $(16, 4) \in A \times A$ The square of 5 is  $25 \in A$  and  $(25, 5) \in A \times A$ The square of 6 is  $36 \in A$  and  $(36, 6) \in A \times A$ The square of 7 is  $49 \notin A$ . R =  $\{(1, 1), (4, 2), (9, 3), (16, 4), (25, 5), (36, 6)\}$ Domain of R =  $\{1, 4, 9, 16, 25, 36\}$ Range of R =  $\{1, 2, 3, 4, 5, 6\}$ 

3. A Relation  $\mathbb{R}$  is given by the set  $\{(x, y) / y = x + 3, x \in \{0, 1, 2, 3, 4, 5\}\}$ . Determine its domain and range.

Sol:

Given Set =  $\{(x, y) / y = x + 3, x \in \{0, 1, 2, 3, 4, 5\}\}$ 

When x = 0, y = 0 + 3 = 3

When x = 1, y = 1 + 3 = 4

When x = 2, y = 2 + 3 = 5

When x = 3, y = 3 + 3 = 6

When x = 4, y = 4 + 3 = 7

When x = 5, y = 5 + 3 = 8

 $\therefore \text{ Relation } R = \{(0, 3), (1, 4), (2, 5), (3, 6), (4, 7), (5, 8)\}$ 

Domain =  $\{0, 1, 2, 3, 4, 5\}$ 

Range =  $\{3, 4, 5, 6, 7, 8\}$ 

- Represent each of the given relations by

   (a) an arrow diagram,
   (b) a graph and
   (c) a set in roster, wherever possible.
  - (i)  $\{(x, y) \mid x = 2y, x \in \{2, 3, 4, 5\}, y \in \{1, 2, 3, 4\}$
  - (ii)  $\{(x, y) \mid y = x + 3, x, y \text{ are natural numbers} < 10\}$

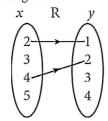
Sol:

(i) Given Set-Builder form  $\{(x, y) \mid x = 2y, x \in \{2, 3, 4, 5\}, y \in \{1, 2, 3, 4\}\}$  x = 2yWhen y = 1, x = 2 (1)  $= 2 \in x$ 

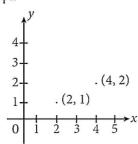
# Sun Juition Center - 9629216361

When 
$$y = 2$$
,  $x = 2$  (2) =  $4 \in x$   
When  $y = 3$ ,  $x = 2$  (3) =  $6 \notin x$   
When  $y = 4$ ,  $x = 2$  (4) =  $8 \notin x$   
 $\therefore$  Relation  $R = \{(2, 1), (4, 2)\}$ 

(a) Arrow diagram



(b) Graph



- (c) Roster form  $R = \{(2,1), (4,2)\}$
- (ii) Given set

 $\{(x,y)/y=x+3, x, y \text{ are natural numbers} < 10\}$ 

When 
$$x = 1$$
,  $y = 1 + 3 = 4$ 

When x = 2, y = 2 + 3 = 5

When 
$$x = 3$$
,  $y = 3 + 3 = 6$ 

When x = 4, y = 4 + 3 = 7

When x = 5, y = 5 + 3 = 8

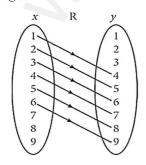
When x = 6, y = 6 + 3 = 9

When x = 7, y = 7 + 3 = 10 is not possible

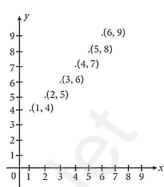
Since x and y are less than 10.

$$\therefore \text{ Relation R} = \{(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)\}$$

(a) Arrow diagram



(b) Graph



(c) Roster form

$$R = \{(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)\}$$

5. A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M) and an Executive Officer (E). The company provide ₹ 10,000, ₹ 25,000, ₹ 50,000 and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M and E respectively. If A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, A<sub>4</sub> and A<sub>5</sub> were Assistants; C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, C<sub>4</sub> were Clerks; M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub> were managers and E<sub>1</sub>, E<sub>2</sub> were Executive officers and if the relation ℝ is defined by xℝy, where x is the salary given to person y, express the relation ℝ through an ordered pair and an arrow diagram.

Sol:

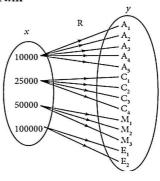
Ordered Pair: The Domain of the relation is about the salaries given to person.

Relation is R = 
$$\{(10000, A_1), (10000, A_2), (10000, A_3), (10000, A_4), (10000, A_5), (25000, C_1), (25000, C_2), (25000, C_3), (25000 C_4), (50000, M_1), (50000, M_2), (50000, M_3), (100000, E_1), (100000, E_2)\}$$

Relation R defined by x R y

'x' is the salary given to person 'y'.

Arrow diagram



#### **FUNCTIONS**

## Key Points

- Let A and B be two non-empty sets, then a relation from A to B i.e., a subset of A × B is called a function from A to B, if
  - (i) for each  $a \in A$  there exists  $b \in B$  such that  $(a, b) \in f$
  - (ii)  $(a, b) \in f$  and  $(a, c) \in f \Rightarrow b = c$
- A function 'f' from a set 'A' to set 'B' associates each element of set A to a unique element of set B.
- $\not \cap$  Let  $f: A \to B$ . Then, the set A is domain of 'f' and B is co-domain of 'f'. The set of all images of elements of A is known as the range of 'f' or image set of A under f and is denoted by f(A).

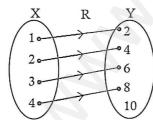
i.e., 
$$f(A) = \{f(x) : x \in A\} = Range \text{ of } f$$
  
 $\therefore f(A) \subseteq B$ 

- Not every curve in the cartesian plane is the graph of a function.
- ♦ Vertical line test: A set of points in the cartesian plane is the graph of a function if and only if no vertical straight line intersects the curve more than once.

# **Worked Examples**

Let  $X = \{1, 2, 3, 4\}$  and  $Y = \{2, 4, 6, 8, 10\}$  and  $\mathbb{R} = \{(1, 2), (2, 4), (3, 6), (4, 8)\}$ . Show that  $\mathbb{R}$  is a function and find its domain, co-domain and range?

Sol: Pictorial representation of  $\mathbb{R}$  is given in the figure. From the diagram, we see that for each  $x \in X$ , there exists only one  $y \in Y$ . Thus all elements in X have only image in Y. Therefore  $\mathbb{R}$  is a function.



Domain  $X = \{1, 2, 3, 4\};$ Co-domain  $Y = \{2, 4, 6, 8, 10\};$ Range of  $f = \{2, 4, 6, 8\}.$ 

A relation 'f is defined by  $f(x) = x^2 - 2$  where,  $x \in \{-2, -1, 0, 3\}$ 

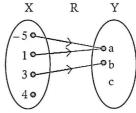
> (i) List the elements of f (ii) Is f a function? Sol:  $f(x) = x^2 - 2$  where  $x \in \{-2, -1, 0, 3\}$

- (i)  $f(-2) = (-2)^2 2 = 2$   $f(-1) = (-1)^2 - 2 = -1$   $f(0) = (0)^2 - 2 = -2$   $f(3) = (3)^2 - 2 = 7$ Therefore,  $f = \{(-2, 2), (-1, -1), (0, -2), (3, 7)\}$
- (ii) We note that each element in the domain of f has a unique image. Therefore f is a function.
- If  $X = \{-5, 1, 3, 4\}$  and  $Y = \{a, b, c\}$ , then which of the following relations are functions from X to Y?

(i) 
$$\mathbb{R}_1 = \{(-5, a), (1, a), (3, b)\}$$

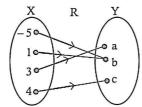
(ii) 
$$\mathbb{R}_2 = \{(-5, b), (1, b), (3, a), (4, c)\}$$

- (iii)  $\mathbb{R}_3 = \{(-5, a), (1, a), (3, b), (4, c), (1, b)\}$ Sol:
  - (i)  $\mathbb{R}_1 = \{(-5, a), (1, a), (3, b)\}$ We may represent the relation  $\mathbb{R}_1$  in an arrow diagram.



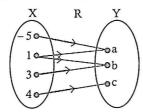
 $\mathbb{R}_1$  is not a function as  $4 \in X$  does not have an image in Y.

(ii)  $\mathbb{R}_2 = \{(-5, b), (1, b), (3, a), (4, c)\}$ Arrow diagram of  $\mathbb{R}_2$  is shown in Figure.



 $\mathbb{R}_2$  is a function as each element of X has an unique image in Y.

(iii)  $\mathbb{R}_3 = \{(-5, a), (1, a), (3, b), (4, c), (1, b)\}$ Representing  $\mathbb{R}_3$  in an arrow diagram.



 $\mathbb{R}_3$  is not a function as  $1 \in X$  has two images  $a \in Y$  and  $b \in Y$ .

Note that the image of an element should always be unique.

## Given $f(x) = 2x - x^2$ , find

- (i) f(1) (ii) f(x+1) (iii) f(x) + f(1) Sol:
- (i) Replacing x with 1, we get

$$f(1) = 2(1) - (1)^2 = 2 - 1 = 1$$

(ii) Replacing x with x + 1, we get

$$f(x+1) = 2(x+1) - (x+1)^{2}$$
  
= 2x + 2 - (x<sup>2</sup> + 2x + 1)  
= -x<sup>2</sup> + 1

(iii)  $f(x) + f(1) = (2x - x^2) + 1 = -x^2 + 2x + 1$ [Note that  $f(x) + f(1) \neq f(x + 1)$ . In general f(a + b) is not equal to f(a) + f(b)]

# Progress Check

1. Relations are subsets of \_\_\_\_\_; Functions are subsets of \_\_\_\_\_;

Cartesian product; Relations.

2. True or False: All the elements of a relation should have images.

Ans: False

3. True or False: All the elements of a function should have images.

Ans True

4. True or False: If  $\mathbb{R}: A \to B$  is a relation then the domain of  $\mathbb{R} = A$ 

Ans: True

- 5. If f:  $\mathbb{N} \to \mathbb{N}$  is defined as f (x) =  $x^2$  the preimage(s) of 1 and 2 are \_\_\_\_ and \_\_\_\_.
- 6. The difference between relation and function is

Every function is a Relation, but the relation need not be a function.

- 7. Let A and B be two non-empty finite sets. Then which one among the following two collection is large?
  - (i) The number of relations between A and B.
  - (ii) The number of functions between A and B.

(i) The number of relations between A and B is large.

(ii) Number of relation is always greater than number of functions.

# Thinking Corner

1. Is the relation representing the association between planets and their respective moons a function?

Ams Yes.

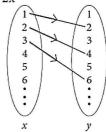
# Exercise 1. 3

1. Let  $f = \{(x, y) \mid x, y \in \mathbb{N} \text{ and } y = 2x\}$  be a relation on N. Find the domain, co-domain and range. Is this relation a function?

Sol:

$$f = \{(x, y)/x, y \in \mathbb{N} \text{ and } y = 2x\}$$

Given that y = 2x



'x' is always a natural number. Domain is the set of all first entries.

So, Domain-Set of natural numbers = N and y is always an even number as y = 2x

# sun tuition

# 10th Std | MATHEMATICS

Range = Set of even natural numbers Co-domain = Set of natural numbers = N Here, the first elements (x) are having unique images. So, this relation is a function.

2. Let  $X = \{3, 4, 6, 8\}$ . Determine whether the relation  $\mathbb{R} = \{(x, f(x)) | x \in X, f(x) = x^2 + 1\}$  is a function from X to  $\mathbb{N}$ ?

Sol: Given  $X = \{3, 4, 6, 8\}$ 

Relation R = 
$$\{(x, f(x)) / x \in X, f(x) = x^2 + 1\}$$

When 
$$x = 3$$
,  $f(3) = (3)^2 + 1 = 9 + 1 = 10 \in N$ 

When 
$$x = 4$$
,  $f(4) = (4)^2 + 1 = 16 + 1 = 17 \in N$ 

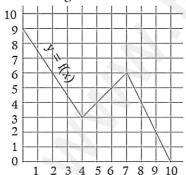
When 
$$x = 6$$
,  $f(6) = (6)^2 + 1 = 36 + 1 = 37 \in N$ 

When 
$$x = 8$$
,  $f(8) = (8)^2 + 1 = 64 + 1 = 65 \in N$ 

 $R = \{(3, 10), (4, 17), (6, 37), (8, 65)\}$ 

Since, all the elements of X are having natural numbers as images, it is a function from X to N.

- 3. Given the function  $f: x \to x^2 5x + 6$ , evaluate
  - (i) f (-1)
- (ii) f (2a)
- (iii) f (2)
- (iv) f(x-1)
- Sol:  $f(x) = x^2 5x + 6$
- (i)  $f(-1) = (-1)^2 5(-1) + 6 = 1 + 5 + 6 = 12$
- (ii)  $f(2a) = (2a)^2 5(2a) + 6 = 4a^2 10a + 6$
- (iii)  $f(2) = (2)^2 5(2) + 6 = 4 10 + 6 = 0$
- (iv)  $f(x-1) = (x-1)^2 5(x-1) + 6$ =  $x^2 - 2x + 1 - 5x + 5 + 6$ =  $x^2 - 7x + 12$
- 4. A graph representing the function f(x) is given below figure. From figure it is clear that f(9) = 2.



- (i) Find the following values of the function
  - (a) f(0)
- (b) f (7)
- (c) f (2)
- (d) f (10)
- (ii) For what value of x is f(x) = 1?
- (iii) Describe the following (a) Domain (b) Range.

- (iv) What is the image of 6 under f?
- Sol:
  - (i) (a) f(0) = 9
    - (b) f(7) = 6
    - (c) f(2) = 6
    - (d) f(10) = 0
- (ii) For what value of x is f(x) = 1From the graph, it is known that when x = 9.5, f(9.5) = 1
- (iii) (a) Domain =  $\{x / 0 \le x \le 10, x \in R\}$ 
  - (b) Range =  $\{x / 0 \le x \le 9, x \in R\}$
- (iv) Image of '6' under f is '5'.
- 5. Let f(x) = 2x + 5. If  $x \ne 0$  then find  $\frac{f(x+2) f(2)}{x}$ .

$$f(x) = 2x + 5, x \neq 0$$

$$\frac{f(x+2) - f(2)}{x} = \frac{[2(x+2) + 5] - [2(2) + 5]}{x}$$

$$= \frac{2x + 4 + 5 - 9}{x} = \frac{2x + 9 - 9}{x}$$

$$= \frac{2x}{x} = 2$$

- 6. A function f is defined by f(x) = 2x 3
  - (i) find  $\frac{f(0) + f(1)}{2}$
  - (ii) find x such that f(x) = 0
  - (iii) find x such that f(x) = x.
  - (iv) find x such that f(x) = f(1-x).

Sol: f(x) = 2x - 3

(i) 
$$\frac{f(0) + f(1)}{2} = \frac{[2(0) - 3] + [2(1) - 3]}{2}$$
$$= \frac{0 - 3 + 2 - 3}{2} = \frac{2 - 6}{2}$$
$$= \frac{-4}{2} = -2$$

(ii) Given f(x) = 0

$$\therefore 2x - 3 = 0$$

$$2x = 3 \implies x = 3/2$$

(iii) Given f(x) = x

$$2x - 3 = x$$

$$2x - x = 3 \implies x = 3$$

(iv) Given f(x) = f(1-x)

$$2x - 3 = 2(1 - x) - 3$$

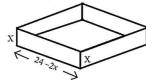
$$2x - 3 = 2 - 2x - 3$$

$$2x + 2x = 2 - 3 + 3$$
$$4x = 2$$

$$x = 2/4 = 1/2$$

7. An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal squares from the corners and turning up the sides as shown figure. Express the volume V of the box as a function of x.





Sol: From the diagram, the solid is a cuboid. Volume of cuboid = length  $\times$  breadth  $\times$  height

where 
$$l = 24 - 2x$$
,  $b = 24 - 2x$ ,  $h = x$   
 $\therefore$  Volume V (x) =  $(24 - 2x)(24 - 2x)x$ 

$$V(x) = x (24 - 2x)^{2}, x > 0$$
$$= 4x^{3} - 96x^{2} + 576x, x > 0$$

So, the domain is 0 < x < 12

8. A function f is defined by f(x) = 3 - 2x. Find x such that  $f(x^2) = (f(x))^2$ .

Sol: 
$$f(x) = 3 - 2x$$
  
Given  $f(x^2) = [f(x)]^2$   
 $3 - 2x^2 = (3 - 2x)^2$   
 $3 - 2x^2 = 9 - 12x + 4x^2$   
 $6x^2 - 12x + 6 = 0$   
 $6(x^2 - 2x + 1) = 0$   
 $(x - 1)^2 = 0 \implies x = 1$ .

9. A plane is flying at a speed of 500 km per hour. Express the distance d travelled by the plane as function of time t in hours.

Sol: Let the distance be 'd'

Speed = 
$$500 \text{ km/hr}$$
,

Time = 't' hours

$$\therefore \quad \text{Distance} = \text{Speed} \times \text{time}$$

d(t) = 500 t

10. The data in the adjacent table depicts the length of a woman's forehand and her corresponding height. Based on this data, a student finds a relationship between the height (y) and the forehand length (x) as y = ax + b, where a, b are constants.

| Length x of forehand (in cm) | Height y (in inch) |
|------------------------------|--------------------|
| 35                           | 56                 |
| 45                           | 65                 |
| 50                           | 69.5               |
| 55                           | 74                 |

- (i) Check if this relation is a function.
- (ii) Find a and b.
- (iii) Find the height of a woman whose forehand length is 40 cm.
- (iv) Find the length of forehand of a woman if her height is 53.3 inches.

**Sol**: y = ax + b; x = forehand length; <math>y = height

| X  | <b>y</b> * |
|----|------------|
| 35 | 56         |
| 45 | 65         |
| 50 | 69.5       |
| 55 | 74         |

For all the x-values, there is an image which is 'y'. Moreover, the difference between two consecutive 'y' values is constant.

- $\therefore$  In y = ax + b,
- (i) the Relation

$$R = \{(35, 56), (45, 65), (50, 69.5), (55, 74)\}$$
 is a function.

(ii) In 
$$y = ax + b$$
  
when  $x = 35$ ,  $y = 56$   
 $\Rightarrow 56 = 35a + b$  ....(1)  
when  $x = 45$ ,  $y = 65$   
 $\Rightarrow 65 = 45a + b$  ....(2)

Solving (1) and (2), we get a = 0.90 and b = 24.5

- (iii) Given, forehand length is 40 cm i.e., when x = 40, y = ax + bSo, y = (0.90)(40) + 24.5 = 60.5 $\therefore$  Height of woman is 60.5 inches
- (iv) Given height is 53.3 inches ie. when y = 53.3, x = ?

$$\Rightarrow 53.3 = 0.9x + 24.5$$

$$53.3 - 24.5 = 0.9x$$

$$\Rightarrow x = \frac{28.8}{0.9} = 32$$

length of forehand is 32 cm.

#### REPRESENTATION OF FUNCTIONS

# **Worked Examples**

16 10 Using vertical line test, determine which of the following curves (figure a, b, c, d) represent a function?

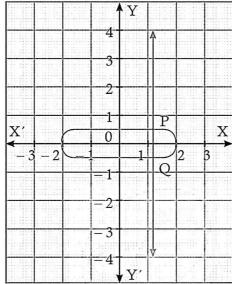
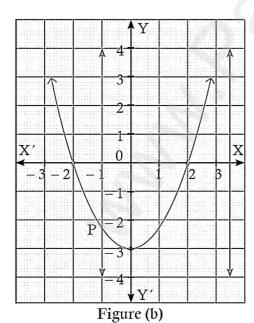


Figure (a)



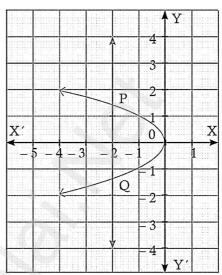


Figure (c)

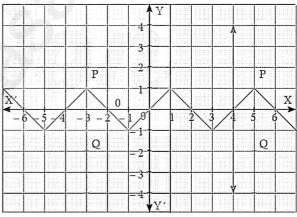


Figure (d)

The curves in figure (a) and (c) do not represent a function as the vertical lines meet the curves in two points P and Q.

The curves in figure (b) and (d) represent a function as the vertical lines meet the curve in at most one point.

- 1. III Let  $A = \{1, 2, 3, 4\}$  and  $B = \{2, 5, 8, 11, 14\}$  be two sets. Let  $f: A \rightarrow B$  be a function given by f(x) = 3x - 1. Represent this function as
  - (i) by arrow diagram
  - (ii) in a table form
  - (iii) as a set of ordered pairs
  - (iv) in a graphical form

#### Sol:

$$A = \{1, 2, 3, 4\}; B = \{2, 5, 8, 11, 14\};$$

$$f(x) = 3x - 1$$

$$f(1) = 3(1) - 1 = 3 - 1 = 2$$

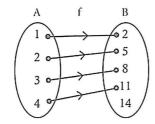
$$f(2) = 3(2) - 1 = 6 - 1 = 5$$

$$f(3) = 3(3) - 1 = 9 - 1 = 8$$

$$f(4) = 4(3) - 1 = 12 - 1 = 11$$

#### (i) Arrow diagram

Let us represent the function  $f: A \rightarrow B$  by an arrow diagram



#### (ii) Table form

The given function f can be represented in a tabular form as given below

| х    | 1 | 2 | 3 | 4  |
|------|---|---|---|----|
| f(x) | 2 | 5 | 8 | 11 |

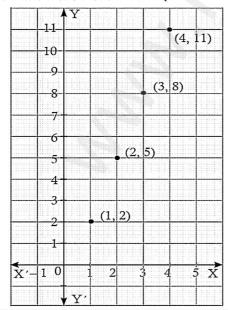
#### (iii) Set of ordered pairs

The function f can be represented as a set of ordered pairs as

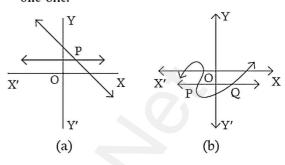
$$f = \{(1, 2), (2, 5), (3, 8), (4, 11)\}$$

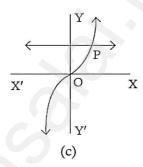
#### (iv) Graphical form

In the adjacent xy-plane the points (1, 2), (2, 5), (3, 8), (4, 11) are plotted.



# Using horizontal line test fig (a), fig (b), fig (c), determine which of the following functions are one-one.



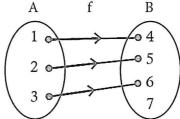


**Sol:** The curves in fig (a) and fig (c), represent a one-one function as the horizontal lines meet the curves in only one point P.

The curve in fig (b) does not represent a one-one function, since, the horizontal line meet the curve in two points P and Q.

# Let $A = \{1, 2, 3\}$ , $B = \{4, 5, 6, 7\}$ and $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one but not onto function. Sol: $A = \{1, 2, 3\}$ , $B = \{4, 5, 6, 7\}$ ; $f = \{(1, 4), (2, 5), (3, 6)\}$

Then f is a function from A to B and for different elements in A, there are different images in B. Hence f is one-one function. Note that the element 7 in the co-domain does not have any pre-image in the domain. Hence f is not onto.



Therefore f is one-one but not an onto function.

#### If $A = \{-2, -1, 0, 1, 2\}$ and $f: A \to B$ is an onto function defined by $f(x) = x^2 + x + 1$ then find B.

**Sol**: Given  $A = \{-2, -1, 0, 1, 2\}$  and  $f(x) = x^2 + x + 1.$ 

$$f(x) = x^{2} + x + 1.$$

$$f(-2) = (-2)^{2} + (-2) + 1 = 3$$

$$f(-1) = (-1)^{2} + (-1) + 1 = 1$$

$$f(0) = 0^{2} + 0 + 1 = 1$$

$$f(1) = 1^{2} + 1 + 1 = 3$$

$$f(2) = 2^{2} + 2 + 1 = 7$$

Since, f is an onto function, range of f = BCo-domain.

Therefore,  $B = \{1, 3, 7\}.$ 

#### **1.15** Let f be a function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = 3x + 2, x \in \mathbb{N}$

- (i) Find the images of 1, 2, 3
- (ii) Find the pre-images of 29, 53
- (iii) Identify the type of function

**Sol**: The function  $f: \mathbb{N} \to \mathbb{N}$  defined by f(x) = 3x + 2

- (i) If x = 1, f(1) = 3(1) + 2 = 5If x = 2, f(2) = 3(2) + 2 = 8If x = 3, f(3) = 3(3) + 2 = 11The images of 1, 2, 3 are 5, 8, 11 respectively.
- (ii) If x is the pre-image of 29, then f(x) = 29.Hence  $3x + 2 = 29 \Rightarrow 3x = 27 \Rightarrow x = 9$ . Similarly, if x is the pre-image of 53, then f (x) = 53. Hence 3x + 2 = 53 $3x = 51 \implies x = 17$ . Thus the pre-images of 29 and 53 are 9 and 17 respectively.
- (iii) Since different elements of  $\mathbb N$  have different images in the co-domain, the function f is one-one function.

The co-domain of f is  $\mathbb{N}$ .

But the range of  $f = \{5, 8, 11, 14, 17, ....\}$  is a subset of  $\mathbb{N}$ .

Therefore f is not an onto function. That is, f is an into function.

Thus f is one-one and into function.

#### 16 Forensic scientists can determine the height (in cms) of a person based on the length of their thigh bone. They usually do so using the function h (b) = 2.47 b + 54.10 where b is thelength of the thigh bone.

#### (i) Check if the function h is one-one

- (ii) Also find the height of a person if the length of his thigh bone is 50 cms.
- (iii) Find the length of the thigh bone if the height of a person is 147.96 cms.

Sol:

- (i) To check if h is one one, we assume that  $h(b_1) = h(b_2).$ Then we get,  $2.47 b_1 + 54.10 = 2.47 b_2 + 54.10$  $2.47 b_1 = 2.47 b_2 \implies b_1 = b_2$ Thus,  $h(b_1) = h(b_2) \implies b_1 = b_2$ . So, the function h is one - one.
- (ii) If the length of the thigh bone b = 50, then the height is  $h(50) = (2.47 \times 50) + 54.10 = 177.6 \text{ cms}.$
- (iii) If the height of a person is 147. 96 cms, then h(b) = 147.96 and so the length of the thigh bone is given by 2. 47 b + 54. 10 = 147. 96.

$$b = \frac{93.86}{2.47} = 38$$

Therefore, the length of the thigh bone is 38 cms.

## Let f be a function from $\mathbb{R}$ to $\mathbb{R}$ defined by

f(x) = 3x - 5. Find the values of a and b given that (a, 4) and (1, b) belong to f.

**Sol**: f(x) = 3x - 5 can be written as

$$f = \{(x, 3x - 5) | x \in \mathbb{R} \}$$

(a, 4) means the image of a is 4.

That is, 
$$f(a) = 4$$
  
 $3a - 5 = 4$ 

$$\Rightarrow$$
 a = 3 (1, b) means the image of 1 is b.

That is, 
$$f(1) = b$$
  
  $3(1) - 5 = b \implies b = -2$ 

# The distance S (in kms) travelled by a particle in time 't' hours is given by S (t) = $\frac{t^2 + t}{2}$ . Find

the distance travelled by the particle after

- (i) three and half hours
- (ii) eight hours and fifteen minutes.

**Sol**: The distance travelled by the particle is

$$S(t) = \frac{t^2 + t}{2}$$

(i) t = 3.5 hours. Therefore,

$$S(3.5) = \frac{(3.5)^2 + 3.5}{2}$$
$$= \frac{15.75}{2} = 7.875$$

The distance travelled in 3. 5 hours is 7. 875 kms.

(ii) t = 8.25 hours. Therefore,

$$S(8.25) = \frac{(8.25)^2 + 8.25}{2}$$
$$= \frac{76.3125}{3}$$
$$= 38.15625$$

The distance travelled in 8.25 hours is 38.16 kms, approximately.

#### 1619. If the function f: $R \rightarrow R$ defined by

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 2x+7, & x < -2 \\ x^2 - 2, & -2 \le x < 3 \\ 3x - 2, & x \ge 3 \end{cases}$$

- (i) f (4)
- (ii) f(-2)
- (iii) f(4) + 2 f(1)
- (iv)  $\frac{f(1)-3f(4)}{f(-3)}$

**Sol**: The function f is defined by three values in intervals I, II, III as shown below

|   | I "  |     |    | vr  | II  |            |         |        | v | III |        |        |             |   |
|---|------|-----|----|-----|-----|------------|---------|--------|---|-----|--------|--------|-------------|---|
| - | T    |     |    |     | _)_ | T          | $\top$  | $\neg$ |   | 1   | $\neg$ | $\neg$ | $\neg \top$ | 7 |
|   | -6   | -5  | -4 | - 3 | -2  | <b>–</b> 1 | 0       | 1      | 2 | 3   | 4      | 5      | 6           |   |
| į | f(x) | =2x | +7 |     |     | f(x)       | $= x^2$ | -2     |   |     | f(x)   | =3x    | -2          |   |

For a given value of x = a, find out the interval at which the point a is located, there after find f(a) using the particular value defined in that interval.

(i) First, we see that, x = 4 lie in the third interval. Therefore,

$$f(x) = 3x - 2$$
;  $f(4) = 3(4) - 2 = 10$ 

(ii) x = -2 lies in the second interval. Therefore,

$$f(x) = x^2 - 2$$
;  $f(-2) = (-2)^2 - 2 = 2$ 

(iii) From (i), f (4) = 10.To find f (1), first we see that x = 1 lies in the second interval.Therefore,

$$f(x) = x^2 - 2 \Rightarrow f(1) = 1^2 - 2 = -1$$
  
Therefore,  $f(4) + 2 f(1) = 10 + 2 (-1) = 8$ 

(iv) We know that f(1) = -1 and f(4) = 10. For finding f(-3), we see that x = -3, lies in the first interval.

Therefore, 
$$f(x) = 2x + 7$$
; thus,  $f(-3) = 2(-3) + 7 = 1$   
Hence,  $\frac{f(1) - 3f(4)}{f(-3)} = \frac{-1 - 3(10)}{1} = -31$ 

# Progress Check

State True (or) False

- 1. All one one functions are onto functions.

  [Ang.] False
- 2. There will be no one one function from A to B when n (A) = 4, n (B) = 3.

  Ans. True
- 3. All onto functions are one one functions.

  Aug: False
- 4. There will be no onto function from A to B when n (A) = 4, n (B) = 5.

  True
- 5. If f is a bijection from A to B, then n (A) = n (B).

  Ansa: True
- 6. If n (A) = n (B), then f is a bijection from A to B.

  Ans: False
- 7. All constant functions are bijections.

# Thinking Corner

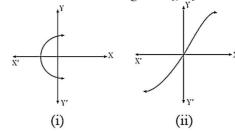
- 1. Can there be a one to many function?

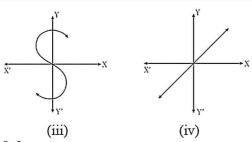
  There cannot be a one to many function as the elements in Co-domain should have only one preimage in the domain.
- 2. Is an identity function one-one function?

  Yes. It is one-to-one function.

# **Exercise 1.4**

1. Determine whether the graph given below represent functions. Give reason for your answers concerning each graph.





Sol:

- (i) It is not a function. Since, a vertical line intersects the curve in two points.
- (ii) It is a function. Any vertical line drawn, will intersect the curve at only one point.
- (iii) It is not a function. Vertical line intersecting the curve at two points.
- (iv) It is a function. Vertical line intersects the curve at only one point.
- 2. Let  $f : A \rightarrow B$  be a function defined by

f (x) = 
$$\frac{x}{2}$$
-1, where A = {2, 4, 6, 10, 12},

 $B = \{0, 1, 2, 4, 5, 9\}$ . Represent f by

- (i) set of ordered pairs; (ii) a table;
- (iii) an arrow diagram; (iv) a graph

**Sol:** f: 
$$A \to B$$
, f(x) =  $\frac{x}{2} - 1$ 

 $A = \{2, 4, 6, 10, 12\}, B = \{0, 1, 2, 4, 5, 9\}$ 

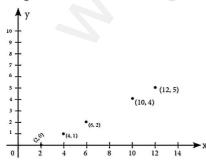
- (i) Set of ordered pairs ={(2, 0), (4, 1), (6, 2), (10, 4), (12, 5)}
- (ii) Table

| - |      |   |   |   |    |    |
|---|------|---|---|---|----|----|
|   | х    | 2 | 4 | 6 | 10 | 12 |
|   | f(x) | 0 | 1 | 2 | 4  | 5  |

(iii) Arrow diagram



(iv) Graph

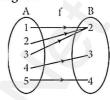


- 3. Represent the function f = {(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)} through
  - (i) an arrow diagram
  - (ii) a table form
- (iii) a graph

**Sol**: Given function  $f = \{(1, 2), (2, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), (3, 2), ($ 

(4, 3), (5, 4)

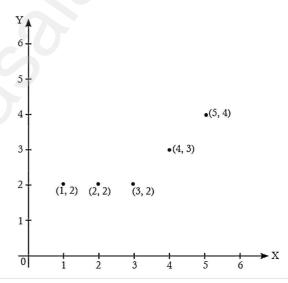
(i) Arrow diagram



(ii) Table form

| X    | 1 | 2 | 3 | 4 | 5 |
|------|---|---|---|---|---|
| f(x) | 2 | 2 | 2 | 3 | 4 |

(iii) Graph



4. Show that the function  $f : \mathbb{N} \to \mathbb{N}$  be defined by f(x) = 2x - 1 is one - one but not onto.

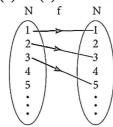
Sol: Given function  $f: \mathbb{N} \to \mathbb{N}$ 

f(x) = 2x - 1

This function maps every element from the domain to element that is twice minus one the original. 2x - 1 is always an odd number when  $x \in N$ .

Clearly, each element from the domain is mapped to different element in the co-domain. So, the function is one-to-one. On the other hand, there are no elements in the domain that would map to even numbers. So, the function is not onto.

- when x = 1, f(1) = 2(1) 1 = 1
- when x = 2, f(2) = 2(2) 1 = 3
- when x = 3, f(3) = 2(3) 1 = 5 and so on.



- 5. Show that the function  $f : \mathbb{N} \to \mathbb{N}$  defined by  $f(m) = m^2 + m + 3$  is one-one function.
  - Sol:

$$f: \mathbb{N} \to \mathbb{N}$$

$$f(m) = m^2 + m + 3$$

when 
$$m = 1$$
,  $f(1) = (1)^2 + 1 + 3 = 5$ 

when 
$$m = 2$$
,  $f(2) = (2)^2 + 2 + 3 = 9$ 

when 
$$m = 3$$
,  $f(3) = (3)^2 + 3 + 3 = 15$  and so on.

Clearly, A function for which every element of the range of the function corresponds to exactly one element of the domain.

- .. So, it is one-to-one function.
- 6. Let  $A = \{1, 2, 3, 4\}$  and  $B = \mathbb{N}$ . Let  $f : A \to B$  be defined by  $f(x) = x^3$ 
  - (i) Find the range of f
  - (ii) Identify the type of function

**Sol**:  $A = \{1, 2, 3, 4\}$  and B = N

(i)  $f: A \rightarrow B$ 

$$f(x) = x^3$$

$$f(1) = (1)^3 = 1 \in N$$

$$f(2) = (2)^3 = 8 \in N$$

$$f(3) = (3)^3 = 27 \in N$$

$$f(4) = (4)^3 = 64 \in N$$

Range of  $f = \{1, 8, 27, 64\}$ 

- (ii) 'f' is a function from 'A' to 'B' and all the elements in 'A' having different images in 'B'.
- $\therefore$  f:  $A \rightarrow B$  is a function. It is one-to-one and into function and also called a cubic function.
- 7. In each of the following cases state whether the function is bijective or not. Justify your answer.

(i) 
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by  $f(x) = 2x + 1$ 

(ii) 
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by  $f(x) = 3 - 4x^2$ 

**Sol**: (i) f: 
$$R \to R$$
 and f(x) =  $2x + 1$ 

when 
$$x = -1$$
,  $f(-1) = 2(-1) + 1 = -1 \in R$ 

when 
$$x = 0$$
,  $f(0) = 2(0) + 1 = 1 \in R$ 

when 
$$x = 1$$
,  $f(1) = 2(1) + 1 = 3 \in R$  and so on.

For every value of  $x \in R$ , f(x) also  $\in R$ .

: The function is well defined and it is one-to-one function (Injective)

For  $f(x): R \to R$ , the domain and range are also well defined. So it is an onto function. (Surjective)

Thus, the function is one -to -one onto i.e. Bijective function.

(ii)  $f: R \to R$ ,  $f(x) = 3 - 4x^2$ 

when 
$$x = 0$$
,  $f(0) = 3 - 4(0) = 3 \in R$ 

when 
$$x = 0$$
,  $f(0) = 3 - 4(0) = 3 \in \mathbb{R}$   
when  $x = 1$ ,  $f(1) = 3 - 4(1)^2 = -1 \in \mathbb{R}$ 

when 
$$x = 2$$
,  $f(2) = 3 - 4(2)^2 = -13 \in R$ 

when 
$$x = -1$$
,  $f(-1) = 3 - 4(-1)^2 = -1 \in \mathbb{R}$ 

when 
$$x = -2$$
,  $f(-2) = 3 - 4(-2)^2 = -13 \in R$ 

From this, it is clear that two or more elements having same image in the co-domain. So, it is not one-to-one and it is many-to-one function. Hence it is not Bijective.

8. Let  $A = \{-1, 1\}$  and  $B = \{0, 2\}$ . If the function  $f : A \rightarrow B$  defined by f(x) = ax + b. Is an onto function? Find a and b.

Sol: 
$$A = \{-1, 1\}, B = \{0, 2\}$$

f: 
$$A \to B$$
, f(x) = ax + b  
when x = -1, f(-1) = 0

when 
$$x = 1, f(1) = 2$$

Since, there is a constant difference between x and f(x), it is an onto function.

Substituting the values, we get

$$-a+b=0$$
$$a+b=2$$

Solving these equations, we get a = 1, b = 1

9. If the function f is defined by

$$\mathbf{f}(\mathbf{x}) = \begin{cases} x+2 & \text{if } x > 1\\ 2 & \text{if } -1 \le x \le 1\\ x-1 & \text{if } -3 < x < -1 \end{cases}$$
; Find the values of

- (i) f (3)
- (ii) f(0)
- (iii) f (-1.5)
- (iv) f(2) + f(-2)

Sol:

$$f(x) = \begin{cases} x+2 & if \ x>1 \\ 2 & if \ -1 \le x \le 1 \\ x-1 & if \ -3 < x < -1 \end{cases}$$

- (i) f(3) = 3 + 2 = 5
- [:: 3 > 1]

- (ii) f(0) = 2
- $[\because -1 \le 0 \le 1]$
- (iii) f(-1.5) = -1.5 1 = -2.5 [:-3<-1.5<-1]
- (iv) f(2) + f(-2) = (2+2) + (-2-1)
  - = 4 3 = 1 [: 2 > 1 and -3 < -2 < -1]

10. A function  $f: [-5, 9] \to \mathbb{R}$  is defined as follows:

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 6x+1 & \text{if } -5 \le x < 2\\ 5x^2 - 1 & \text{if } 2 \le x < 6\\ 3x - 4 & \text{if } 6 \le x \le 9 \end{cases}$$

Find (i) 
$$f(-3) + f(2)$$
 (ii)  $f(7) - f(1)$ 

(iii) 2f (4) + f (8) (iv) 
$$\frac{2f(-2) - f(6)}{f(4) + f(-2)}$$

Sol: 
$$f: [-5, 9] \rightarrow R$$

$$\begin{cases} 6x + 1 & \text{if } -5 \le x \\ 5x + 1 & \text{if } -5 \le x \end{cases}$$

$$f(x) = \begin{cases} 6x+1 & if -5 \le x < 2 \\ 5x^2 - 1 & if 2 \le x < 6 \\ 3x - 4 & if 6 \le x \le 9 \end{cases}$$

(i) 
$$f(-3) + f(2) = [6(-3) + 1] + [5(2)^2 - 1]$$
  
=  $(-18 + 1) + (20 - 1)$   
=  $-17 + 19 = 2$  [:  $-5 \le -3 < 2$ 

(ii) 
$$f(7) - f(1) = [3(7) - 4] - [6(1) + 1]$$
  
=  $(21 - 4) - (6 + 1)$   
=  $17 - 7 = 10$  [:  $6 \le 7 \le 9$   
 $-5 \le 1 < 2$ ]

(iii) 
$$2 f(4) + f(8) = 2 [5 (4)^2 - 1] + [3 (8) - 4]$$
  
=  $2 [80 - 1] + [24 - 4]$   
=  $158 + 20 = 178$  [:  $2 \le 4 < 6$ 

(iv) 
$$\frac{2f(-2) - f(6)}{f(4) + f(-2)}$$
$$f(-2) = 6(-2) + 1 = -12 + 1 = -11$$

$$f(6) = 3(6) - 4 = 18 - 4 = 14$$
 [::  $6 \le 6 < 9$ ]  
 $f(4) = 5(4)^2 - 1 = 80 - 1 = 79$  [::  $2 \le 4 < 6$ ]

$$\therefore \frac{2f(-2) - f(6)}{f(4) + f(-2)} = \frac{2(-11) - 14}{79 - 11}$$
$$= \frac{-22 - 14}{68} = -\frac{36}{68} = -\frac{9}{17}$$

11. The distance S an object travels under the influence of gravity in time t seconds is given by S (t) =  $\frac{1}{2}gt^2 + at + b$ , where, (g is the acceleration

due to gravity), a, b are constants. Check if the function S (t) is one-one.

**Sol:** Distance travelled by an object is given to

be S (t) = 
$$\frac{1}{2}gt^2 + at + b$$

'g'- acceleration due to gravity is a constant.

'g' is the acceleration due to gravity 'a' and 'b' are constants.

't' is a variable. (t - time)

At different values of 't', S(t) is having different values. (images in codomain) clearly  $f: t \rightarrow S(t)$ is one-to-one function.

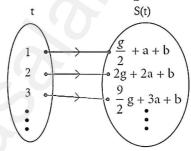
Given S (t) = 
$$\frac{1}{2} gt^2 + at + b$$
 (a, b are constants)

Let us take  $t = 1, 2, 3 \dots$  Seconds

When 
$$t = 1 \implies S(1) = \frac{g}{2} + a + b$$

When 
$$t = 2 \implies S(2) = 2g + 2a + b$$

When 
$$t = 3 \Rightarrow S(3) = \frac{9}{2}g + 3a + b$$
 and so on.



All the elements of t, having different images in S(t). Hence it is an One-to-one function.

12. The function 't' which maps temperature in Celsius (C) into temperature in Fahrenheit (F) is

defined by t (C) = F where 
$$F = \frac{9C}{5} + 32$$
. Find,

- (i) t(0)
- (iii) t (- 10)
- (iv) the value of C when t(C) = 212
- (v) the temperature when the Celsius value is equal to the Fahrenheit value.

Given t (C) = F where 
$$F = \frac{9C}{5} + 32$$
.

C - Celsius, F - Fahrenhe

$$\therefore t(C) = \frac{9C}{5} + 32$$
(i)  $t(0) = \frac{9(0)}{5} + 32 = 0 + 32 = 32 \text{ °F}$ 

(ii) t (28) = 
$$\frac{9(28)}{5} + 32 = \frac{252}{5} + 32$$
  
=  $50.4 + 32 = 82.4$ °F

(iii) 
$$t(-10) = \frac{9(-10)}{5} + 32 = -18 + 32 = 14$$
°F

(iv) Given 
$$t(C) = 212$$

$$\therefore \frac{9 C}{5} + 32 = 212 \implies \frac{9 C}{5} = 212 - 32$$

$$C = 180 \times \frac{5}{9} = 100 \text{ °C}$$

(v) The temperature when the Celsius value is equal to the Fahrenheit value.

$$\therefore F = C$$

$$\frac{9C}{5} + 32 = C$$

$$\frac{9C}{5} - C = -32 \Rightarrow \frac{9C - 5C}{5} = -32$$

$$4C = -32 \times 5 \Rightarrow C = -\frac{160}{4}$$

$$^{\circ}C = -40$$

## COMPOSITION OF FUNCTIONS

## Key Points

- $\not \cap$  Let  $f: X \to R$  and  $g: X \to R$  be any two real functions, where  $X \subset R$ , then their sum f + g i.e.,  $(f + g): X \to R$  is the function defined by (f + g)(x) = f(x) + g(x), for all  $x \in X$ .
- $\Re$  Their difference i.e.,  $(f-g): X \to R$  is the function defined by (f-g)(x) = f(x) g(x), for all  $x \in X$ .
- $\Re$  The multiplication  $(\alpha f)$  is a function from  $X \to R$  defined by a scalar by  $(\alpha f)(x) = \alpha f(x)$ ,  $x \in X$ .
- $\Re$  The product fg:  $X \to R$  is defined by  $(fg)(x) = f(x) \cdot g(x)$ , for all  $x \in X$ .
- $\overrightarrow{g}$  The quotient  $\frac{f}{g}$  is a function defined by  $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ , provided  $g(x) \neq 0$ ,  $x \in X$ .
- $\mathcal{C}$  The composition of two functions f and g is denoted by  $f \circ g$  and  $(f \circ g)(x) = f[g(x)]$ .
- $\triangle$  Composition of functions is not always commutative i.e.,  $f \circ g \neq g \circ f$ .
- A Composition of functions is always associative.

# **Worked Examples**

# Find $f \circ g$ and $g \circ f$ when f(x) = 2x + 1 and

g (x) = 
$$x^2 - 2$$
.  
Sol:  $f(x) = 2x + 1$ ,  $g(x) = x^2 - 2$   
 $(f \circ g)(x) = f(g(x)) = f(x^2 - 2)$   
 $= 2(x^2 - 2) + 1 = 2x^2 - 3$   
 $(g \circ f)(x) = g(f(x)) = g(2x + 1)$   
 $= (2x + 1)^2 - 2 = 4x^2 + 4x - 1$   
Thus  $f \circ g = 2x^2 - 3$ ,  $g \circ f = 4x^2 + 4x - 1$ .

From the above, we see that  $f \circ g \neq g \circ f$ .

Represent the function  $f(x) = \sqrt{2x^2 - 5x + 3}$  as a composition of two functions.

Sol:

We set 
$$f_2(x) = 2x^2 - 5x + 3$$
 and  $f_1(x) = \sqrt{x}$   
Then,  $f(x) = \sqrt{2x^2 - 5x + 3}$ 

= 
$$\sqrt{f_2(x)}$$
  
=  $f_1[f_2(x)] = f_1 f_2(x)$ 

# If f(x) = 3x - 2, g(x) = 2x + k and $f \circ g = g \circ f$ , then find the value of k.

Sol: 
$$f(x) = 3x - 2$$
,  $g(x) = 2x + k$   
 $(f \circ g)(x) = f(g(x)) = f(2x + k)$   
 $= 3(2x + k) - 2 = 6x + 3k - 2$ 

Thus, 
$$(f \circ g)(x) = 6x + 3k - 2$$
.  
 $(g \circ f)(x) = g(3x - 2) = 2(3x - 2) + k$ 

$$(g \circ f)(x) = g(3x - 2) = 2(3x - 2) + k$$
Thus,  $(g \circ f)(x) = 6x - 4 + k$ .

Given that 
$$f \circ g = g \circ f$$

Therefore, 
$$6x + 3k - 2 = 6x - 4 + k$$

$$6x - 6x + 3k - k = -4 + 2 \implies k = -1$$

#### Find k if $f \circ f(k) = 5$ where f(k) = 2k - 1. Sol:

$$f \circ f(k) = f(f(k)) = f(2k-1)$$

$$= 2(2k-1)-1 = 4k-3$$
Thus,  $f \circ f(k) = 4k-3$ 
But, it is given that  $f \circ f(k) = 5$ 
Therefore  $4k-3=5 \Rightarrow k=2$ .

If f(x) = 2x + 3, g(x) = 1 - 2x and h(x) = 3x. Prove that  $f \circ (g \circ h) = (f \circ g) \circ h$ . Sol:

$$f(x) = 2x + 3, g(x) = 1 - 2x, h(x) = 3x$$
Now,  $(f \circ g)(x) = f(g(x)) = f(1 - 2x)$ 

$$= 2(1 - 2x) + 3 = 5 - 4x$$
Since,  $(f \circ g) \circ h(x) = (f \circ g)(h(x))$ 

$$= (f \circ g)(3x)$$

$$= 5 - 4(3x) = 5 - 12x \qquad ...(1)$$
 $(g \circ h)(x) = g(h(x)) = g(3x)$ 

$$= 1 - 2(3x) = 1 - 6x$$

Since,  $f \circ (g \circ h)(x) = f(1 - 6x) = 2(1 - 6x) + 3$ 

= 5 - 12x ... (2) From (1) and (2), we get  $(f \circ g) \circ h = f \circ (g \circ h)$ 

Find x if gff (x) = fgg (x), given f(x) = 3x + 1and g(x) = x + 3.

> Sol:  $gff(x) = g[f\{f(x)\}]$

(This means "g of f of f of x")

$$= g[f(3x+1)] = g[3(3x+1)+1]$$

$$= g(9x+4) = [(9x+4)+3] = 9x+7$$

$$fgg(x) = f[g\{g(x)\}]$$

(This means "f of g of g of x")

$$= f[g(x+3)] = f[(x+3)+3]$$
  
 
$$f(x+6) = [3(x+6)+1] = 3x+19$$

These two quantities being equal, we get 9x + 7 = 3x + 19. Solving this equation we obtain x = 2.

# **Progress Check**

State your answer for the following questions by selecting the correct option.

- 1. Composition of functions is commutative
  - (a) Always true
- (b) Never true
- (c) Sometimes true

Ans: (c) Sometimes true

- 2. Composition of functions is associative
  - (a) Always true
- (b) Never true
- (c) Sometimes true

(a) Always true

- 3. Is a constant function a linear function? ATTS Yes
- 4. Is quadratic function a one-one function? No Sarva
- 5. Is cubic function a one -one function? Airs Yes
- 6. Is the reciprocal function a bijection? Avis Yes
- 7. Is  $f: A \rightarrow B$  is a constant function, then the range of f will have \_\_\_\_\_ elements. Ans One element

# **Thinking Corner**

1. If  $f(x) = x^m$  and  $g(x) = x^n$  does  $f \circ g = g \circ f$ ?  $f(x) = x^m, g(x) = x^n$ Ans s  $f \circ g = f[g(x)] = f(x^n) = (x^n)^m = x^{nm}$  $g \circ f = g[f(x)] = g[x^m] = (x^m)^n = x^{mn}$  $\therefore f \circ g = g \circ f$ 

# Exercise 1.5

1. Using the functions f and g given below, find  $f \circ g$ and  $g \circ f$ . Check whether  $f \circ g = g \circ f$ .

(i) 
$$f(x) = x - 6$$
,  $g(x) = x^2$ 

(ii) 
$$f(x) = \frac{2}{x}$$
,  $g(x) = 2x^2 - 1$ 

(iii) 
$$f(x) = \frac{x+6}{3}$$
,  $g(x) = 3-x$ 

(iv) 
$$f(x) = 3 + x$$
,  $g(x) = x - 4$ 

(v) 
$$f(x) = 4x^2 - 1$$
,  $g(x) = 1 + x$   
Sol:

(i) 
$$f(x) = x - 6, g(x) = x^2$$
  
 $f \circ g = f[g(x)] = f[x^2] = x^2 - 6$   
 $g \circ f = g[f(x)] = g[x - 6] = (x - 6)^2$   
 $= x^2 - 12x + 36$   
 $\therefore f \circ g \neq g \circ f$ 

(ii) 
$$f(x) = \frac{2}{x}$$
,  $g(x) = 2x^2 - 1$   
 $f \circ g = f[g(x)] = f[2x^2 - 1] = \frac{2}{2x^2 - 1}$   
 $g \circ f = g[f(x)] = g[\frac{2}{x}] = 2(\frac{2}{x})^2 - 1$   
 $= 2(\frac{4}{x^2}) - 1 = \frac{8 - x^2}{x^2}$ 

(iii) 
$$f(x) = \frac{x+6}{3}$$
,  $g(x) = 3-x$   
 $f \circ g = f[g(x)] = f(3-x) = \frac{3-x+6}{3} = \frac{9-x}{3}$   
 $g \circ f = g[f(x)] = g\left(\frac{x+6}{3}\right) = 3 - \left(\frac{x+6}{3}\right)$   
 $= \frac{9-x-6}{3} = \frac{3-x}{3}$   $\therefore f \circ g \neq g \circ f$ 

(iv) 
$$f(x) = 3 + x, g(x) = x - 4$$
  
 $f \circ g = f[g(x)] = f[x - 4] = 3 + x - 4 = x - 1$   
 $g \circ f = g[f(x)] = g[3 + x] = 3 + x - 4 = x - 1$   
 $\therefore f \circ g = g \circ f$ 

(v) 
$$f(x) = 4x^2 - 1$$
,  $g(x) = 1 + x$   
 $f \circ g = f[g(x)] = f(1 + x) = 4(1 + x)^2 - 1$   
 $= 4(1 + 2x + x^2) - 1$   
 $= 4 + 8x + 4x^2 - 1$   
 $= 4x^2 + 8x + 3$   
 $g \circ f = g[f(x)] = 1 + 4x^2 - 1$   
 $= 4x^2$   
 $\therefore f \circ g \neq g \circ f$ 

2. Find the value of k, such that  $f \circ g = g \circ f$ .

(i) 
$$f(x) = 3x + 2$$
,  $g(x) = 6x - k$ 

(ii) 
$$f(x) = 2x - k$$
,  $g(x) = 4x + 5$ 

Sol:

(i) 
$$f(x) = 3x + 2$$
,  $g(x) = 6x - k$   
 $f \circ g = f[g(x)] = f(6x - k)$   
 $= 3(6x - k) + 2$   
 $= 18x - 3k + 2$   
 $g \circ f = g[f(x)] = 6(3x + 2) - k$   
 $= 18x + 12 - k$   
Given  $f \circ g = g \circ f$   
 $\therefore 18x - 3k + 2 = 18x + 12 - k$   
 $3k - k = -12 + 2$   
 $2k = -10$   
 $k = -5$ 

(ii) 
$$f(x) = 2x - k$$
,  $g(x) = 4x + 5$   
 $f \circ g = f[g(x)] = f[4x + 5]$   
 $= 2(4x + 5) - k$   
 $= 8x + 10 - k$   
 $g \circ f = g[f(x)] = g(2x - k) = 4(2x - k) + 5$   
 $= 8x - 4k + 5$   
Given  $f \circ g = g \circ f$   
 $\therefore 8x + 10 - k = 8x - 4k + 5$   
 $4k - k = 5 - 10$   
 $3k = -5$   
 $k = -5/3$ 

3. If 
$$f(x) = 2x - 1$$
,  $g(x) = \frac{x+1}{2}$ , show that  $f \circ g = g \circ f = x$ .

Sol:  $f(x) = 2x - 1$ ,  $g(x) = \frac{x+1}{2}$ 

$$f \circ g = f[g(x)] = f\left(\frac{x+1}{2}\right) = 2\left(\frac{x+1}{2}\right) - 1 = x + 1 - 1 = x$$

$$g \circ f = g[f(x)] = g(2x - 1) = \frac{2x - 1 + 1}{2}$$

$$= \frac{2x}{2} = x$$

- 4. (i) If  $f(x) = x^2 1$ , g(x) = x 2 find a, if  $g \circ f(a) = 1$ .
  - (ii) Find k, if f (k) = 2k 1 and  $f \circ f(k) = 5$  Sol:

(i) 
$$f(x) = x^2 - 1$$
,  $g(x) = x - 2$   
 $f(a) = a^2 - 1$   
Given,  $(g \circ f)(a) = 1$   
 $g[f(a)] = 1$   
 $g[a^2 - 1] = 1$   
 $a^2 - 1 - 2 = 1$   
 $a^2 - 3 = 1$   
 $a^2 = 1 + 3 = 4$   
 $a = \pm 2$ 

 $\therefore f \circ g = g \circ f = x$  Hence proved.

(ii) 
$$f(k) = 2k - 1$$
  
Given  $(f \circ f)(k) = 5$   
 $f[f(k)] = 1$   
 $f[2k - 1] = 1$   
 $\therefore 2(2k - 1) - 1 = 5$   
 $4k - 2 - 1 = 5$   
 $4k - 3 = 5$   
 $4k = 5 + 3 = 8$   
 $k = 8/4 = 2$ 

5. Let  $A, B, C \subseteq \mathbb{N}$  and a function  $f : A \to B$  be defined by f(x) = 2x + 1 and  $g : B \to C$  be defined by  $g(x) = x^2$ . Find the range of  $f \circ g$  and  $g \circ f$ .

Sol:  $A, B, C \subseteq \mathbb{N}$ 

f: 
$$A \to B$$
 defined by f (x) = 2x + 1  
g:  $B \to C$  defined by g (x) =  $x^2$   
 $f \circ g = f[g(x)] = f(x^2) = 2x^2 + 1$   
 $g \circ f = g[f(x)] = g(2x - 1) = (2x + 1)^2$   
 $= 4x^2 + 4x + 1$ 

'x' can take any real value and can produce any real value. Thus, the domain and range of  $f \circ g$  and  $g \circ f$  is R (Set of real numbers).

6. If f (x) = 
$$x^2 - 1$$
. Find (a)  $f \circ f$  (b)  $f \circ f \circ f$   
Sol:  $f(x) = x^2 - 1$ 

(a) 
$$f \circ f = f[f(x)] = f(x^2 - 1)$$
  
=  $(x^2 - 1)^2 - 1 = x^4 - 2x^2 + 1 - 1 = x^4 - 2x^2$ 

(b) 
$$f \circ f \circ f = f[f[f(x)]] = f[f(x^2 - 1)] = f[x^4 - 2x^2]$$
  
=  $(x^4 - 2x^2)^2 - 1 = x^8 - 4x^6 + 4x^4 - 1$ 

7. If  $f: R \to R$  and  $g: R \to R$  are defined by  $f(x) = x^5$  and  $g(x) = x^4$  then check if f, g are one one and  $f \circ g$  is one one.

Sol:

$$f(x) = x^5, g(x) = x^4$$
  
 $f(x) = x^5$ 

For any value of 'x', f (x) gives us a different value (image) in co domain.

 $\therefore$  f (x) is one-one function

$$g(1) = 1;$$
  $g(-1) = 1$ 

Hence g(x) is not one-one function

$$f \circ g = f[g(x)] = f(x^4) = (x^4)^5 = x^{20}$$

 $f \circ g$  is also One - One function as x is mapped with different value of  $f \circ g$ .

8. Consider the function f(x), g(x), h(x) as given below. Show that  $(f \circ g) \circ h = f \circ (g \circ h)$  in each case.

(i) 
$$f(x) = x - 1$$
,  $g(x) = 3x + 1$  and  $h(x) = x^2$ 

(ii) 
$$f(x) = x^2$$
,  $g(x) = 2x$  and  $h(x) = x + 4$ 

(iii) 
$$f(x) = x - 4$$
,  $g(x) = x^2$  and  $h(x) = 3x - 5$   
Sol:

(i) 
$$f(x) = x - 1$$
,  $g(x) = 3x + 1$ ,  $h(x) = x^2$ 

$$f \circ g = f[g(x)] = f[3x + 1]$$
  
=  $(3x + 1) - 1 = 3x$ 

$$(f \circ g) \circ h = (f \circ g) [h(x)] = (f \circ g) [x^2] = 3x^2$$

$$g \circ h = g[h(x)] = g[x^2] = 3x^2 + 1$$

$$f \circ (g \circ h) = f[g(h(x))] = f[g(x^2)] = f[3x^2 + 1]$$
  
=  $(3x^2 + 1) - 1 = 3x^2$ 

 $\therefore (f \circ g) \circ h = f \circ (g \circ h)$ 

Hence proved.

(ii) 
$$f(x) = x^2, g(x) = 2x, h(x) = x + 4$$
  
 $f \circ g = f[g(x)] = f[2x]$   
 $= f(2x) = (2x)^2 = 4x^2$   
 $(f \circ g) \circ h = (f \circ g) [h(x)] = (f \circ g) [x + 4]$   
 $= 4(x + 4)^2$   
 $= 4(x^2 + 8x + 16) = 4x^2 + 32x + 64$ 

 $g \circ h = g[h(x)] = g[x+4] = 2(x+4)$ 

$$f \circ (g \circ h) = f[g(h(x))] = f[g(x+4)]$$

$$= f[2(x+4)] = [2(x+4)]^2 = 4(x+4)^2$$

$$= 4(x^2 + 8x + 16) = 4x^2 + 32x + 64$$

$$\therefore (f \circ g) \circ h = f \circ (g \circ h)$$
(iii)  $f(x) = x - 4, g(x) = x^2, h(x) = 3x - 5$ 

$$f \circ g = f[g(x)] = f(x^2) = x^2 - 4$$

$$(f \circ g) \circ h = (f \circ g) [h(x)] = (f \circ g) [3x - 5]$$

$$= (3x - 5)^2 - 4 = 9x^2 - 30x + 25 - 4$$

$$= (3x - 5)^{2} - 4 = 9x^{2} - 30x + 25 - 4$$

$$= 9x^{2} - 30x + 21$$

$$g \circ h = g [h (x)]$$

$$= g (3x - 5) = (3x - 5)^{2} = 9x^{2} - 30x + 25$$

$$f \circ (g \circ h) = f [g (h (x))] = f[g(3x - 5)] = f[(3x - 5)^{2}]$$

$$= 9x^{2} - 30x + 25 - 4 = 9x^{2} - 30x + 21$$

$$\therefore (f \circ g) \circ h = f \circ (g \circ h)$$

9. Let  $f = \{(-1, 3), (0, -1), (2, -9)\}$  be a linear function from  $\mathbb{Z}$  into  $\mathbb{Z}$ . Find f(x).

Sol:  $f = \{(-1, 3), (0, -1), (2, -9)\}, f: \mathbb{Z} \to \mathbb{Z}$ Since 'f' is a linear function

$$f(x) = ax + b$$
  
in (0, -1), when  $x = 0$ ,  $f(0) = -1$ 

$$\therefore$$
 a (0) + b = -1  $\Rightarrow$  b = -1  
in (-1, 3), when x = -1, f (-1) = 3

$$\therefore a(-1) + b = 3 \Rightarrow -a - 1 = 3$$
$$-a = 4 \Rightarrow a = -4$$

$$f(x) = -4x - 1$$

10. In electrical circuit theory, a circuit C(t) is called a linear circuit if it satisfies the superposition principle given by  $C(at_1 + bt_2) = aC(t_1) + bC(t_2)$ , where a, b are constants. Show that the circuit C(t) = 3t is linear.

Sol: Given superposition principle is

 $C(at_1 + bt_2) = aC(t_1) + bC(t_2)$  a, b are constants

If all the independent sources except for  $C(t_1)$  have known fixed values, then

$$C(t) = aC(t_1) + d$$
where  $d = bC(t_2)$ 

∴ C(t) is linear.

Aliter:

C(t) is linear and  $t = t_1 + t_2$ 

Let  $C(t_1) = t$  and  $C(t_2) = 2t$ 

By Given data,

$$C(at_1 + bt_2) = aC(t_1) + bC(t_2) \qquad ... (1)$$
Now  $C(t) = C(t_1 + t_2) [\therefore t = t_1 + t_2]$ 

$$= C(t_1) + C(t_2) \text{ from } (1)$$

$$= t + 2t = 3t$$

Hence the function C(t) is linear.

# Sun Juition Center - 9629216361

# **Exercise 1.6**

# Multiple Choice Questions:

- 1. If  $n(A \times B) = 6$  and  $A = \{1, 3\}$  then n(B) is
  - (1) 1
- (2) 2
- (3) 3
- (4) 6

[Ans: (3)]

Sol:

$$n(A \times B) = 6$$

$$A = \{1, 3\} \Rightarrow n(A) = 2$$

$$n(B) = \frac{n(A \times B)}{n(A)} = \frac{6}{2} = 3$$

- 2. A = {a, b, p}, B = {2, 3}, C = {p, q, r, s} then  $n[(A \cup C) \times B]$  is
  - (1) 8
- (2) 20
- (3) 12
- (4) 16

[Ans: (3)]

Sol:

- 3. If A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8} then state which of the following statement is true.
  - (1)  $(A \times C) \subset (B \times D)$  (2)  $(B \times D) \subset (A \times C)$
  - (3)  $(A \times B) \subset (A \times D)$  (4)  $(D \times A) \subset (B \times A)$

[Ans: (1)]

Sol: A = 
$$\{1, 2\}$$
, B =  $\{1, 2, 3, 4\}$ ,  
C =  $\{5, 6\}$  and D =  $\{5, 6, 7, 8\}$   
A × C =  $\{(1, 5), (1, 6), (2, 5), (2, 6)\}$   
B × D =  $\{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$ 

Hence  $(A \times C) \subset (B \times D)$ 

4. If there are 1024 relations from a set

 $A = \{1, 2, 3, 4, 5\}$  to a set B, then the number of elements in B is

- (1) 3
- (2) 2
- (3) 4
- (4) 8

[Ans: (2)]

Sol: 
$$A = \{1, 2, 3, 4, 5\}, n(A) = 5, n(B) = ?$$

Number of relations from A to B is 1024.

i.e.,  $2^{mn} = 1024$  where 'mn' is number of elements in A × B.

$$2^{mn} = 2^{10} \Longrightarrow mn = 10$$
  
$$n(B) = \frac{n(A \times B)}{n(A)} = \frac{10}{5} = 2$$

- 5. The range of the relation  $R = \{(x, x^2) \mid x \text{ is a prime number less than 13}\}$  is
  - (1) {2, 3, 5, 7}
  - $\{2, 3, 5, 7, 11\}$
  - (3) {4, 9, 25, 49, 121}
  - $\{1, 4, 9, 25, 49, 121\}$

[Ans: (3)]

**Sol**: Set of prime numbers less than 13 is  $\{2, 3, 5, 7, 11\}$ 

Relation  $R = \{(x, x^2)/ x \text{ is a prime }$  number less than 13}  $R = \{(2, 4), (3, 9), (5, 25),$   $(7, 49), (11, 121)\}$ 

- $\therefore$  Range = {(4, 9, 25, 49, 121}
- 6. If the ordered pairs (a + 2, 4) and (5, 2a + b) are equal then (a, b) is
  - (1) (2, -2)
- (2) (5,1)
- (3) (2, 3)
- (4) (3, -2)

[Ans: (4)]

Sol:

Given 
$$(a + 2, 4) = (5, 2a + b)$$

$$a + 2 = 5$$
  
 $a = 5 - 2$   
 $= 3$   
 $2a + b = 4$   
 $2(3) + b = 4$   
 $b = 4 - 6 = -2$ 

- 7. Let n (A) = m and n (B) = n then the total number of non-empty relations that can be defined from A to B is
  - (1)  $m^n$
- (2)  $n^{m}$
- (3)  $2^{mn}-1$
- $(4) 2^{mn}$

[Ans: (4)]

- 8. If {(a, 8), (6, b)} represents an identity function, then the value of a and b are respectively
  - (1) (8,6)
- (2) (8,8)
- (3) (6,8)
- (4) (6,6)

[Ans: (1)]

Sol: Given  $\{(a, 8), (6, b)\}$  is an Identity function

$$\therefore \quad a = 8, b = 6$$

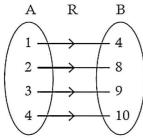
9. Let  $A = \{1, 2, 3, 4\}$  and  $B = \{4, 8, 9, 10\}$ . A \(\frac{1}{2}\). Let f and g be two functions given by function  $f: A \rightarrow B$  given by

 $f = \{(1, 4), (2, 8), (3, 9), (4, 10)\}$  is a

- (1) Many-one function
- (2) Identity function
- (3) One-to-one function

(4) Into function [Ans: (3)]

Sol:  $A = \{1, 2, 3, 4\}, B = \{4, 8, 9, 10\}$ 



 $f:A \rightarrow B$ 

and  $f = \{(1, 4), (2, 8), (3, 9), (4, 10)\}$ One-to-one function

- 10. If f (x) =  $2x^2$  and g (x) =  $\frac{1}{3x}$ , Then  $f \circ g$  is
  - (1)  $\frac{3}{2x^2}$
- (2)  $\frac{2}{3x^2}$
- (3)  $\frac{2}{9x^2}$

[Ans: (3)]

Sol:

$$f(x) = 2x^{2}, g(x) = 1/3x$$

$$f \circ g = f[g(x)] = f\left[\frac{1}{3x}\right]$$

$$= 2\left(\frac{1}{3x}\right)^{2} = 2\left(\frac{1}{9x^{2}}\right)$$

$$= \left(\frac{2}{9x^{2}}\right)$$

- 11. If  $f: A \rightarrow B$  is a bijective function and if n(B) = 7, then n(A) is equal to
  - (1) 7
- (2) 49
- (3) 1
- (4) 14

 $f: A \rightarrow B$  is a bijective function and n(B) = 7. f is a bijective function i.e., one-to-one onto

[Ans: (1)]

function. :. A and B should have equal number of elements.

n(A) = 7

- $f = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 7)\}$  $g = \{(0, 2), (1, 0), (2, 4), (-4, 2), (7, 0)\}$  then the range of  $f \circ g$  is
  - (1) {0, 2, 3, 4, 5}
- $(2) \{-4, 1, 0, 2, 7\}$
- (3) {1, 2, 3, 4, 5}
- (4) {0, 1, 2} [Ans: (4)]

Sol: 
$$f = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 7)\}\$$
  
 $g = \{(0, 2), (1, 0), (2, 4), (-4, 2), (7, 0)\}\$ 

Now,  $f \circ g(0) = f[2] = 0$ 

 $f \circ g(1) = f[0] = 1$ 

 $f \circ g(2) = f[4] = 2$ 

 $f \circ g(-4) = f[2] = 0$ 

 $f \circ g(7) = f[0] = 1$ 

Range of 'f  $\circ$  g' = {0, 1, 2}

- 13. Let f (x) =  $\sqrt{1+x^2}$  then
  - (1)  $f(xy) = f(x) \cdot f(y)$
  - $(2) \quad f(xy) \ge f(x).f(y)$
  - $(3) \quad f(xy) \le f(x).f(y)$
  - (4) None of these

[Ans: (3)]

 $f(x) = \sqrt{1 + x^2}$ Sol: then  $f(y) = \sqrt{1 + y^2}$ and  $f(xy) = \sqrt{1 + x^2 y^2}$ 

Hence, it is clear that  $f(xy) \le f(x) f(y)$ 

- 14. If  $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$  is a function given by  $g(x) = \alpha x + \beta$  then the values of  $\alpha$  and  $\beta$ 
  - (1) (-1, 2)
- (2) (2, -1)
- (3) (-1, -2)
- (4) (1, 2)[Ans: (2)]

 $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ 

 $g(x) = \alpha x + \beta$ 

When  $\alpha = 2$  and  $\beta = -1$ , g(x) = 2x - 1Which is satisfying 'g'.

- 15.  $f(x) = (x + 1)^3 (x 1)^3$  represents
  - (1) a linear function
  - (2) a cubic function
  - (3) a reciprocal function
  - (4) a quadratic function Sol:

[Ans: (4)]

$$f(x) = (x+1)^3 - (x-1)^3$$
  
=  $(x^3 + 3x^2 + 3x + 1) - (x^3 - 3x^2 + 3x - 1)$   
=  $6x^2 + 2$ 



1. If the ordered pairs  $(x^2 - 3x, y^2 + 4y)$  and (-2, 5)are equal, then find x and v.

Sol:

Given 
$$(x^2 - 3x, y^2 + 4y) = (-2, 5)$$
  
 $\therefore x^2 - 3x = -2$   
 $x^2 - 3x + 2 = 0$   
 $(x - 1)(x - 2) = 0$   
 $x = 1, 2$ 
 $y^2 + 4y = 5$   
 $y^2 + 4y - 5 = 0$   
 $(y + 5)(y - 1) = 0$   
 $y = -5, 1$ 

2. The Cartesian product  $A \times A$  has 9 elements among which (-1, 0) and (0, 1) are found. Find the set A and the remaining elements of  $A \times A$ .

**Sol:** Since  $A \times A$  has 9 elements,

A would have 3 elements  $(:: 3 \times 3 = 9)$ 

 $A \times A$  contains (-1, 0) and (0, 1)

$$\therefore -1, 0 \in A \qquad \dots (1)$$

Similarly (0, 1) is in  $A \times A$ 

So, 
$$0, 1 \in A$$
 ... (2)

From (1) and (2)  $\Rightarrow$   $-1, 0, 1 \in A$ 

$$A = \{-1, 0, 1\}$$

$$A \times A = \{-1, 0, 1\} \times \{-1, 0, 1\}$$

$$= \{(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0), (0, 1), (1, -1), (1, 0), (1, 1)\}$$

 $\therefore$  The remaining elements of A  $\times$  A are  $\{(-1,-1),(-1,1),(0,-1),(0,0),(1,-1),$ (1,0),(1,1)

3. Given that 
$$f(x) = \begin{cases} \sqrt{x-1} & x \ge 1 \\ 4 & x < 1 \end{cases}$$
. Find

(i)  $f(0)$  (ii)  $f(3)$ 

(iii) f (a + 1) in terms of a. (Given that  $a \ge 0$ )

Sol: 
$$f(x) = \begin{cases} \sqrt{x-1} & x \ge 1 \\ 4 & x < 1 \end{cases}$$

(1) 
$$f(0) = 4$$

(ii) 
$$f(3) = \sqrt{3-1} = \sqrt{2}$$

(iii) 
$$f(a+1) = \sqrt{a+1-1} = \sqrt{a}$$
 [:: Given  $a \ge 0$   
[::  $a+1 \ge 1$ 

4. Let A = {9, 10, 11, 12, 13, 14, 15, 16, 17} and let  $f: A \to N$  be defined by f(n) =the highest prime factor of  $n \in A$ . Write f as a set of ordered pairs and find the range of f.

**Sol**: 
$$A = \{9, 10, 11, 12, 13, 14, 15, 16, 17\}$$
  
f:  $A \rightarrow N$ , f(n)= the highest prime factor of  $n \in A$ 

$$f(9) = 3, \quad f(10) = 5, \quad f(11) = 11$$

$$f(12) = 3, \quad f(13) = 13, \quad f(14) = 7$$

$$f(15) = 5, \quad f(16) = 2, \quad f(17) = 17$$
Set of ordered pairs
$$f = \{(9, 3), (10, 5), (11, 11), (12, 3), (13, 13), (14, 7),$$

$$(15, 5), (16, 2), (17, 17)$$
Range = \{2, 3, 5, 7, 11, 13, 17\}

5. Find the domain of the function

$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

Sol: 
$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$
  
 $f(x) = \sqrt{1 - t}$   
where  $t = \sqrt{1 - \sqrt{1 - x^2}}$ 

where 
$$t = \sqrt{1 - \sqrt{1 - x^2}}$$

$$1 - t \ge 0$$
$$t \le 1$$

$$\sqrt{1-\sqrt{1-x^2}} \le 1$$

Squaring 
$$1 - \sqrt{1 - x^2} \le 1$$

$$-\sqrt{1-x^2} \le 0$$

$$\sqrt{1-x^2} \ge 0$$

$$1 - x^2 \ge 0$$
$$1 - x^2 \ge 0$$

$$x^2 \le 1$$

$$\Rightarrow x \in [-1, 1] \text{ i.e., } \{-1, 0, 1\}$$

6. If f (x) =  $x^2$ , g (x) = 3x and h (x) = x - 2. Prove that  $(f \circ g) \circ h = f \circ (g \circ h)$ .

Sol: 
$$f(x) = x^2, g(x) = 3x, h(x) = x - 2$$
  
 $f \circ g = f[g(x)] = f(3x)$ 

$$= (3x)^{2} = 9x^{2}$$

$$(f \circ g) \circ h = (f \circ g) [h (x)] = (f \circ g) [x - 2]$$

$$= 9 (x-2)^{2}$$

$$g \circ h = g [h (x)] = g [x-2] = 3 (x-2)$$

$$f \circ (g \circ h) = g[x - 2] = 3(x - 2)$$
$$f \circ (g \circ h) = f[g(h(x))]$$

$$= f[3(x-2)] = [3(x-2)]^2 = 9(x-2)^2$$

$$\therefore (f \circ g) \circ h = f \circ (g \circ h)$$

Hence proved.

7.  $A = \{1, 2\}$  and  $B = \{1, 2, 3, 4\}$ ,  $C = \{5, 6\}$  and  $D = \{5, 6, 7, 8\}$ . Verify that whether A × C is a subset of  $B \times D$ ?

Sol:

$$A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}, D = \{5, 6, 7, 8\}$$
$$A \times C = \{1, 2\} \times \{5, 6\}$$
$$= \{(1, 5), (1, 6), (2, 5), (2, 6)\}$$

$$B \times D = \{1, 2, 3, 4\} \times \{5, 6, 7, 8\}$$

$$= \{(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)\}$$

 $\therefore$  (A × C) is a subset of (B × D)

8. If f (x) = 
$$\frac{x-1}{x+1}$$
,  $x \ne 1$  show that f (f (x)) =  $-\frac{1}{x}$ , provided  $x \ne 0$ .

Sol: 
$$f(x) = \frac{x-1}{x+1}, x \neq -1$$
$$f[f(x)] = f\left[\frac{x-1}{x+1}\right]$$
$$= \frac{\frac{x-1}{x+1}-1}{\frac{x-1}{x+1}+1} = \frac{\frac{x-1-(x+1)}{x+1}}{\frac{x-1}{x+1}}$$
$$= \frac{x-1-x-1}{x-1+x+1} = -\frac{2}{2x} = -\frac{1}{x}$$

Hence proved

9. The function f and g are defined by f(x) = 6x + 8;

$$g(x) = \frac{x-2}{3}$$

- (i) Calculate the value of  $gg \left(\frac{1}{2}\right)$
- (ii) Write an expression for gf (x) in its simplest form.

Sol: 
$$f(x) = 6x + 8$$
,  $g(x) = \frac{x - 2}{3}$   
(i)  $g\left(\frac{1}{2}\right) = \frac{\frac{1}{2} - 2}{3} = \frac{1 - 4}{2 \times 3} = -\frac{3}{6} = -\frac{1}{2}$   
 $\therefore gg\left(\frac{1}{2}\right) = g\left[g\left(\frac{1}{2}\right)\right]$   
 $= g\left(-\frac{1}{2}\right) = \frac{-\frac{1}{2} - 2}{3} = -\frac{1 - 4}{2 \times 3} = -\frac{5}{6}$ 

(ii) 
$$g f(x) = g [f(x)] = g [6x + 8]$$
  

$$= \frac{6x + 8 - 2}{3} = \frac{6x + 6}{3}$$

$$= \frac{6(x + 1)}{3} = 2(x + 1)$$

10. Write the domain of the following real functions

(i) 
$$f(x) = \frac{2x+1}{x-9}$$

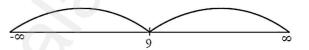
(i) 
$$f(x) = \frac{2x+1}{x-9}$$
 (ii)  $p(x) = \frac{-5}{4x^2+1}$ 

(iii) g (x) = 
$$\sqrt{x-2}$$

(iv) 
$$h(x) = x + 6$$

Sol:

(i) 
$$f(x) = \frac{2x+1}{x-9}$$
  
If  $x - 9 = 0$ , then  $x = 9$ 



.. The domain is all values of x that make the expression defined.

i.e., 
$$(-\infty, 9) \cup (9, \infty)$$
  
i.e.,  $(x / x \neq 9) \Rightarrow R - \{9\}$ 

(ii) 
$$p(x) = \frac{-5}{4x^2 + 1}$$

Here, the expression is defined for all real values of 'x'.

i. e., 
$$x \in R$$

- (iii)  $g(x) = \sqrt{x-2}$ g (x) is defined real only when  $x \ge 2$
- (iv) h(x) = x + 6h (x) is defined for all real values of 'x'. i.e.,  $x \in R$ .

# Life is finite, your life story is infinite.