XI - Chemistry Volume - I & II

(2022 - 2023)

UNITWISE

EVALUATION and ADDITIONAL ONE MARK QUESTIONS with ANSWER KEY

☆

4444444444444444

☆

☆

SN	CONTENTS	PAGE No.
1	Basic Concepts of Chemistry and Chemical Calculations	3
2	Quantum Mechanical Model of Atom	5
3	Periodic Classification of Elements	8
4	Hydrogen	10
5	Alkali and Alkaline Earth Metals	12
6	Gaseous State	15
7	Thermodynamics	17
8	Physical and Chemical Equilibrium	19
9	Solutions	22
10	Chemical Bonding	25
11	Fundamentals of Organic Chemistry	27
12	Basic Concepts of Organic Reactions	30
13	Hydrocarbons	31
14	Haloalkanes and Haloarenes	35
15	Environmental Chemistry	37

 $\stackrel{\wedge}{\swarrow}$

1. Basic Concepts of Chemistry and Chemical Calculations

EVALUATION:

☆

 $\stackrel{\wedge}{\swarrow}$

I. Choose the correct answer:			
1. 40 ml of methane is completely b <mark>urnt us</mark> in	g 80 ml of <mark>ox</mark>	<mark>yge</mark> n at room te <mark>mperatu</mark> re The volume of gas lef	t after
cooling to room temperature is			
(a) 40 ml CO ₂ gas	(b <mark>) 4</mark>	<mark>10 m</mark> l CO2 gas a <mark>nd 80 m</mark> l H2O gas	
(c) $60 \text{ ml } CO_2 \text{ gas} \text{ and } 60 \text{ ml } H_2O \text{ gas}$	(d) 1	<mark>120</mark> ml CO ₂ ga <mark>s</mark>	
2. An element X ha <mark>s the follo</mark> wing isoto <mark>pic c</mark>	<mark>o</mark> mposition ²	$^{200}X = 90 \%$, $^{199}X = 8 \%$ and $^{202}X = 2 \%$. The we	ighted
average atomic <mark>mass of the</mark> element X is	closest to		
(a) 201 u (b) <mark>202 u</mark>	(c) 199 u	(d) 200 u	
3. Assertion: Two mole of glucose contains 12	2. <mark>044</mark> × 10 ²³ n	<mark>no</mark> lecule <mark>s of g</mark> lucose	
Reason : Total number of entities present	in <mark>one</mark> mole o	<mark>of</mark> any s <mark>ubs</mark> tance is <mark>equal t</mark> o 6.02 × 10 ²²	
(a) bo <mark>th assertion</mark> and reason <mark>are tr</mark> ue a	nd t <mark>he</mark> reaso <mark>r</mark>	<mark>n</mark> is the <mark>co</mark> rrect ex <mark>plana</mark> tion of assertion	
(b) both assertion and reason are true b	out re <mark>aso</mark> n is <mark>r</mark>	<mark>n</mark> ot th <mark>e c</mark> orrec <mark>t exp</mark> lanation of asse <mark>rtion</mark>	
(c) assertion is true but reason is false			
(d) both assertion and reason are false			
4. Carbon forms two oxides, namely carbon m	onoxide and	carbon dioxide. The equivalent mass of which el	ement
remains constant?			
(a) <mark>Carbon (b) oxygen (c) bot</mark>	<mark>h car</mark> bon an <mark>d</mark>	oxygen (d) neither carbon nor oxygen	
5. The equivalent mass of a trivalent metal ele	ement is 9 g e	q-1 the molar mass of its anhydrous oxide is	
(a) 102 g (b) 27 g (c) 270	g (d) 7	78 g	
6. The number of water molecules in a drop o	f <mark>wat</mark> er weigh	hing <mark>0.018 g i</mark> s	
(a) 6.022×10^{26} (b) 6.022×10^{23}			
		<mark>co</mark> ntain <mark>in</mark> g no <mark>the</mark> rmally decompos <mark>able impurit</mark> i	
		arbon dioxide gas. The percentage of impurity	in the
sample is (a) 0 %	(b) 4.4 %	(c) 16 % (d) 8.4 %	
8 . When 6.3 g of sodium bi <mark>carbon</mark> ate is add	e <mark>d to</mark> 30 g o <mark>f</mark>	<mark>f a</mark> cetic a <mark>cid s</mark> olution, t <mark>he resid</mark> ual solution is fo	und to
weigh 33 g. The nu <mark>mber of</mark> moles of ca <mark>r</mark>	<mark>bo</mark> n dioxide <mark>r</mark>	<mark>^rel</mark> eased in <mark>the</mark> reaction is	
(a) 3 (b) 0.75	(c) 0.075	(d) 0.3	
		(g), each at 273 K at 1 atm the moles of HCl (g), f	ormed
is equal to (a) 2 m	oles of HCl (g	(b) 0.5 moles of HCl (g)	
(c) 1.5	moles of H <mark>Cl</mark>	(g) (d) 1 moles of HCl (g)	
【10. Hot concentrated sulphuric acid <mark>is a mo</mark> de	erately str <mark>ong</mark>	<mark>g ox</mark> idising agen <mark>t. Whic</mark> h of the following reaction	s does
not show oxidising behaviour?			
(a) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$	(b) C	$C+ 2H_2SO_4 \rightarrow CO_2+2SO_2+2H_2O$	
(c) BaCl ₂ + H ₂ SO ₄ \rightarrow BaSO ₄ +2HCl	(d) none of t	the above	
<mark>r</mark> 11. Choose the dispro <mark>portionation</mark> reaction ar	nong the fol <mark>lo</mark>	<mark>o</mark> wing redox <mark>reactions</mark> .	
(a) $3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$	(b) P	<mark>P4 (s) +</mark> 3 Na <mark>OH</mark> + 3H2O → PH3(g) + 3NaH2PO2 (aq)	
(c) $Cl_2(g) + 2KI(aq) \rightarrow 2KCl(aq) + I_2$	(d) C	$\text{Cr}_2\text{O}_3(s) + 2\text{Al}(s) \to \text{Al}_2\text{O}_3(s) + 2\text{Cr}(s)$	
12. The equivalent mass <mark>of potass</mark> ium permar	iganate in alk		H-
(a) 31.6 (b) 52.7	(c) 79	(d) None of these	

☆☆☆

13. Which one of the following represents 180g of water?			
(a) 5 Moles of water	(b) 90 moles of	water	
(c) (6.022 X 10 ²³) / 180 molecules of water	(d) 6.022x10 ²⁴ 1	molecules of water	
\searrow 14. 7.5 g of a gas occupies a volume of 5.6 litres at 0°C and 1°	atm pressure. Th	e gas is	
(a) NO (b) N_2O (c) CO	(d) CO ₂		
15. Total number of electrons pres <mark>ent in</mark> 1.7 g of ammo <mark>nia is</mark>	(2) 6 (0	022×10^{23}	(b) 6.022×10^{2}
	(a) 0.0	122 × 10	1.7
16. The correct increasing order o <mark>f the ox</mark> idation stat <mark>e of</mark>	sulphur in (c) 6.0	022×10^{24}	(d) 6.022×10^{23}
the anions		1.7	1.7
SO_4^{2-} , SO_3^{2-} , $S_2O_4^{2-}$, $S_2O_6^{2-}$ is			
(a) $SO_3^{2-} < SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (b) $SO_4^{2-} < S_2O_6^{2-}$	$O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$		
(c) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-} < SO_4^{2-}$ (d) $S_2O_6^{2-} < S_2$	$O_4^{2-} < SO_4^{2-} < SO_3^{2-}$		
17. The equivalent mass of ferrous oxalate is			
a) Molar mass of ferrous oxalate /1	b) Mol <mark>ar m</mark> ass o	of ferr <mark>ous oxala</mark> te /2	
c) Molar mass of ferrous oxalate /3	d) No <mark>ne o</mark> f these	e	
$\frac{7}{18}$ 18. If Avogadro number were changed from 6.022×10^{23} to	6.022 x <mark>10</mark> 20, this	w <mark>ould c</mark> hange	
(a) the ratio of chemical species to each other in a ba <mark>la</mark>	nced <mark>equ</mark> ation		
(b) the ratio of elements to each other in a compound			
(c) the definition of mass in units of grams			
(d) the mass of one mole of carbon			
19. Two 22.4 litre containers A and B contains 8 g of O_2 and	8 g of SO ₂ respect	ively at 273 Kand 1 atm	pressure, t
(a) Number of molecules in A and B are same			
(b) Number of molecules in B is more than that in A.			
(c) The ratio between the number of molecules in A to	number of molec	cules in B is 2:1	
(d) Number of molecules in B is three times greater th	an the number <mark>of</mark>	molecules in A.	
20. What is the mass of p <mark>recipitate form</mark> ed wh <mark>en 5</mark> 0 m <mark>l</mark> of 8	.5 % solution of A	AgNO₃ is mixed with 100	ml of 1.865
% potassium chloride solution? (a) 3.59 g (b) 7	g (c) 14 g	(d) 28 g	
21. The ma <mark>ss of a gas that</mark> occupies a vo <mark>lum</mark> e of 6 <mark>1</mark> 2.5 ml	at ro <mark>om</mark> tempera	ture and pressure (250	C and 1 atn
press <mark>ure) is 1.1</mark> g. The molar mass of the gas is			
(a) 66. <mark>25</mark> g mol ⁻¹ (b) 44 g mol ⁻¹ (c) 24.5 g m <mark>ol</mark>	-1	d) <mark>662.5</mark> g mol ⁻¹	
22. Which of the following c <mark>ontain sa</mark> me num <mark>ber o</mark> f carbo <mark>n a</mark>	<mark>toms as in 6</mark> g of 6	carb <mark>on-12.</mark>	
(a) 7.5 g ethane (b) <mark>8 g met</mark> hane (c) both (a) a	nd (b)	(d) no <mark>ne of the</mark> se	
23. Which of the follo <mark>wing com</mark> pound(s) h <mark>as /ha</mark> ve perce <mark>nta</mark>	ge of carb <mark>on s</mark> am	e as that <mark>in ethylene</mark> (C ₂ I	H_4)
(a) propene (b) ethyne (c) be	nzene	(d) ethane	
24. Which of the following is/are true with respect to carbon	n -12.		
(a) relative atomic mass is 12 u (b) oxidation number	of carbon is +4 ir	<mark>1 al</mark> l its compounds.	
(c) 1 mole of carbon-12 contain 6.022 × 10 ²² carbon at	oms	(d) all of these	
25. Which one of the following is used as a standard for ator	nic mass.		
(a) ${}_{6}C^{12}$ (b) ${}_{7}C^{12}$ (c) ${}_{6}C^{13}$	(d) ₆ C ¹⁴		
ADDITIONAL:			
1. One mole of CO_2 contains(a) 6.023×10^{23} atom	ns of C	(b) 6.023 x 10 ²³ atoms of	f 0
(c) 18.1 x 10 ²³ molec		(d) 3g atoms of CO ₂	
ζ 2. The number of moles of H ₂ in 0.224 liter of hydrogen ga	s at STP is (a) 1	(b) 0.1 (c) 0.01 (d) 0.00	1

☆

$\stackrel{\checkmark}{\swarrow}$	3. The number of molecules in 16 g of methane is(a) 3.023×10^{23} (b) 6.023×10^{23}
*	
☆☆	4. The equivalent mass of KMnO ₄ when it is converted to MnSO ₄ is equal to molar mass divided by
☆	(a) 6 (b) 4 (c) 5 (d) 2
☆	
*	6. Molecular mass = (a) Vapour Density × 2 (b) Vapour Density ÷ 2 (c) Vapour Density × 3 (d) Vapour Density
☆	7. When 22 L of hydrogen gas is mixed with 11.2 L of chlorine gas, each at STP, the moles of HCl gas formed is
☆	equal to(a) 2 (b) 0.5 (c) 1.5 (d) 1
☆	8. 5.6 L of a gas at STP are found to have mass of 11 g. The molecular mass of the gas is
$\stackrel{\wedge}{\Rightarrow}$	
☆	(a) =
☆	10. The mass of one more of CaCl ₂ is(a) 55.5 g mor ² (b) 111 g mor ² (c) 222 g mor ² (d) 77.5 g mor ²
☆	11. The formula weight of ethanol (C_2H_5OH) is(a) 56.5 amu (b) 16 amu (c) 60 amu (d) 46 amu
*	
☆	
☆	(a) 10 motos (b) 20 motos (c) 1 motos
☆	14. The number of moles of oxygen required to prepare 1 mole of water is
$\stackrel{\wedge}{\searrow}$	(a) 1 mole (b) 0.5 mole (c) 2 moles (d) 0.4 mole
$\stackrel{\wedge}{\sim}$	
☆	
444	16. Identify the compound formed during the rusting of iron.
☆	(a) Fe_2O_3 (b) Fe_2O_3 . x H_2O (c) FeO . x H_2O (d) FeO 17. The oxidation number of Cr in $K_2Cr_2O_7$ is
	17. The oxidation number of Ci iii $K_2CI_2O_7$ is
☆	
☆	20. Which one of the following is an example of disproportionation reaction?
☆	
₩	
☆	22. The oxidation number of Fe in Fe ₂ (SO ₄) ₃ is(a) + 2 (b) + 3 (c) + 2, + 3 (d) 0
☆	
☆	(a) Cl_{21} (b) KCl (c) $KClO_3$ (d) Cl_2O_7
₩ ★	
☆ ☆ ☆ ☆ ☆	2. Quantum Mechanical Model of Atom
$\stackrel{\wedge}{\sim}$	1. Electronic configuration of species M ²⁺ is 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ and its atomic weight is 56. The number of
☆	neutrons in the nucleus of specie <mark>s M is a) 26 b) 22 c) 30 d) 24</mark>
₩ •	2. The energy of light of wavelength 45 nm is a) $6.67 \times 10^{15} \text{J}$ b) $6.67 \times 10^{11} \text{J}$ c) $4.42 \times 10^{-18} \text{J}$ d) $4.42 \times 10^{-15} \text{J}$ 3. The energies E_1 and E_2 of two radiations are 25 eV and 50 eV respectively. The relation between their
☆	3. The energies E_1 and E_2 of two radiations are 25 eV and 50 eV respectively. The relation between their
	wavelengths ie λ_1 and λ_2 will be $a) \frac{\lambda_1}{\lambda_2} = 1$ $b) \lambda_1 = 2\lambda_2$ $c) \lambda_1 = \sqrt{25 \times 50} \lambda_2$ $d) 2\lambda_1 = \lambda_2$
*	$\frac{1}{\lambda_2} = 1 \qquad \qquad 3/\lambda_1 = \sqrt{23} \times 30 \lambda_2 = 3/2 \times 11 \lambda_2$
☆	4. Splitting of spectral lines in an electric field is called
₩ ☆	
*	5. Based on equation $E = -2.178 \times 10^{-18} J z^2/n^2$, certain conclusions are written. Which of them is not correct a) Equation can be used to calculate the change in energy when the electron changes orbit
*	5
W	5

 $\stackrel{\wedge}{\searrow}$

b) For n = 1, the electron has a more negative energy than it does for n = 6 which means that the electron is more loosely bound in the smallest allowed orbit

- c) The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.
- d) Larger the value of n, the larger is the orbit radius.

 $\stackrel{\checkmark}{\sim}$ 6. According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon? a) n = 6 to n = 1 b) n = 5 to n = 4 c) n = 5 to n = 3d) n = 6 to n = 5

7. Assertion : The spectrum of He+ <mark>is expec</mark>ted to be sim<mark>ilar to</mark> that of hydro<mark>gen</mark>

Reason: He+ is also one electron system.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) If assertion is true but reason is false
- (d) If both assertion and reason are false
- 48. Which of the following pairs of d-orbitals will have electron density along the axes?
 - a) dz^2 , dxz
- b) dxz, dyz
- c) dz^2 , dx^2-y^2
- d) dxy, dx2-y2
- - a) azimuthal quantum number
- b) spin quantum number
- c) magnetic quantum number
- d) orbital quantum number
- 10. The electronic configuration of Eu (Atomic no. 63) Gd (Atomic no. 64) and Tb (Atomic no. 65) are
 - a) [Xe] 4f⁶ 5d¹ 6s², [Xe] 4f⁷ 5d¹ 6s² and [Xe] 4f⁸ 5d¹ 6s²
 - b) [Xe] 4f⁷, 6s², [Xe] 4f⁷ 5d¹ 6s² and [Xe] 4f⁹ 6s²
 - c) [Xe] 4f⁷, 6s², [Xe] 4f⁸ 6s² and [Xe] 4f⁸ 5d¹ 6s²
 - d) [Xe] 4f⁶ 5d¹ 6s², [Xe] 4f⁷ 5d¹ 6s² and [Xe] 4f⁹ 6s²
- 11. The maximum number of electrons in a sub shell is given by the expression
 - a) 2n²
- b) 2l + 1
- c) 4l + 2
- d) none of these

- ★12. For d-electron, the orbital angular momentum is

- ☆ 13. What is the maximum numbe<mark>rs of e</mark>lectrons <mark>tha</mark>t can b<mark>e a</mark>ssocia<mark>ted</mark> with the <mark>follow</mark>ing set of quantum
 - numbers ? n = 3, l = 1 and m = -1 a) 4
- b) 6
- c) 2
- 14. Assertion: Number of radial and angular nodes for 3p orbital are 1, 1 respectively.

Reason: Number of radial and angular nodes depends only on principal quantum number.

- (a) both assertion and reason are true and reason is the correct explanation of assertion.
- (b) both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) assertion is true but reason is false
- (d) both assertion and reason are false
- $\stackrel{\checkmark}{\triangleright}$ 15. The total number of orbitals associated with the principal quantum number n = 3 is a) 9 b) 8 c) 5 d) 7
 - 16. If n = 6, the correct sequence for filling of electrons will be,
 - a) ns \rightarrow (n 2) f \rightarrow (n 1)d \rightarrow np
- b) ns \rightarrow (n 1) d \rightarrow (n 2) f \rightarrow np
- c) ns \rightarrow (n 2) f \rightarrow np \rightarrow (n 1) d
- d) none of these are correct

$\stackrel{\wedge}{\Longrightarrow}$						
	7. Consider the following sets of quantum numbers :		n	1	m	S
☆	Which of the following sets of quantum number is not possible?	(i)	3	0	0	+ 1/2
☆	a) (i), (ii), (iii) and (iv) b) (ii), (iv) and (v)					
$\stackrel{\wedge}{\simeq}$	c) (i) and (iii) d) (ii), (iii) and (<mark>iv)</mark>	(ii)	2	2	1	$-\frac{1}{2}$
☆ 1	8. How many electrons in an atom with atomic number 105 can have (n + l) = 8?	(iii)	4	3	-2	+ 1/2
☆	a) 30 b) 17 c) 15 d) unpredictable					
×1	9. Electron density in the yz plan <mark>e of 3dx</mark> y orbital is	(iv)	1	0	-1	+ 1/2
☆	a) zero b) 0.50 c) 0.75 d) 0.90	(v)	3	4	3	- 1/2
☆ 2	0. If uncertainty in position and mo <mark>mentum</mark> are equal, <mark>then m</mark> inimum	(,,	J	•	J	/2
☆u	ncertainty in velocity is					
☆	a) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$ d) $\sqrt{\frac{h}{\pi}}$ c) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$	d)	$\frac{h}{4\pi}$			
₩	m γπ γπ 2m γπ		470			
2 € 2	1. A macroscopic pa <mark>rticle of ma</mark> ss 100 g an <mark>d mo</mark> ving at a <mark>vel</mark> ocity of 1 <mark>00 c</mark> m s−1 wi	ll have	a de E	Brogli	e	
$\stackrel{\frown}{\mathbf{A}}$	wavelength of a) 6.6×10^{-29} cm b) 6.6×10^{-30} cm c) 6.6×10^{-31} cm	d) 6.6	× 10	⁻³² cm	ı	
☆ 2	2. The ratio of de Broglie w <mark>aveleng</mark> ths of a de <mark>uter</mark> ium at <mark>om</mark> to that <mark>of a</mark> n α - partic <mark>l</mark>	<mark>e, w</mark> her	ı the v	eloci	ty of t	he
$\stackrel{\wedge}{\searrow}$	former is five times greater than that of later, is a) 4 b) 0.2	c) 2.5			d) 0.4	
×2	3. The ene <mark>rgy of an elect</mark> ron in the <mark>3rd orb</mark> it of h <mark>ydr</mark> ogen <mark>at</mark> om is <mark>–E</mark> . The e <mark>nergy</mark> o	f an elec	ctron	in the	e first	orbit
₩	will be a) –3E b) – <mark>E3 c</mark>) – <mark>E9 d) –9E</mark>					
2 € 2	4. Time independent Schrodinger wave equation is					
$\stackrel{\frown}{\mathbf{A}}$, A 972m					
*	a) $\hat{H}\psi = E\psi$ b) $\nabla^2 \psi + \frac{8\pi^2 m}{b^2}$ (E-	$-V) \psi = 0$)			
☆ ☆ ☆ ☆	c) $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{2m}{h^2} (E - V) \psi = 0$ d) all of these					
₩	c) $\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2} + \frac{\partial}{\partial z^2}$					
☆						
	5. Which of the following does not represent the mathematical expression for the	Heisenl	berg ι	ıncer	tainty	
	rincinle?					
$\stackrel{\bigstar}{\sim}$	a) $\Delta x . \Delta p \ge \frac{h}{4\pi}$ b) $\Delta x . \Delta v \ge \frac{h}{4\pi m}$ c) $\Delta E . \Delta t \ge \frac{h}{4\pi}$ d) $\Delta E . \Delta x \ge \frac{h}{4\pi}$					
☆ ☆ ☆	c) $\Delta E \cdot \Delta t \ge h_{4\pi}$ d) $\Delta E \cdot \Delta x \ge h_{4\pi}$					
☆	c) $\Delta E \cdot \Delta t \ge \frac{11}{4\pi}$					
☆						
	dditional:					
☆ 1	The energy of an electron of hydrogen atom in 2nd main shell is equal to					
☆	(a) $-13.6 \text{ eV atom}^{-1}$ (b) $-6.8 \text{ eV atom}^{-1}$ (c) $-0.34 \text{ eV atom}^{-1}$ (d) $-3.6 \text{ eV atom}^{-1}$	3.4 eV a	tom-1			
2	The energy of an electron of hydrogen atom in 2nd main shell is equal to (a) $-13.6 \text{ eV atom}^{-1}$ (b) $-6.8 \text{ eV atom}^{-1}$ (c) $-0.34 \text{ eV atom}^{-1}$ (d) $-3.6 \text{ eV atom}^{-1}$ (d) $-3.6 \text{ eV atom}^{-1}$ (e) $-3.6 \text{ eV atom}^{-1}$ (f) $-3.6 \text{ eV atom}^{-1}$ (e) $-3.6 \text{ eV atom}^{-1}$ (f) $-3.6 \text{ eV atom}^{-1}$ (g) $-3.6 \text{ eV atom}^{-1}$ (h) $-3.6 $					
☆	(a) $-1.51 \text{ eV atom}^{-1}$ (b) $-6.8 \text{ eV atom}^{-1}$ (c) $+1.51 \text{ eV atom}^{-1}$ (d) $-3.8 \text{ eV atom}^{-1}$	3.4 eV a	tom-1			
☆ 3	The maximum number of electrons that can be accommodated in N shell is					
$\stackrel{\wedge}{\Longrightarrow}$	(a) 8 (b) 18 (c) 32 (d) 36					
☆ 4	When I = 0, the number of electrons that can be accommodated in the subshell is					
☆	(a) 8 (b) 18 (c) 32 (d) 36 When l = 0, the number of electrons that can be accommodated in the subshell is (a) 0 (b) 2 (c) 6 (d) 8					
~ 5	Which of the following provides the experimental justification of magnetic quant	um nur	nber?			
$\stackrel{\sim}{\Rightarrow}$		ıantum				
☆ 6	What are the values of n 1 m and s for 2n electron?					
$\stackrel{\wedge}{\Rightarrow}$	(a) 3, 2, 1, 0 (b) 3, 1,-1, $+\frac{1}{2}$ (c) 3, 2, $+1$, $-\frac{1}{2}$ (d) 3,	$0, 0, +\frac{1}{2}$	<u>[2]</u>			
☆ 7	The region where the probability density function of electron reduces to zero is	alled				
₩	(a) orbit (b) orbital (c) nodal surface (d) subshell					
☆						
☆	(a) 3, 2, 1, 0 (b) 3, 1,-1, +½ (c) 3, 2, +1, -½ (d) 3, The region where the probability density function of electron reduces to zero is (a) orbit (b) orbital (c) nodal surface (d) subshell					

	8. Which one of the following is the	e correct increasii	ng order of eff	iecuve n	ucieai cii	arge reit by	y an electiv	J11 i		
	(a) s>p>d>f (b) s <p<d<< th=""><th></th><th></th><th></th><th><p<d<s< th=""><th></th><th></th><th></th></p<d<s<></th></p<d<<>				<p<d<s< th=""><th></th><th></th><th></th></p<d<s<>					
√ ✓	9. The value of n, l, m and s of 8th ϵ	electron in an oxy	gen atom are	respecti	vely					
						⁄2				
	10. Which of the following is the ac	ctual configuratio	n of Cr (Z = 24)	4)?						
	(a) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁴ 4s ²	(b) 1s			ks1					
***	(c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$	(d) 1s	s ² 2s ² 2p ⁶ 3s ² 3	_						
	(a) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s^2$ (c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ 11. The orbital with $n = 3$ and $l = 2$	is		•						
₩ ₩	(a) 3s (b) 3p (c)	3d (d) 3J								
₩										
	₹	3. Periodic	<u>Classification</u>	n of Elen	nents					
₩ ₩	EVALUATION:									
	I. Choose the correct answer:									
$\frac{1}{2}$	7 1. What would be the IUPAC <mark>name</mark>	for an elem <mark>ent w</mark>	ith at <mark>omi</mark> c nu	m <mark>ber 2</mark> 2	2?					
$\frac{1}{2}$	^r a) bibi <mark>biium</mark> b) b	oididium 💮 💮	c) d <mark>idi</mark> bium	1	d)bil	bibium				
7	2. The electronic configuration of	the elements A a	and B <mark>ar</mark> e 1s²	<mark>, 2s</mark> ², 2p	⁶ ,3s ² and	l 1s², 2s², 2	2p ⁵ respect	<mark>tiv</mark> ely. The		
	formula of the ionic compou	nd th <mark>at can</mark> be for	<mark>m</mark> ed b <mark>et</mark> ween	these el	<mark>e</mark> ments i	S				
₹	a) AB b) A	AB_2 c) A_2	3 d) r	none of t	he above					
		<mark>ch the differentia</mark>	ting electron	enters t	he anti	<mark>penultim</mark> at	e shell of	atoms are		
$\frac{1}{2}$	called a) p-block elements	b) d-block el	ements	c) s-	3. The group of elements in which the differentiating electron enters the anti penultimate shell of atoms are called a) p-block elements b) d-block elements c) s-block elements d) f-block elements					
	4 In which of the following ontions the order of arrangement does not agree with the variation of property									
☆	4. In which of the following option	ons the order of	arrangement	does no	ot agree	with the v	ariation of	f property		
	4. In which of the following option indicated against it?	ons the order of	arrangement	does no	ot agree	with the v	ariation of	f property		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing	ons the order of electron gain ent	arrangement halpy) b) L	does no	ot agree K < Rb (i	with the v	rariation of	f property		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing	ons the order of gelectron gain ent	arrangement halpy) b) L	does no	ot agree K < Rb (i	with the v	variation of	f property dius) alpy)		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Which of the following elements</f<sup></na<sup>	ons the order of gelectron gain ent reasing ionic size)	arrangement halpy) b) L d) B < C <	does no i < Na < 0 < N (ir	ot agree K < Rb (i ocreasing	with the v	variation of	f property dius) alpy)		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c). Which of the following elements a) Chlorine b) N</f<sup></na<sup>	ons the order of gelectron gain ent reasing ionic size) will have the high	c) Cesium	i < Na < O < N (ir egativity	ot agree K < Rb (i creasing d) Flo	with the v ncreasing n g first ionis	variation of	f property dius) alpy)		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c). Which of the following elements a) Chlorine b) N</f<sup></na<sup>	ons the order of gelectron gain ent reasing ionic size) will have the high	c) Cesium	i < Na < O < N (ir egativity	ot agree K < Rb (i creasing d) Flo	with the v ncreasing r g first ionis	variation of	f property dius) alpy)		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na+ (increasing="" <f-="" c).="" elements<="" following="" of="" th="" the="" which=""><th>ons the order of gelectron gain ent reasing ionic size) will have the high</th><th>c) Cesium</th><th>i < Na < O < N (ir egativity</th><th>ot agree K < Rb (i creasing d) Flo</th><th>with the v ncreasing r g first ionis</th><th>variation of</th><th>f property dius) alpy)</th></na+>	ons the order of gelectron gain ent reasing ionic size) will have the high	c) Cesium	i < Na < O < N (ir egativity	ot agree K < Rb (i creasing d) Flo	with the v ncreasing r g first ionis	variation of	f property dius) alpy)		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c). Which of the following elements a) Chlorine b) N</f<sup></na<sup>	ons the order of gelectron gain ent reasing ionic size) will have the high Nitrogen on thalpies (in kJ mo	c) Cesium	i < Na < O < N (ir egativity	ot agree K < Rb (i creasing d) Flo	with the v ncreasing r g first ionis	variation of	f property dius) alpy)		
	4. In which of the following optic indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Chlorine b) Note that the following elements a) Chlorine b) Note that the following elements a) Chlorine contact the element is a) phosphocy Aluminium c) Aluminium contact the following elements a) phosphocy Aluminium contact the following elements and phosphocy are the following elements and phosphocy are the following option of the following elements are the following elements and the following option of the following elements are the fo</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high Nitrogen orthalpies (in kJ moorus b)Soo	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elem	does not also do	K < Rb (increasing d) Floodings	with the vincreasing grist ionis	metallic rad	alpy)		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing d) Flugiven be	with the value of the control of the	metallic radation of	IE ₅		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing d) Flugiven be	with the value of the control of the	metallic radation of	IE ₅		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing d) Flugiven be	with the value of the control of the	metallic radation of	IE ₅		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing d) Flugiven be	with the value of the control of the	metallic radation of	IE ₅		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing? d) Flugiven being 1E2 1,810	with the value of the second o	metallic radation of metallic radation enthal	IE ₅ 14,820		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing d) Flugiven be IE ₂ 1,810	with the value of the concreasing of the constant of the const	metallic radation of metallic radation enthallic ra	IE ₅ 14,820		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing? d) Flugiven besite IE2 1,810 cation, s	mith the value of the control of the	metallic radius ation enthal IE ₄ 11,580	IE ₅ 14,820		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing ? d) Flugiven be IE2 1,810 cation, sanion, large irst grou	mith the value of the period o	metallic radiation of metallic radiation enthallic radius riodic table	IE ₅ 14,820 dius		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing ? d) Flugiven be IE2 1,810 cation, sanion, large irst grou	mith the value of the position of the period	metallic radiation of metallic radiation enthallic radius riodic table	IE ₅ 14,820 dius		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) will have the high itrogen athalpies (in kJ moorus b) Sodum d) Sili	arrangement chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elen dium icon	does not also d	K < Rb (increasing? d) Flugiven being irea in increasing irea in increasing? at its increasing irea irea irea irea irea irea irea irea	mith the value of the period o	metallic radation of metallic radius radius riodic table the 2nd per	IE_5 $14,820$ dius e		
	4. In which of the following optic indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Al³⁺ < Mg²⁺ <na<sup>+ <f<sup>- (increasing c) Alorine b) Note that following elements a) Chlorine b) Note that following elements a) Chlorine c) Aluminium construction and the first ioniz a) Na > Al > Mg > Si > P c) Mg > Na > Si > P allowing elements a) Amongst the isoelectronic b) Amongst isoelectric special c) Atomic radius of the element d) Atomic radius of the element periodic table.</f<sup></na<sup></f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) is will have the high Nitrogen inthalpies (in kJ more than the high Nitrogen in thalpies (in kJ more than the high Nitrogen in kJ more than the high Nitrog	chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elem lium icon of the order. < Al < Mg < Si < Al < Mg < P the positive cl gative charge of one moves do s one moves a	i < Na < 0 < N (ir egativity) nent are IE ₁ 577.5 i < P < Si harge on on the are own the facross from	K < Rb (increasing? d) Flugiven be IE2 1,810 cation, sonion, largeirst ground om left to the cate of lef	mith the value of the period o	metallic radation of metallic radation enthallic radius riodic table the 2nd per ve to mos	IE ₅ 14,820 dius e riod of the		
	4. In which of the following optic indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Al³⁺ < Mg²⁺ <na<sup>+ <f<sup>- (increasing c) Alorine b) Note that following elements a) Chlorine b) Note that following elements a) Chlorine c) Aluminium construction and the first ioniz a) Na > Al > Mg > Si > P c) Mg > Na > Si > P allowing elements a) Amongst the isoelectronic b) Amongst isoelectric special c) Atomic radius of the element d) Atomic radius of the element periodic table.</f<sup></na<sup></f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) is will have the high Nitrogen inthalpies (in kJ more than the high Nitrogen in thalpies (in kJ more than the high Nitrogen in kJ more than the high Nitrog	chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elem lium icon of the order. < Al < Mg < Si < Al < Mg < P the positive cl gative charge of one moves do s one moves a	i < Na < 0 < N (ir egativity) nent are IE ₁ 577.5 i < P < Si harge on on the are own the facross from	K < Rb (increasing? d) Flugiven be IE2 1,810 cation, sonion, largeirst ground om left to the cate of lef	mith the value of the period o	metallic radation of metallic radation enthallic radius riodic table the 2nd per ve to mos	IE ₅ 14,820 dius e riod of the		
	4. In which of the following optic indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Al³⁺ < Mg²⁺ <na<sup>+ <f<sup>- (increasing c) Alorine b) Note that following elements a) Chlorine b) Note that following elements a) Chlorine c) Aluminium construction and the first ioniz a) Na > Al > Mg > Si > P c) Mg > Na > Si > P allowing elements a) Amongst the isoelectronic b) Amongst isoelectric special c) Atomic radius of the element d) Atomic radius of the element periodic table.</f<sup></na<sup></f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) is will have the high Nitrogen inthalpies (in kJ more than the high Nitrogen in thalpies (in kJ more than the high Nitrogen in kJ more than the high Nitrog	chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elem lium icon of the order. < Al < Mg < Si < Al < Mg < P the positive cl gative charge of one moves do s one moves a	i < Na < 0 < N (ir egativity) nent are IE ₁ 577.5 i < P < Si harge on on the are own the facross from	K < Rb (increasing? d) Flugiven be IE2 1,810 cation, sonion, largeirst ground om left to the cate of lef	mith the value of the period o	metallic radation of metallic radation enthallic radius riodic table the 2nd per ve to mos	IE ₅ 14,820 dius e riod of the		
	4. In which of the following optic indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Al³⁺ < Mg²⁺ <na<sup>+ <f<sup>- (increasing c) Alorine b) Note that following elements a) Chlorine b) Note that following elements a) Chlorine c) Aluminium construction and the first ioniz a) Na > Al > Mg > Si > P c) Mg > Na > Si > P allowing elements a) Amongst the isoelectronic b) Amongst isoelectric special c) Atomic radius of the element d) Atomic radius of the element periodic table.</f<sup></na<sup></f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) is will have the high Nitrogen inthalpies (in kJ more than the high Nitrogen in thalpies (in kJ more than the high Nitrogen in kJ more than the high Nitrog	chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elem lium icon of the order. < Al < Mg < Si < Al < Mg < P the positive cl gative charge of one moves do s one moves a	i < Na < 0 < N (ir egativity) nent are IE ₁ 577.5 i < P < Si harge on on the are own the facross from	K < Rb (increasing? d) Flugiven be IE2 1,810 cation, sonion, largeirst ground om left to the cate of lef	mith the value of the period o	metallic radation of metallic radation enthallic radius riodic table the 2nd per ve to mos	IE ₅ 14,820 dius e riod of the		
	4. In which of the following option indicated against it? a) I < Br < Cl < F (increasing c) Al ³⁺ < Mg ²⁺ <na<sup>+ <f<sup>- (increasing c) Allorine b) No. 6. Various successive ionisation entry controls. The element is a) phosphore c) Aluminium.</f<sup></na<sup>	ons the order of gelectron gain entreasing ionic size) is will have the high Nitrogen inthalpies (in kJ more than the high Nitrogen in thalpies (in kJ more than the high Nitrogen in kJ more than the high Nitrog	chalpy) b) L d) B < C < hest electrone c) Cesium ol-1) of an elem lium icon of the order. < Al < Mg < Si < Al < Mg < P the positive cl gative charge of one moves do s one moves a	i < Na < 0 < N (ir egativity) nent are IE ₁ 577.5 i < P < Si harge on on the are own the facross from	K < Rb (increasing? d) Flugiven be IE2 1,810 cation, sonion, largeirst ground om left to the cate of lef	mith the value of the period o	metallic radation of metallic radation enthallic radius riodic table the 2nd per ve to mos	IE ₅ 14,820 dius e riod of the		

☆

lpha 11. Which one of the following is the least electr	onegative elemer	nt?	
a) Bromine b) Chlorine	c) I	odine	d) Hydrogen
12. The element with positive electron gain entl	nalpy is		
a) Hydrogen b) Sodium	c) A	Argon	d) Fluorine
	egativit <mark>y values</mark> a	mong the el <mark>e</mark> men	nts X, Y, Z and A with atomi
numbers 4, 8 , 7 and 12 respectively			
a) $Y > Z > X > A$ b) $Z > A > Y > X$	c) X > Y > Z	> A d) X >	<mark>→ Y</mark> > A > Z
14. Assertion: Helium has the highe <mark>st value</mark> of ic	onisatio <mark>n energ</mark> y a	among all <mark>the elen</mark>	nents known
Reason: Helium has the highes <mark>t value</mark> of e	electron <mark>affinit</mark> y a	mong all <mark>the ele</mark> m	ents known
a) Both assertion and reason are true and	reason i <mark>s corr</mark> ect	explana <mark>tion fo</mark> r tl	ne assertio <mark>n</mark>
b) Both asserti <mark>on and</mark> reason are t <mark>rue bu</mark> t	the reas <mark>on is </mark> not	the cor <mark>rect e</mark> xplai	nation fo <mark>r the</mark> assertion
c) Assertion is true and the reason is false			
d) Both assertion and the reason are false			
☆ 15. The electronic configu <mark>ration of</mark> the atom h <mark>av</mark>	<mark>⁄in</mark> g maxi <mark>mum</mark> dif	fere <mark>nce i</mark> n first an	i <mark>d second</mark> ionisation energies is
a) 1s², 2s², 2p6, 3s¹	•	2p <mark>6, 3s</mark> 2	
c) 1s ² , 2s ² , 2p ⁶ , 3s ² , 3s ² , 3p ⁶ , 4s ¹	d) 1s ² , 2s ² ,	2p6, 3s2, 3p1	
🛴 16. Which o <mark>f the followin</mark> g is second <mark>most</mark> electr	o <mark>neg</mark> ative <mark>el</mark> emer	ı <mark>t?</mark>	
a) Chiorine b) Fluorine	c) Oxygen	a) Su	•
		c) + 527 kcal	mol ⁻¹ d) - 527 kcal mol ⁻¹
18. In a given shell the order of screening effect			
a) $s > p > d > f$ b) $s > p > f > d$	c) f > d > p	> s d) f > p > s > 0	d
₩ .			
_	<mark>id Si are 496, 73</mark>	7 and 786 kJ mo	l-1 respectively. The ionisation
potential of the Will be closed to			
a) 760 kJ mol ⁻¹ b) 575 kJ mol ⁻¹	c) 801 kJ m	ol ⁻¹ d) 41	9 kJ mol ⁻¹
	etallic character v	w <mark>he</mark> n we move from	om left to right in a period and
	., ., .,		
a) Decreases in a period and increases alo	ng the group b)	increases in a peri	od and decreases in a group
c) Increases both in the period and the gro	oup a) l	Decreases both in	the period and in the group
22. How does electron affinity change when we	move from left to	right in a period	in the periodic table?
a) Generally increases	Generally decre	ases	
			S
	-	- 10.	and Al
	c) Be and B	a) Be	and Ai
	Do (b) Cl Dr l	(a) Li Na V	(d) Po P C
		• •	(d) Be, B, C
			aments are periodic functions
of their (a) atomic volume (b) atomic numb			
4. Which one of the following is called halogon f		weights (u) Va	nency
(a) Group 17 (b) Group 16		(ሃ) ር	roun 2
(u) Group 17 (b) Group 10 (t	oj droup I	(u) di	10up 2
	9		
	a) Bromine b) Chlorine 12. The element with positive electron gain entl a) Hydrogen b) Sodium 13. The correct order of decreasing electrone numbers 4, 8, 7 and 12 respectively a) Y > Z > X > A b) Z > A > Y > X 14. Assertion: Helium has the highest value of it Reason: Helium has the highest value of it a) Both assertion and reason are true and b) Both assertion and reason are true but c) Assertion is true and the reason is false d) Both assertion and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and the reason are false d) Both assertion is true and and increases alo c) Increases both in the period and the great d) Both assertion is a period and increases alo c) Increases both in the period and the great d) Both assertion is not obeyed by (a) Ca, Sr, 2. Which of the following pairs of elements extance a) Be and Mg b) Li and Be ADDITIONAL: 1. The law of triads is not obeyed by (a) Ca, Sr, 2. Which of the following elements were unknown (a) Na, Mg (b) Fe, CO (c) 3. According to modem periodic law, the physic of their (a) atomic volume (b) atomic numb 4. Which one of the following is called halogen for the following is called haloge	a) Bromine b) Chlorine c) I 12. The element with positive electron gain enthalpy is a) Hydrogen b) Sodium c) A 13. The correct order of decreasing electronegativity values a numbers 4, 8, 7 and 12 respectively a) Y > Z > X > A b) Z > A > Y > X c) X > Y > Z 14. Assertion: Helium has the highest value of ionisation energy a Reason: Helium has the highest value of electron affinity a) Both assertion and reason are true and reason is correct b) Both assertion and reason are true but the reason is not c) Assertion is true and the reason are false 15. The electronic configuration of the atom having maximum diff a) 1s², 2s², 2p6, 3s¹ b) 1s², 2s², 2p6, 3s² b) Fluorine c) Oxygen 17. IE₁ and IE₂ of Mg are 179 and 348 kcal mol¹¹ respectively. The Mg → Mg²² + 2 e- is a) +169 kcal mol¹¹ b) -169 kcal mol¹¹ 18. In a given shell the order of screening effect is a) s > p > d > f b) s > p > f > d c) f > d > p 19. Which of the following orders of ionic radii is correct? a) H·> H⁺> H b) Na¹ > F > O² c) F > O² > c) F > O² > c) 20. The First ionisation potential of Na, Mg and Si are 496, 73 potential of Al will be closer to a) 760 kJ mol¹¹ b) 575 kJ mol¹¹ c) 801 kJ m 21. Which one of the following is true about metallic character to top to bottom in a group? a) Decreases in a period and the group d) 1 c) Increases both in the period and the group d) 2. How does electron affinity change when we move from left to a) Generally increases by Generally decrece; Remains unchanged d) First increases a b) Generally decrece; Remains unchanged d) First increases a a) Be and Mg b) Li and Be c) Be and E ADDITIONAL: 1. The law of triads is not obeyed by (a) Ca, Sr, Ba (b) Cl, Br, J. 2. Which of the following elements were unknown at that time of (a) Na, Mg (b) Fe, CO (c) K, Cu 3. According to modem periodic law, the physical and chemical p of their (a) atomic volume (b) atomic numbers (c) atomic 4. Which one of the following is called halogen family?	12. The element with positive electron gain enthalpy is a) Hydrogen b) Sodium c) Argon 13. The correct order of decreasing electronegativity values among the elemen numbers 4, 8, 7 and 12 respectively a) Y > Z > X > A b) Z > A > Y > X c) X > Y > Z > A d) X > X > X > X > A b) Z > A > Y > X c) X > Y > Z > A d) X > X > X > A b) Z > A > Y > X c) X > Y > Z > A d) X > X > X > X > X > X > X > X > X > X

☆

★5. Which one of the following is a metalloid? (a) N	(b) P	(c) Bi	(d) Sb
6. The general electronic configuration of d-block ele	ments is		
(a) $ns^2 nd^{1-10}$ (b) $(n-1)d^{1-10} ns^{0-2}$ (c) $(n-1)d^{1-10} ns^{0-2}$	2)d ¹⁻¹⁰ (n - 1) ⁰⁻²	(d) ns ² 1	nd ⁵
$\frac{1}{2}$ 7. All the s – block and p-block elements excluding l8	group are called el	ements.	
★ (a) representative (b) transition	(c) inner – transit	ion	(d) trans uranium
8. Which of the following is the correct electronic cor	ifiguration of noble	gases?	
(a) $ns^2 np^6 nd^{10}$ (b) $ns^2 np^5$ (c) ns^2	np ⁶	(d) ns ²	np ³
9. Which of the following is not a periodic property?			
(a) Atomic radius (b) Ionization enthalpy	(c) Electron affini	100	dation number
★10. Which of the following property increases as we	go down the group	in the period	lic property?
(a) ionization energy (b) Electro negativity	(c) Atomic radius	(d) Elec	ctron affinity
11. Which one of the following is not an iso electronic	cion?		
$\stackrel{\leftarrow}{k}$ (a) Na ⁺ (b) Mg ²⁺ (c) Cl ⁻	<u>(d</u>) 02-	
★12. Which of the following possess almost same prop			ction?
(a) Zr, Hf (b) Na, K (c) Zn,	The state of the s) Ag. Au	
13. Which of the following have zero electron gain en			
(a) halogens (b) Noble gases (c) Cha) Gold	
14. Among all the elements which one has the highes			
(a) Chlorine (b) Bromine (c) Flu	CHARLES COMMENTS (SECONDS)) Iodine	
★15. Among the alkali metals which one form compou			er?
(a) Sodium (b) Potassium (c) Rul) Lithium	
16. Which of the following pair is not diagonally related to the following pai	ted? (a) Li, Mg (b) Li, Na (c) I	Be, Al (d) B, Si
17. Considering the elements B, Al, Mg and K, the cor			
(a) B > Al > Mg > K (b) Al > Mg > B > K (c) Mg) K > Mg > Al	> R
★ 18. Which one of the following is isoelectronic with N		-l	
$(a) N^{3-}$ (b) Mg^{2+} (c) Al^{3-}		above	
EVALUATION:	. <u>Hydrogen</u>		
 <u>\(\lambda \) I. Choose the correct answer:</u> 21. Which of the following statements about hydrogen 	is incorrect 2		
b) Dihydrogen acts as a reducing agent.			
c) Hydrogen has three isotopes of which tritic	im is the most com	mon	
d) Hydrogen never acts as cation in ionic salts		111011.	
a) Hydrogen ion, H ₃ O+ exists freely in solution b) Dihydrogen acts as a reducing agent. c) Hydrogen has three isotopes of which tritic d) Hydrogen never acts as cation in ionic salts 2. Water gas is a) H ₂ O (g) b) CO		CO + H ₂	d) $CO + N_2$
4) 1120 (g)			
★ ★3. Which one of the following statements is incorrect	wi <mark>th reg</mark> ard to orth	h <mark>o and p</mark> ara c	dihydrogen?
🕁 a) They are nuclear spin isomers			
b) Ortho isomer has zero nuclear spin wherea	ıs t <mark>he par</mark> a isomer l	nas <mark>one</mark> nucle	ear spin
c) The para isomer is favoured at low tempera	atures		
d) The therma <mark>l conductivi</mark> ty of the para isome	er is <mark>50</mark> % greater th	i <mark>an that o</mark> f th	e ortho isome <mark>r.</mark>
			d) group one elements
$\frac{1}{2}$ 5. Fritium nucleus contains a) 1p + 0 n		1p + 2n	d) none of these
☆ 6. Non-stoichiometric hy <mark>dr</mark> ides are formed by	a) p <mark>al</mark> ladium, vana		The state of the s
★ ★ ★ ★	c) manganese, lith	nium d) nitr	ogen, chlorine
₩ <u>₩</u>			
√	10		

☆☆☆☆

 \bigstar 7. Assertion : Permanent hardness of water is removed by treatment with washing soda. Reason: Washing soda reacts with soluble calcium and magnesium chlorides and sulphates in hard water to form insoluble carbonates a) Both assertion and reason are true and reason is the correct explanation of assertion. b) Both assertion and reason are true but reason is not the correct explanation of assertion. c) Assertion is true but reason is false d) Both assertion and reason are false 8. If a body of a fish contains 1.2 g <mark>hydroge</mark>n in its total <mark>body m</mark>ass, if all the <mark>hydrog</mark>en is replaced with deuterium then the increase in body weight of the fish will be b) 2.4 g d) 48. g a) 1.2 g c) 3.6 g 9. The hardness of water can be determined by volumetrically using the reagent a) sodium thio sulphate b) potassium permanganate c) hydrogen peroxide d) EDTA ★10. The cause of permanent hardness of water is due to a) $Ca(HCO_3)_2$ b) $Mg(HCO_3)_2$ c) CaCl₂ d) MgCO₃ 11. Zeolite used to soften hardness of water is, hydrated a) Sodium aluminium silicate b) Calcium aluminium silicate c) Zinc aluminium borate d) Lithium aluminium hydride 12. A commercial sample of hydrogen peroxide marked as 100 volume H₂O₂, it means that a) 1 ml of H_2O_2 will give 100 ml O_2 at STP b) 1 L of H₂O₂ will give 100 ml O₂ at STP c) 1 L of H_2O_2 will give 22.4 L O_2 d) 1 ml of H₂O₂ will give 1 mole of O₂ at STP 13. When hydrogen peroxide is shaken with an acidified solution of potassium dichromate in presence of ether, the ethereal layer turns blue due to the formation of b) CrO₄2a) Cr_2O_3 c) $CrO(O_2)_2$ d) none of these $\frac{1}{2}$ 14. For decolourisation of 1 mole of acidified KMnO₄, the moles of H₂O₂ required is a)1/2b)3/2c)5/2d)7/215. Volume strength of 1.5 N H_2O_2 is a) 1.5 b) 4.5 c) 16.8 d) 8.4 16. The hybridisation of oxygen atom is H_2O and H_2O_2 are, respectively a) sp and sp³ c) sp and sp² d) sp³ and sp³ b) sp and sp $\frac{1}{2}$ 17. The reaction H₃PO₂ + D₂O \rightarrow H₂DPO₂ + HDO indicates that hypo-phosphorus acid is b) dibasic acid c) mono basic acid d) none of these a) tribasic acid 18. In solid ice, oxygen atom is surrounded a) tetrahedrally by 4 hydrogen atoms b) octahedrally by 2 oxygen and 4 hydrogen atoms c) tetrahedrally by 2 hydrogen and 2 oxygen atoms d) octahedrally by 6 hydrogen atoms ↓ 19. The type of H-bonding present in ortho nitro phenol and p-nitro phenol are respectively. a) inter molecular H-bonding and intra molecular H-bonding b) intra molecular H-bonding and inter molecular H-bonding c) intra molecular H - bonding and no H - bonding d) intra molecular H - bonding and intra molecular H - bonding ≥ 20. Heavy water is used as a) moderator in nuclear reactions b) coolant in nuclear reactions c) both (a) and (b) d) none of these ☆21. Water is a a) basic o<mark>xi</mark>de b) acidic oxide c) amphote<mark>ri</mark>c oxide d) none of these 🔀 ADDITIONAL QUESTIONS : 1. Which one of the metal is used to convert para-hydrogen into ortho hydrogen? (b) Aluminium (c)Sodium (a)Copper

☆

$\frac{1}{2}$	2. The radioactive isotope of hydrogen is	
*	(a) protium (b) deuterium (c) tritium (d) heavy hydrogen	
7	3. The half-life period of tritium is(in years). (a) 13.2 (b) 10.5 (c) 12.3 (d) 15.8	
	4. The composition of syngas is (a) $CO + N_2$ (b) $CO + H_2O$ (c) $CO + H_2$ (d) $CO_2 + H_2O$	۱ H
-	5. The most common metal ions present in hard water are	
$\frac{1}{2}$		
☆	(c) Magnesium and Calcium (d) Manganese and Calcium	
XX	6. The permanent hardness of water is due to the presence of soluble salts of and of magnesium an	ıd
₩		
$\frac{1}{2}$	(c) bicarbonates and sulphates (d) chlorides and sulphates	
$\frac{1}{2}$	7. The general formula of zeolites is (a) $NaOAl_2O_3$. $xSiO_2$. yH_2O (b) $Na_2O.Al_2O_3$. $ySiO_2$. xH_2O (c) $NaOHAl_2O_3$. $xSiO_3$. yH_2O (d) $NaOAl_2O_3$. $ySiO_3$. yH_2O_3 .	
$\frac{1}{2}$	(c) NaOH.Al ₂ O ₃ . ×SiO ₂ . yH ₂ O (d) NaO.Al (OH) ₃ .×SiO ₂ . yH ₂ O	
₩	8 is used as a moderator and coolant in nuclear reactors.	
₩ •	(a) Heavy hydrogen (b) Ortho hydrogen (c) Hydrogen peroxide (d) Heavy water	
$\frac{1}{2}$	9. In chelating method of softening of hard water is used.	
$\frac{1}{2}$	(a) magnesia (b) lime (c) FDTA (d) washing soda	
*	10. The percentage of hydrogen peroxide in '100 volume' is (a) 40 (b) 30 (c) 50 (d) 20	
₩	11. Which of the following molecule shows an intramolecular hydrogen bond?	
₩		
-	12. Metallic hydrides are otherwise called	
$\frac{1}{2}$	(a) Salt hydrides (b) Saline hydrides (c) molecular hydrides (d) Interstitial hydrides	
☆	13. Which of the following is the correct order of stability of bonds?	
₩	(a) Hydrogen bond < CovaLent bond < Vanderwaals bond	
₩	(b) Vanderwaals bond < Hydrogen bond <covalent, bond<="" th=""><th></th></covalent,>	
$\frac{1}{2}$	(a) Salt hydrides (b) Saline hydrides (c) molecular hydrides (d) interstitial hydrides (d) inter	
M	(d) Covalent bond < Hydrogen bond < Vanderwaals bond	
XX	14. Which of the following contains intramolecular hydrogen bonding? (a) Acetic acid (b) a nitrophonal (c) Hydrogen fluorida (d) water (d) water	
√	(a) Acetic acid (b) 0-introphenor (c) riyur ogen nuoride (d) water	
₩	15. Which one of the following is an example for Clathrate hydrate?	
☆	(a) $CuSO_4.5H_2O$ (b) $Na_2CO_3.10H_2O$ (c) $CH_4.20H_2O$ (d) $FeSO_3.7H_2O$	
☆		
₩	5. Alkai and Alkaline Earth Metals	
₩	EVALUATION:	
$\frac{1}{2}$	I. Choose the correct answer:	
	1. For alkali metals, which one of the following trends is incorrect?	
☆		
₩	c) Density: Li < Na < K < Rb d) Atomic size: Li < Na < K < Rb	
₩	2. Which of the following statements is incorrect? a) Li+ has minimum degree of hydration among alkali metal cations. b) The oxidation state of K in KO ₂ is +1 c) Sodium is used to make Na / Pb alloy d) MgSO ₄ is readily soluble in water	
$\frac{1}{2}$	a) Li+ has minimum degree of hydration among <mark>alkali m</mark> etal cations.	
$\frac{1}{\lambda}$	b) The oxidation state of K in KU ₂ is +1	
₹	c) Sodium is used to make Na / Pb alloy d) MgSO ₄ is readily soluble in water	
	3. Which of the following <mark>compounds will not evolve H₂ gas on re</mark> action with alkali metals? a) ethanoic acid b) ethanol c) phenol d) none of these	
*	4. Which of the following has the highest tendency to give the reaction Aqueous	
$\frac{1}{2}$	$M^+(g) \xrightarrow{M^+(aq)} M^+(aq)$	
☆	a) Na b) Li c) Rb d) K	
₩	4. Which of the following has the highest tendency to give the reaction Aqueous $M^+(g) \xrightarrow{\text{Medium}} M^+(aq)$ a) Na b) Li c) Rb d) K	

☆

 $\stackrel{\wedge}{\simeq}$

a) BaCO₃ > SrCO₃ > CaCO₃ > MgCO₃

c) $CaCO_3 > BaCO_3 > SrCO_3 > MgCO_3$

W					
	_	c) kerosene	d) none of th		
<u> </u>	and paramagnetic		oxide and diar	=	
c) superoxide	and diamagnetic	d) per	oxide and para	amagnetic	
7. Find the wrong statement	t				
a) sodium metal is use	d in org <mark>ani</mark> c qualitativ	ve a <mark>nalysis</mark>			
b) sodium carbonate i c) potassium carbonate d) potassium bicarbon	s solu <mark>ble in</mark> water and	l it i <mark>s used in</mark> ino	rganic qua <mark>litati</mark>	ve analysis	
c) potassium carbonat	e ca <mark>n be pre</mark> pared by	solv <mark>ay proc</mark> ess			
d) potassium bicarbor	ıate is <mark>acidic s</mark> alt				
$\frac{1}{2}$ 8. Lithium shows diagonal rel	ationsh <mark>ip with</mark> a) sod	lium <mark>b) m</mark> agne	sium <mark>c) calci</mark> u	ım d) aluminium	
	es, the io <mark>nic cha</mark> racter	incr <mark>eases i</mark> n the	order		
a) MF < MCl < MBr < MI					
10. In which process, fused so	dium hydro <mark>xide i</mark> s ele	ectrol <mark>ysed</mark> for ex	trac <mark>tion o</mark> f sodi	um?	
a) Castner's process	b) C <mark>yanid</mark> e բ	oroce <mark>ss</mark>	<mark>c) Do</mark> wn pro	cess d) All o	of these
11. The product obtained as a	<mark>res</mark> ult of a reaction of	f nitro <mark>gen</mark> with C	la <mark>C₂ is</mark>		
	b) CaN ₂	c) Ca(CN) ₂	d) Ca ₃ N ₂	
☆ 12. Which of the following ha	s h <mark>ighest</mark> hydratio <mark>n er</mark>	nergy?			
a) MgCl ₂	b) CaCl ₂	c) B <mark>a</mark> (d) SrCl ₂	
🛴 13. Match the flame colours o	f the alkal <mark>i and a</mark> lkalir	i <mark>e e</mark> arth metal <mark>sa</mark>	lts in t <mark>he</mark> bunse	en burner	
(p) Sodium	(1) Brick red				
(q) Calcium	(2) Yellow				
(r) Barium	(3) Lilac (violet)				
(s) Strontium	(4) Apple green				
(t) Cesium	(5) Crimson red				
(u) Potassium	(6) Blue				
(p) Sodium (q) Calcium (r) Barium (s) Strontium (t) Cesium (u) Potassium a) p - 2, q - 1, r - 4 b) p - 1, q - 2, r - 4 c) p - 4, q - 1, r - 2					
b) p - 1, q - 2, r - 4					
c) p - 4, q - 1, r - 2					
u) p - 0, q - 3, 1 - 4					
14. Assertion : Generally alka		W (4) (4)			
Reason: There is a single l	oon <mark>d betw</mark> een 0 an <mark>d 0</mark>) in su <mark>per</mark> oxides <mark>.</mark>			
a) both assertion and	r <mark>eason a</mark> re true a <mark>nd r</mark> e	eason i <mark>s th</mark> e corre	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
b) both assertion and	<mark>reaso</mark> n are true <mark>but</mark> re	eason i <mark>s no</mark> t the c	o <mark>rrect</mark> explanat	ti <mark>on of assertion</mark>	
c) assertion is true but	reason is false				
d) both assertion and	reason are f <mark>alse</mark>				
15. Assertion : BeSO ₄ is solub	le in water <mark>while</mark> BaS(O ₄ is n <mark>ot</mark>			
Reason : Hydration energy	decreas <mark>es dow</mark> n the	grou <mark>p from</mark> Be to	o Ba <mark>and latti</mark> ce	energy remains a	lmost
constant.					
a) both assertion and	reason <mark>are tr</mark> ue and re	eason <mark>is the</mark> corre	-		
a) both assertion and b) both assertion and c) assertion is true but d) both assertion and 15. Assertion: BeSO ₄ is solub Reason: Hydration energy constant. a) both assertion and b) both assertion and c) assertion is true but d) both assertion and	reason are true but re	eason is not the c	orrect explanat	tion of assertion	
c) assertion is true but	t reason is false				
d) both assertion and	<mark>reas</mark> on are false				
★16. Which is the correct seque	en <mark>ce of s</mark> olubility of ca	rbonates of alka	lin <mark>e e</mark> arth meta	ıls?	

13

b) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$

d) $BaCO_3 > CaCO_3 > SrCO_3 > MgCO_3$

*

 $\stackrel{\wedge}{\simeq}$

 $\stackrel{\wedge}{\simeq}$

☆

 $\stackrel{\wedge}{\searrow}$

17. In context with bery	llium, which one of the follow	wing statements	is incorrect?		
a) It is rendered pa	ssive by nitric acid	b) It forms Be ₂	2C		
c) Its salts are rarel	y hydrolysed	d) Its hydride	is electron defic	ient and polym	eric
18. The suspension of sl	aked lime in water is known	as			
a) lime water b	o) quick lime c) milk of lime	e d) aqueous sol	ution of slaked	lime	
=	bstance (A) on heating evolv				ı water.
	O ₂ when treated with dilute)	
a) Na ₂ CO ₃	b) NaHCO ₃	c) CaCO₃	d) $Ca(HCO_3)_2$		
•	n heating gives a colourless		- Salu	ed in water to o	btain (B).
• • • •	obled through <mark>aqueou</mark> s soluti	_			
a) CaCO₃	b) Ca(OH) ₂	c) Na ₂ CO ₃	d) NaHCO ₃	55	
21. Which of the foll <mark>owi</mark>		, -			
	ot important in maintaining	the <mark>regu</mark> lar beat	ti <mark>ng of t</mark> he heart		
-	im <mark>portant</mark> in the gree <mark>n pa</mark> rts	- 16/			
	n a complex with ATP	•			
	mportant in blood clotting				
	' is given to which of the foll	owing compoun	ds?		
		(PO ₄) ₂	d) CaO		
	is a) CaSO ₄ . 2H ₂ O b) C			0 d) 2CaSO ₄ . 2	2H ₂ O
	in atmospheric nitrogen in a				-1120
a) Ca(CN) ₂	b) CaNCN	c) CaC ₂ N ₂	d) CaN		
	the least thermally stable is		aj dart	G ₂	
(a) K_2CO_3	b) Na ₂ CO ₃		d) Li ₂ C	02	
ADDITIONAL QUESTION		(6) 24663	0.7 2.20		
	ed in photoelectric cells is	(a) Na	(b) Cs	(c) Rb	(d) Fr
	oxidation state of alkali met		. ,		(d) +5
	ed by potassium when burnt			(-)	()
-	b) blue (c) green	(d) lilac			
• • • • • • • • • • • • • • • • • • • •	ving ions are more responsib		sion of nerve sig	nal?	
	b) Rb ⁺ (c) Cs ⁺	(d) K+			
	tianite are the ores of		(b) strontium	(c) magnesium	ı (d) bariui
	in the Solvay proves- recov		(2) 211 2111	(1)	- (-)
	ride (b) Calcium hydroxid		cium carbonate	(d) calcium oxi	ide
• •	vllium are in nature. (a) ne				photeric
	ving statements. (i) BeO is		O is weakly bas		=
	ove statements is/are not con		,o is wearing such	() 20.0 10 00	1011619 0010
(a) (i) or			and (iii)	(d) (i) and (iii)	
. , . ,	ollowing is named as bleachi		unu (m)		
		(d) Ca(HCO ₃) ₂			
• • • • • • • • • • • • • • • • • • • •	n Plaster of Paris is heated, i				
	b) dead burnt plast (c) gy		(d) alabaster		
` '	perty of alkali metals follows	-	(u) alabastel		
	s <li (b)="" k<na<rb<cs<li<="" td=""><td></td><td>KeNa (a) Ph</td><td>CscKcNacli</td><td></td>		KeNa (a) Ph	CscKcNacli	
= =	wing is not a nerovide?				ta∩ ₂
	AVITED IN THE A TIPLEXITE	1411112	11111111		(4.17)

13. Which of the following is used as a coolant in fast breeder nuclear reactor?

- (a) Liquid ammonia
- (b) Liquid helium
- (c) Liquid Na metal
- (d) Solid CO₂

6. Gaseous State

★EVALUATION:

*

☆

☆

☆ ☆

☆

- 1. Gases deviate from ideal behavior at high pressure. Which of the following statement(s) is correct for nona) at high pressure the collision between the gas molecule become enormous
 - b) at high pressure the gas molecules move only in one direction
 - c) at high pressure, the volume of gas become insignificant
 - d) at high pressure the intermolecular interactions become significant
- 2. Rate of diffusion of a gas is
- a) directly proportional to its density
- b) directly proportional to its molecular weight
- c) directly proportional to its square root of its molecular weight
- d) inversely proportional to the square root of its molecular weight
- 3. Which of the following is the correct expression for the equation of state of van der Waals gas?

(a)
$$\left(P + \frac{a}{n^2 V^2}\right)(V - nb) = nRT$$

(b)
$$\left(P + \frac{na}{n^2V^2}\right)(V - nb) = nRT$$

(c)
$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

(a)
$$\left(P + \frac{a}{n^2 V^2}\right) (V - nb) = nRT$$

 (b) $\left(P + \frac{na}{n^2 V^2}\right) (V - nb) = nRT$
 (c) $\left(P + \frac{an^2}{V^2}\right) (V - nb) = nRT$
 (d) $\left(P + \frac{n^2 a^2}{V^2}\right) (V - nb) = nRT$

4. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules

- a) are above inversion temperature
- b) exert no attractive forces on each other
- c) do work equal to the loss in kinetic energy d) collide without loss of energy

5. Equal weights of methane and oxygen are mixed in an empty container at 298 K. The fraction of total pressure exerted by oxygen is

- (a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3} \times 273 \times 298$

☆

6. The temp<mark>erature at which real gases o</mark>bey the <mark>ide</mark>al gas <mark>la</mark>ws ove<mark>r a</mark> wide ra<mark>nge of</mark> pressure is called

- a) Critical temperature b) Boyle temperature c) Inversion temperature d) Reduced temperature

★7. In a closed room of 1000 m3 a perfume bottle is opened up. The room develops a smell. This is due to which a) Viscosity c) Diffusion

- property of gases?
- b) Density
- d) None

 $\stackrel{\checkmark}{\approx}$ 8. A bottle of ammonia and a bottle of HCl connected through a long tube are opened simultaneously at both ends. The white ammonium chloride ring first formed will be

a) At the center of the tube

b) Near the hydrogen chloride bottle

c) Near the ammonia bottle

d) Throughout the length of the tube

♦ 9. The value of universal gas constant depends upon

a) Temperature of the gas

b) Volume of the gas

- c) Number of moles of the gas
- d) units of Pressure and volume.

10. The value of the gas constant R is

- a) $0.082 \, dm^3 atm$.
- b) 0.987 cal mol-1 K-1 c) 8.3 J mol-1 K-1 d) 8 erg mol-1 K-1

 $\frac{1}{2}$ 11. Use of hot air balloon in sports and meteorological observation is an application of

- a) Boyle's law
- b) Newton's law
- c) Kelvin's law d) Brown's law

 $\stackrel{\checkmark}{\approx}$ 12. The table indicates the value of van der Waals constant 'a' in (dm 3)2atm. mol 2

Gas	O ₂	N ₂	NH ₃	CH ₄
a	1.360	1.390	4.170	2.253

The gas which can be most easily liquefied is

- a) 0_2
- b) N₂
- c) NH₃
- d) CH₄

13. Consider the following statements

- i) Atmospheric pressure is less at the top of a mountain than at sea level
- ii) Gases are much more compressible than solids or liquids
- iii) When the atmospheric pressure increases the height of the mercury column rises Select the correct statement a) I and II b) II and III c) I and III d) I, II and III
- 14. Compressibility factor for CO_2 at 400 K and 71.0 bar is 0.8697. The molar volume of CO_2 under these a) 22.04 dm³ b) 2.24 dm³ c) 0.41 dm³ d) 19.5dm³ conditions is
- √ 15. If temperature and volume of an ideal gas is increased to twice its values, the initial pressure P becomes
 - a) 4P

- b) 2P
- c) P

- d) 3P
- 🌣 16. At identical temperature and <mark>press</mark>ure, the r<mark>ate</mark> of diff<mark>us</mark>ion of <mark>hyd</mark>rogen ga<mark>s is 33</mark> times that of a hydrocarbon having molecular formula C_nH_{2n-2} . What is the value of n? a) 8 b) 4 c) 3 d) 1
 - 17. Equal moles of hydrogen and oxygen gases are placed in a container, with a pin-hole through which both can escape what fraction of oxygen escapes in the time required for one-half of the hydrogen to escape.
 - a) 3/8

- b) 1/2
- c) 1/8
- d) 1/4
- 18. The variation of volume V, with temperature T, $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)$ keeping pressure constant is called the coefficient of thermal expansion ie. gas α is equal to For an ideal
 - a) T
- b) 1/T
- c) P

- d) none of these
- $\stackrel{\checkmark}{\sim}$ 19. Four gases P, Q, R and S have almost same values of 'b' but their 'a' values (a, b are Vander Waals Constants) are in the order Q < R < S < P. At a particular temperature, among the four gases the most easily liquefiable one is a) P b) Q c) R
- $\frac{1}{2}$ 20. Maximum deviation from ideal gas is expected from a) CH₄ (g) b) NH₃ (g)
- c) $H_2(g)$
- d) N_2 (g)

☆

- ★21. The units of Vander Waals constants 'b' and 'a' respectively.
 - a) mol L-1 and L atm2 mol-1 b) mol L and L atm mol² c) mol-1L and L² atm mol-2 d) none of these
- 22. Assertion : Critical temperature of CO2 is 304K, it can be liquefied above 304K.

Reason: For a given mass of gas, volume is to directly proportional to pressure at constant temperature

- a) both assertion and reason are true and reason is the correct explanation of assertion
- b) both assertion and reason are true but reason is not the correct explanation of assertion
- c) assertion is true but reason is false
- d) both assertion and reason are false
- 23. What is the density of N_2 gas at 227° C and 5.00 atm pressure? (R = 0.082 L atm K⁻¹ mol⁻¹)
 - a) 1.40 g/L
- b) 2.81 g/L
- c) 3.41 g/L
- d) 0.29 g/L
- 24. Which of the following diagrams correctly describes the behaviour of a fixed mass of an ideal gas? (T is measured in K)

 $\stackrel{\wedge}{\Longrightarrow}$

 $\stackrel{\wedge}{\swarrow}$

$\stackrel{\longleftarrow}{\approx}$ 25. 25g of each of the following gases are taken at 27°	C and 600 mm Hg pressure. Which of these will have the
<u></u>	HF d) HI
Additional:	
1. At constant temperature, the pressure of the gas is reduced.	
(a)reduce to one-third (b)increases by th	
$\stackrel{L}{\sim}$ 2. At constant temperature for a given mass, for each devolume at 0°C. (a) 273 (b) 298 (c) 1/273	
3. The rate of diffusion of a gas is inversely proportiona	
	f molar mass (d) square of density
4. The gas used in the pressure-volume isotherm study	
	l) CO ₂
5. Which one of the following is absolute zero? (a) 293	
6. The value of critical temperature of carbon dioxide is	
7. The rate of diffusion of gases A and B of molecular we	
	1) 16:9
	rmodynamics
I. Choose the correct answer:	- Monty Marines
1. The amount of heat exchanged with the surroundin	g at constant pressure is given by the quantity
	ΔS d) ΔG
2. All the naturally occurring processes proceed spont	
	se in enthalpy
	se in free energy
3. In an adiabatic process, which of the following is tru	
	$\Delta E = q$ d) $P \Delta V = 0$
4. In a reversible process, the change in entropy of the	
	< 0 d) = 0
★5. In an adiabatic expansion of an ideal gas	
a) $w = -\Delta u$ b) $w = \Delta u + \Delta H$	$\Delta \mathbf{u} = 0 \qquad \qquad \mathbf{d}) \mathbf{w} = 0$
₹6. The int <mark>ensive prope</mark> rty among th <mark>e qua</mark> ntities b <mark>el</mark> ow	is
a) mass b) volume c)	enthalpy d) mass/volume
$\frac{1}{2}$ 7. An ideal gas expands from the volume of 1×10^{-3} m	3 to 1 × $^{10^{-2}}$ 2 at 300 K against a constant pressure at
$\stackrel{\downarrow}{\sim}$ 1 × 10 ⁵ Nm ⁻² . The work done is a) – 900 J b	<mark>900</mark> kJ
8. Heat of combustion is always	
a) positive b) negative c)	zero d) either positive or negative
$\frac{7}{6}$ 9. The heat of formation of CO and CO ₂ are $\frac{1}{6}$ 26.4 kCal	<mark>and –</mark> 94 kCal, r <mark>espect</mark> ively. Heat of <mark>com</mark> bustion of carbon
$\stackrel{\longleftarrow}{k}$ monoxide will be a) + 26.4 kcal b) - 67.6 kcal	c) – 120.6 kcal d) + 52.8 kcal
$\stackrel{1}{\sim}$ 10. C(diamond) → C(graphite), $\Delta H = -ve$, this indicates	that
a) graphite is more stable than diamond	b) graphite has more energy than diamond
c) both are equally stable	d) stability cannot be predicted
$\frac{7}{4}$ 11. The enthalpies of formation of Al ₂ O ₃ and Cr ₂ O ₃ are -	1596 kJ and – 1134 kJ, respectively.
\triangle ΔH for the reaction $2Al + Cr_2O_3 \rightarrow 2Cr + Al_2O_3$ is	
ጵ a) − 1365 kJ <mark>b) 2730</mark> kJ cj	- <mark>2</mark> 730 kJ d) - 462 kJ
🙀 12. Which of the followin <mark>g i</mark> s no <mark>t a thermodynamic</mark> fu <mark>nc</mark>	tion ?
a) internal energy b) enthalpy c)	entropy d) frictional energy
$\sum_{i=1}^{\infty} 13$. If one mole of ammonia and one mole of hydrogen o	hloride are mixed in a closed container to form
🚣 ammonium chloride gas, then a) ΔH > ΔU b) ΔH	$-\Delta U = 0$ c) $\Delta H + \Delta U = 0$ d) $\Delta H < \Delta U$
	17

 $\stackrel{\wedge}{\swarrow}$

☆

 $\stackrel{\wedge}{\swarrow}$

☆

 $\stackrel{\sim}{\sim}$

☆

24	14. Change in internal energy, whe	n 4 kJ of work is done (on the system and	I kJ of heat is given ou	it by the syster
☆	is a) +1 kJ b) –	5 kJ c) +3 kJ	d) – 3 kJ		
✓	15. The work done by the liberated	gas when 55.85 g of ir	on (molar mass 55	5.85 g mol ⁻¹) reacts wi	th hydrochlori
	acid in an open beaker at 250 C				
$\stackrel{\frown}{\swarrow}$		2.22 kJ c) + 2.2 <mark>2 kJ</mark>	d) + 2.48 kJ		
$\stackrel{\wedge}{\sim}$	16. The value of ΔH for cooling 2 m	oles of an ideal monato	mic gas from 125	0 <mark>C to</mark> 250 C at constar	nt pressure wil
W	ho a) 250 P h) 500 P a) 5		S .	_	_
☆	_			$ given C_p =$	$\frac{1}{2}$ R
₩ •	17. Given that $C(g) + O_2(g) \rightarrow CO_2(g)$	g) $\Delta H^0 = -a kl : 2 CO(g)$	$+\Omega_2(g) \rightarrow 2C\Omega_2(g)$) ΛΗ0 = -b kI: Calculat	e the ΛH ⁰ for
)(g)			
$\stackrel{\wedge}{\sim}$		a) $\frac{b+2a}{a}$	b) 2a-b	c) $\frac{2a-b}{2}$	d) $\frac{b-2a}{}$
$\stackrel{\wedge}{\simeq}$		2	b) 2a - b	2	2
$\stackrel{\bigstar}{\sim}$	18. When 15.68 litres of a gas mixt	ire of methane and pro	nane are fully com	husted at 00 C and 1 a	atmosnhere 3:
☆	·				reasea ir oiii
$\frac{1}{2}$			3180 kJ		
☆	19. The bond dissociation energy o	f mathana and athana	re 360 kl mol-1 ar	od 620 kl mol-1 respec	tively Then
*	the bond dissociation energy of	C-C hond is	are 300 kj mor ar	iu 020 kj mor Tespec	cively. Then,
$\stackrel{\wedge}{\sim}$	a) 170 kJ mol ⁻¹ b) 5		d) 220	kJ mol-1	
₩ •	20. The correct thermodynamic con				
			$H < 0 \text{ and } \Delta S < 0$	in temperature is	
		-			
☆	c) $\Delta H > 0$ and $\Delta S = 0$		$AH > 0$ and $\Delta S > 0$		
*	21. The temperature of the system,		acthornal Compro	agion	
*	a) Isothermal expansion		sothermal Compre		
₩ •	c) adiabatic expansion		diabatic compress		
☆	22. In an isothermal reversible com				y
Λ	aj ', -, -			d) -, -, +	a hailing naint
$\stackrel{\wedge}{\sim}$	23. Molar heat of vapourisation of a				e bonning point
*	of the liquid is a) 323 K	b) 270 C	c) 164 K	d) 0.3 K	
	24. ΔS is expected to be maximum to		(C) + O (a) + CO	(a)	
₩ •	a) $Ca(S) + \frac{1}{2} O_2(g) \rightarrow CaO(S)$		$\frac{(S)}{(S)} + O_2(g) \rightarrow CO_2$		
$\frac{1}{2}$	c) $N_2(g) + O_2(g) \rightarrow 2NO(g)$		$\frac{1}{100}$ and $\frac{1}{100}$		
$\stackrel{\wedge}{\simeq}$	25. The values of ΔH and ΔS for a residue with the contraction of ΔH	action are respectively	-) 200 K	oo jk-1 mor-1. Then the	e temperature
*	above which the reaction will be	come spontaneous is	a) 300 K b) 30	K c) 100 K	d) 200 C
	ADDITIONAL:	l t l ml	CC	() ''' 1	
₩ ☆	1. The temperature below which a				
	(b) standard temperature		n temperature	(d) normal temp	perature
$\stackrel{\wedge}{\leadsto}$	2. The temperature produced in ad				
$\stackrel{\wedge}{\bowtie}$		273 K (c) 10 ⁻⁴ K	(d) 10 ⁴ K		
	3. Which of the following is/are ext				
☆ ☆	1. Volume 2. Su	rface tension	3. mass	4. internal energy	
W	(a) 1, 2 and 4	(b) 1, 3 and 4	(c) 1 and 3	(d) 1, 2 and 3	
70	1 Which of the following is lone not	h functions?			
	4. Which of the following is/are par	ii functions:			
☆ ☆ ☆ ☆	4. Which of the following is/are pat 1. Pressure 2. Work (a) 1, 2 and 4 (b) 1, 3 and	3. Internal energy	4. Free energy 2, 3 and 4	5. heat	

☆

55. The unit of entropy is(a) J K ⁻¹ mol ⁻¹ (b) J mol ⁻¹ (c) J K mol ⁻¹	(d) J ⁻¹ K ⁻¹
6. The efficiency of engine working between 100 to 400 K (a) 25% (b)	75% (c) 100% (d) 50%
7. In a reversible process, the entropy of Universe is	
(a) greater than zero (b) less than zero (c) equal to zero	(d) remains constant
\approx 8. The net work done by the system (a) w – PΔV (b) w +PΔV	(c) $-w + P\Delta V$ (d) $-w - P\Delta V$
9. In a reversible process $\Delta S_{sys} + \Delta S_{surr}$ is(a) >0 (b)<0	$(c) \ge 0 \qquad (d) = 0$
$\int_{\mathcal{L}} 10$. The standard free energy change (ΔG°) is related to <code>equilib</code> rium constar	
(a) $\Delta G^{\circ} = -1303 \text{ RT in K}$ (b) $\Delta G^{\circ} = 2.303 \text{ RT log K}$ (c) $\Delta G^{\circ} = 2.303 \text{ RT log K}$	$G^{\circ} = RT$ in K (d) $\Delta G^{\circ} = -2.303$ RT log K
11. Which of the following is not an intensive property?	
	rface tension
12. The relation between C_p and C_v is(a) $C_p - C_v = R$ (b) $C_p + C_v = R$	$R (c) - 285 \text{ KJ} (d) R - C_v = C_p$
13. Which of the following always has a negative value? (a) heat of rea	
(c) heat of combustio	
\searrow 14. Which one of the following is not an intensive property? (a) Density (
15. Which one of the following is the quantity of heat required to raise the t	emperature of I gm of water by 1 °C?
(a) 1 Joule (b) 1 Calorie (c) 1 Kelvin (d) 1 Kilo joule	
16. The standard value of enthalpy of combustion of benzoic acid is	
(a) -3227 kJ mol ⁻¹ (b) $+3227$ kJ mol ⁻¹ (c) -32.27 Ici mol ⁻¹	
\searrow 17. The heat of neutralization of a strong acid and strong base is around	
(a) + 57.32 kJ (b) – 57.32 kJ (c) – 3227 kJ mol ⁻¹	
8. Physical and Chemical Equilibrium	
EVALUATION:	
I. Choose the best answer.	
$^{\sim}_{\sim}$ 1. If K_b and K_f for a reversible reaction are 0.8 ×10 ⁻⁵ and 1.6 × 10 ⁻⁴ respect	ively, the value of the equilibrium
constant is, a) 20 b) 0.2×10^{-1} c) 0.05 d) now	ne o <mark>f these</mark>
2. At a given temperature and pressure, the equilibrium constant values for	or the equilibria
$3A_2 + B_2 + 2C \rightleftharpoons 2A_3BC$ at	a) $K_1 = \frac{1}{\sqrt{K_2}}$ b) $K_2 = K_1^{-\frac{1}{2}}$
The relation between K₁ and K₂ is	V2
$A_3BC \stackrel{\kappa_2}{\longleftrightarrow} \frac{3}{2} A_2 + \frac{1}{2}B_2 + 0$	c) $K_1^2 = 2K_2$ d) $\frac{K_1}{2} = K_2$
$\frac{1}{2}$ 3. The equilibrium const <mark>ant for a</mark> reaction at room temperature is K_1 and the	
a) The forwar <mark>d reactio</mark> n is exother <mark>mic</mark> b) The forward reaction	
c) The reaction does not attain equilibrium d) The reverse reaction does	
4 . The formation of ammonia from $N_2(g)$ and $H_2(g)$ is a reversible reaction I	
What is the effect of increase of temperature on this equilibrium reaction	
a) equilibrium is unaltered b) formation of ammo	
c) equilibrium is shifted to the left d) reaction rate does	not change
5. Solubility of carbon dioxide gas in cold water can be increased by	
	volume d) none of these
6. Which one of the following is incorrect statement?	constant
a) for a system at equilibrium, Q is always less than the equilibrium	Constant
b) equilibrium can be attained from either side of the reaction	a vocation to the same and a d
c) presence of catalyst affects both the forward reaction and reverse	e reaction to the same extent

d) Equilibrium constant varied with temperature

$\stackrel{\checkmark}{\sim}$ 7. K₁ and K₂ are the equilibrium constants for the reactions respectively.

 $N_2(g) + O_2(g) \stackrel{\kappa_1}{\rightleftharpoons} 2NO(g)$

$$2NO(g) + O_{\gamma}(g) \stackrel{\kappa_2}{\Longrightarrow} 2NO_{\gamma}(g)$$

What is the equilibrium constant for the reaction $NO_2(g) \rightleftharpoons \frac{1}{2}N_2(g) + O_2(g)$

a)
$$\frac{1}{\sqrt{K_1 K_2}}$$

b)
$$(K_1 = K_2)^{\frac{1}{2}}$$

$$c)\frac{1}{2K_1K_2}$$
 $d)\left(\frac{1}{K_1K_2}\right)^{\frac{3}{2}}$

 $\stackrel{\checkmark}{\sim}$ 8. In the equilibrium, $2A(g) \rightleftharpoons 2B(g) + C_2(g)$

the equilibrium concentrations of A, B and C_2 at 400 K are 1×10^{-4} M, 2.0×10^{-3} M, 1.5×10^{-4} M respectively. The b) 0.09 d) 3×10^{-2} c) 0.62

- value of K_C for the equilibrium at 400 K is a) 0.06
- $\stackrel{\checkmark}{\sim}$ 9. An equilibrium constant of 3.2 × 10⁻⁶ for a reaction means, the equilibrium is a) largely towards forward direction
 - b) largely towards reverse direction
 - c) never established
- d) none of these
- 10. K_CK_P for the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ is a) 1 RT
- b) RT c) RT d) (RT)²
- $\frac{1}{4}$ 11. For the reaction AB (g) \Rightarrow A(g) + B(g), at equilibrium, AB is 20% dissociated at a total pressure of P, The equilibrium constant K_P is related to the total pressure by the expression
 - a) $P = 24 K_P$
- b) $P = 8 K_P$
- c) $24 P = K_P$
- d) none of these

 $PCl_5 \rightleftharpoons PCl_3 + Cl_2$

★12. In which of the following equilibrium, KP and KC are not equal?

a) $2 \text{ NO(g)} \rightleftharpoons \text{N}_2(g) + \text{O}_2(g)$

b) $SO_2(g) + NO_2 \rightleftharpoons SO_3(g) + NO(g)$

c) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

d) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

13. If x is the fraction of PC l_5 dissociated at equilibrium in the reaction then starting with 0.5 mole of PCl_5 , the total number of moles of reactants and products at equilibrium is

- a) 0.5 x
- b) x + 0.5
- c) 2x + 0.5
- d) x + 1

 \swarrow 14. The values of K_{P1} and K_{P2} for the reactions $X \rightleftharpoons Y + Z$

 $A \rightleftharpoons 2B$ are in the ratio 9: 1 if degree of dissociation and initial concentration of X and A be equal then total pressure at equilibrium P₁, and P₂ are in the ratio a) 36:1 b) 1:1 c) 3:1

15. In the reaction, Fe $(OH)_3$ (s) \rightleftharpoons Fe₃+(aq) + 3OH-(aq), if the concentration of OH-ions is decreased by ¼ times,

- then the equilibrium concentration of Fe³⁺ will
- a) not changed
- b) also decreased by ¼ times
- c) increase by 4 times d) increase by 64 times $\stackrel{1}{\sim}$ 16. Consider the reaction where KP = 0.5 at a particular temperature PC l_5 (g) \rightleftharpoons PC l_3 (g) + C l_2 (g)

if the three gases are mixed in a container so that the partial pressure of each gas is initially 1 atm, then which

- one of the following is true a) more PCl₃ will be produced
- b) more *Cl*₂ will be produced
- c) more PCl₅ will be produced
- d) none of these

 $\frac{1}{2}$ 17. Equimolar concentrations of H_2 and I_2 are heated to equilibrium in a 1 litre flask. What percentage of initial ☆ concentration of H₂ h<mark>as rea</mark>cted at equilib<mark>rium</mark> if rate con<mark>stan</mark>t for both forward and reverse reactions are equal

a) 33%

☆

- b) 66%
- c) (33)2 %
- d) 16.5 %

18. In a chemical equilibrium, the rate constant for the forward reaction is 2.5×10^2 and the equilibrium constant is 50. The rate constant for the reverse reaction is, a) 11.5 b) 5 c) 2×10^2 d) 2×10^{-3}

- ★19. Which of the following is not a general characteristic of equilibrium involving physical process
 - a) Equilibrium is possible only in a closed system at a given temperature
 - b) The opposing processes occur at the same rate and there is a dynamic but stable condition
 - c) All the physical processes stop at equilibrium
 - d) All measurable properties of the system remains constant

 $\frac{1}{2}$ 20. For the formation of Two moles of SO₃(g) from SO₂ and O₂, the equilibrium constant is K₁. The equilibrium \star constant for the dissociation of one mole of SO₃ into SO₂ and O₂ is

$$c)\left(\frac{1}{K_1}\right)^{\frac{1}{2}}$$
 $d)\frac{K_1}{2}$

21. Match the equilibria with the corresponding conditions,

- i) Liquid ≠ Vapour
- ii) Solid ≠ Liquid
- iii) Solid **⇒** Vapour
- iv) Solute (s) \rightleftharpoons Solute (Solution)
- 1) melting point
- 2) Saturated solution
- 3) Boiling point
- 4) Sublimation point 5) Unsaturated solution

	(i)	(ii)	(iii)	(iv)
(a)	1	2	3	4
(b)	3	1	4	2
(c)	2	1	3	4
(d)	3	2	4	5

♦ ♦ ♦ ♦

☆

 $\stackrel{\checkmark}{\sim}$ 22. Consider the following reversible reaction at equilibrium, A + B \rightleftharpoons C, If the concentration of the reactants A and B are doubled, then the equilibrium constant will

- a) be doubled b) become one fourth c) be halved d) remain the same

In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in colour. On the basis of this information, which one of the following is true?

- a) $\Delta H > 0$ for the forward reaction
- b) $\Delta H = 0$ for the reverse reaction
- c) $\Delta H < 0$ for the forward reaction
- d) Sign of the ΔH cannot be predicted based on this information.
- ★24. The equilibrium constants of the following reactions are:

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$
; K_1

$$N_2 + O_2 \rightleftharpoons 2NO ; K_2$$

$$H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O$$
; K_3

The equilibrium constant (K) for the reaction;

$$2NH_3 + \frac{5}{2}O_2 \stackrel{\kappa}{\Longrightarrow} 2NO + 3H_2O$$
, will be

a) $K_{2}^{3} K_{3} / K_{1}$ b) $K_{1} K_{3}^{3} / K_{2}$ c) $K_{2} K_{3}^{3} / K_{1}$ d) $K_{2} K_{3} / K_{1}$

 $\stackrel{\checkmark}{\sim}$ 25. A 20 litre container at 400 K contains CO_2 (g) at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO₂ attains its maximum value will be:

- Given that : $SrCO_3(S) \rightleftharpoons SrO(S) + CO_2(g)$
- $K_P = 1.6$ atm (NEET 2017)

- a) 2 litre
- b) 5 litre
- c) 10 litre

Additional:

 $\stackrel{\wedge}{\simeq}$

*

- 1. For which of the following K_p is less than K_c ?
 - a) $N_2O_4 \rightleftharpoons 2NO_2$
- b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ c) $H_2 + I_2 \rightleftharpoons 2HI$
- d) $CO + H_2O \rightleftharpoons CO_2 + H_2$

- 2. A reversible reaction is one which
 - a) Proceeds in one direction
- b) proceeds in both direction
- c) proceeds spontaneously
- d) All the statements are wrong
- 3. The equilibrium constant in a reversible reaction at a given temperature
 - a) depends on the initial concentration of the reactants
 - b) depends on the concentration of the products at equilibrium
 - c) does not depend on the initial concentrations
 - d) It is not characteristic of the reaction
- 4. A chemical reaction is at equilibrium when
 - a) Reactants are completely transformed into products
 - b) The rates of forward and backward reactions are equal
 - c) Formation of products is minimized
 - d) Equal amounts of reactants and products are present

5. The rate constant for forward and backward reactions of the hydrolysis of ester are 1.1×10^{-2} and 1.5×10^{-3} per minute respectively. The equilibrium constant for the reaction is a) 4.33 b) 5.33 c) 6.33 d) 7.33

6. For the reaction $CO(g) + 12O_2(g) \rightleftharpoons CO_2(g)$, K_p/K_c is _____a) RT b) $(RT)^{-1}$ c) $(RT)^{-1/2}$ d) $(RT)^{1/2}$

☆

☆	
☆	
☆	8. Under a given set of experimental conditions, with an increase in the concentration of the reactants, the rate
$\stackrel{\wedge}{\sim}$	
☆	
$\frac{1}{2}$	
☆	10. In an equilibrium reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$, $\Delta H = -3000$ calories, which factor favours dissociation of HI
₩ ☆	
	11. Which of the following factor is shifted the reaction $PCl_3 + Cl_2 \rightleftharpoons PCl_5$ at the left side?
☆	a) Adding PCl ₅ b) increase pressure c) constant temperature d) catalyst
☆	
★	<u>9. Solutions</u> EVALUATION:
$\stackrel{\wedge}{\sim}$	
$\stackrel{\wedge}{\sim}$	1. Choose the dest answer.
☆ ☆	1. The molality of a solution containing 1.8g of glucose dissolved in 250g of water is
☆	a) 0.01 M
☆	
☆ ☆	a) metalloy
$\stackrel{\wedge}{\bowtie}$	3. Stomach acid, a dilute solution of HCl can be neutralised by reaction with Aluminium hydroxide
☆	Al (OH) ₃ + 3HCl (aq) \rightarrow AlCl ₃ + 3 H ₂ O
☆ ☆ ☆	How many millilitres of 0.1 M Al(OH)3 solution are needed to neutralise 21 mL of 0.1 M HCl?
$\stackrel{\wedge}{\sim}$	a) 14 mL b) 7 mL c) 21 mL d) none of these
☆ ☆ ☆ ☆	4. The partial pressure of nitrogen in air is 0.76 atm and its Henry's law constant is 7.6 × 104 atm at 300K. What is the molefraction of nitrogen gas in the solution obtained when air is bubbled through water at 300K?
	a) 1×10^{-4} b) 1×10^{-6} c) 2×10^{-5} d) 1×10^{-5}
$\stackrel{\wedge}{\Longrightarrow}$	5. The Henry's law constant for the solubility of Nitrogen gas in water at 350 K is 8 × 104 atm. The mole fraction
☆	(C.) (C.) OF The selection of the CN (C.)
☆	4 atm pressure is a) 4×10^{-4} b) 4×10^{4} c) 2×10^{-2} d) 2.5×10^{-4}
☆	6. Which one of the f <mark>ollowing is</mark> incorrect <mark>for id</mark> eal solut <mark>ion ?</mark>
₩	a) DHmix = 0 b) DUmix = 0 c) DP = Pobserved - P Calculated by raoults law = 0 d) DGmix = 0
$\stackrel{\wedge}{\Longrightarrow}$	7. Which one of the fo <mark>llowing gases h<mark>as the l</mark>owest valu<mark>e of H</mark>enry's law constant ?</mark>
	a) N_2 b) He c) $\frac{CO_2}{CO_2}$ d) H_2
$\stackrel{\wedge}{\simeq}$	8 . P_1 and P_2 are the vapour pressures of pure liquid components, 1 and 2 respectively of an ideal binary solution
☆	if x_1 represents the mole fraction of component 1, the total pressure of the solution formed by 1 and 2 will be
₩ ₩	a) $P_1 + x_1 (P_2 - P_1)$ b) $P_2 - x_1 (P_2 + P_1)$ c) $P_1 - x_2 (P_1 - P_2)$ d) $P_1 + x_2 (P_1 - P_2)$
$\stackrel{\wedge}{\Longrightarrow}$	9. Osmotic pressure <mark>(p) of a solu</mark> tion is given by the rela <mark>tio</mark> n
₩ ₩	a) p = nRT b) pV = nRT c) pRT = n d) none of these
$\frac{1}{2}$	10. Which one of the fol <mark>lo</mark> win <mark>g b</mark> inary liquid mi <mark>xt</mark> ure <mark>s exhibits positive deviatio</mark> n from Raoults law ?
☆☆☆☆☆☆☆☆☆☆☆	a) Acetone + chloroform b) Water + nitric acid c) HCl + water d) ethanol + water
₩ ₩	
$\stackrel{\wedge}{\sim}$	22

☆

☆

☆

 $\stackrel{\wedge}{\swarrow}$

$\stackrel{\wedge}{\swarrow}$	☆			
$\stackrel{\wedge}{\sim}$	11. The Henry's law constants for two gases	A and B are x and y resp	pectively. The ratio of	f mole fractions of A to
$\frac{4}{4}$	B is 0.2. The ratio of mole fraction of B a	nd A dissolved in water	will be	
$\stackrel{\wedge}{\swarrow}$		c)0.2x/y	d) 5x/y	
$\overset{\wedge}{\wedge}\overset{\wedge}{\wedge}\overset{\wedge}{\wedge}$	12. At 100°C the vapour pressure of a solution boiling point of this solution will be	on contai <mark>ning 6.5g</mark> a solu a) 102°C	40 0	32mm. If Kb = 0.52, the d) 100.52°C
$\stackrel{\wedge}{\sim}$	🙀 13. According to Raoults law, the relative lov	vering of <mark>vapour</mark> pressu	ire for a <mark>soluti</mark> on is ed	jual to
☆	a) mole fraction of solvent	b <mark>) mole</mark> fraction	n of so <mark>lute</mark>	
	c) number of moles of solute	d <mark>) num</mark> ber of m	oles <mark>of solve</mark> nt	
$\stackrel{\bigstar}{\sim}$	14. At same temperature, which pair of the fo	ollowing s <mark>olutio</mark> ns are i	sot <mark>onic?</mark>	
4444	a) 0.2 M BaCl ₂ and 0.2M urea	b) 0.1 M gl <mark>ucos</mark> e and 0.	2 <mark>M urea</mark>	
☆	c) 0.1 M NaCl and 0.1 M K ₂ SO ₄	d) 0.1 M Ba (NO ₃₎₂ and	0 <mark>.1 M N</mark> a ₂ SO ₄	
☆☆	15. The empirical formula of a non-electrolyte	(X) is CH ₂ O. A solution	containing six gram c	of X exerts the same
☆	osmotic pressure as that of 0.025M glucos	<mark>se so</mark> lution <mark>at t</mark> he same	<mark>tem</mark> perature. <mark>The m</mark> o	lecular formula of X is
☆	* a) $C_2H_4O_2$ b) $C_8H_{16}O_8$	c) C ₄ H ₈ O ₄	d) CH ₂ O	
☆☆	 The K_H for the solution of oxygen dissolved pressure of oxygen in air is 0.4 atm, the 		•	ture. If the partial
☆	a) 4.6×10^3 b) 1.6×10^4	c) 1 × 10 ⁻⁵	d) 1 × 10 ⁵	
☆ ☆	17. Normality of 1.25M sulphuric acid is	a) 1.25 N b) 3.75	N c) 2.5 N	d) 2.25 N
		rm solution. The soluti	on is	
☆	a) ideal b) non-ideal an	<mark>d s</mark> hows p <mark>ositi</mark> ve devi <mark>a</mark> t	ti <mark>on from Raoults law</mark>	
	c) ideal and shows negative deviation	from Raoults Law		
☆	d) non-ideal and shows negative devia	itio <mark>n fr</mark> om Raoults L <mark>aw</mark>		
☆ ☆	 ★ 19. The relative lowering of vapour pressure ★ water in that solution is a) 0.0035 		vater is 3.5 × 10 ⁻³ . Th c) 0.0035 / 18	e mole fraction of d) 0.9965
☆☆	20. The mass of a non-voltaile solute (molar	mas <mark>s 8</mark> 0 g m <mark>o</mark> l-1) which	shou <mark>ld be</mark> dissolved	in 92 <mark>g of toluen</mark> e to
₩ ☆	reduce its vapour pressure to 90%	a) 10g b) 20g	c) 9.2 g	d) 8.89g
☆	21. For a solution, the plot of osmotic pressu	**	•	
	with slope 310R where 'R' is the gas con			essure measured is
*	a) 310 × 0.082 K b) 310°C		d) 310 K/0.082	
$\frac{4}{2}$	22. 200ml of an aqueous solution of a protein			
☆	solution is found to be 2.52×10^{-3} bar. T a) $62.22 \text{ Kg mol}^{-1}$ b) 12444g mol^{-1}	•	d) none of these	L bar mol-1 K-1)
☆	★ 23. The Van't Hoff factor (i) for a dilute aque			hydrovido ic
₩	a) 0 b) 1	c) 2	d) 3	i ilyul oxlue is
$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	a) U U) 1		•	.) 2
$\stackrel{\frown}{\swarrow}$	25. The correct equation for the degree of an solution, is	associating solute, Il I	indiecules of willcif uf	idergues association in
☆ <u></u>	α a) $\alpha = \frac{n}{2}$	(i-1) n-1 b) $\alpha^2 = \frac{n(1-i)}{(n-1)}$		
☆	→			
	$c) \alpha = \frac{n}{1}$	$\frac{(i-1)}{1-n} \qquad d) \alpha = \frac{n(1-i)}{n(1-i)}$		

23

*

☆

☆

☆

 $\stackrel{\wedge}{\leadsto}$

 $\stackrel{\wedge}{\swarrow}$

W		
☆ ☆	26.	Which of the following aqueous solutions has the highest boiling point?
☆		a) 0.1M KNO_3 b) $0.1 \text{ MNa}_3 \text{PO}_4$ c) 0.1 M BaCl_2 d) $0.1 \text{ M K}_2 \text{SO}_4$
	27.	The freezing point depression constant for water is 1.86° K Kgmol ⁻¹ . If 5g Na ₂ SO ₄ is dissolved in 45g water, the depression in freezing point is 3.64° C. The Vant Hoff factor for Na ₂ SO ₄ is
☆		a) 2.50 b) 2.63 c) 3.64 d) 5.50
☆ ☆	28.	Equimolal aqueous solutions of NaCl and KCl are prepared. If the freezing point of NaCl is -2°C, the freezing
₩ ₩		point of KCl solution is expected to be a) -2°C b) -4°C c) -1°C d) 0°C
	29.	Phenol dimerises in benzene having van't Hoff factor 0.54. What is the degree of association?
$\frac{4}{4}$		a) 0.46 b) 92 c) 46 d) 0.92
	30.	Assertion : An ideal solution obeys Raoults Law
☆		Reason: In an ideal solution, solvent-solvent as well as solute-solute interactions are similar to solute
***		solvent interactions.
$\stackrel{\wedge}{\Rightarrow}$		a) both assertion and reason are true and reason is the correct explanation of assertion
☆ <u></u>		b) both assertion and reason are true but reason is not the correct explanation of assertion
$\stackrel{\sim}{\updownarrow}$		c) assertion is true but reason is false
*		d) both assertion and reason are false
☆ ~	<u>Addi</u>	tional:
☆	1.	In which mode of expression of concentration of a solution remains independent of temperature?
☆		a) Molarity b) Normality c) Formality d) Molality
	2.	Which of the following is correct for a solution showing positive deviations from Raoult's law?
44444		a) $\Delta V = +ve$, $\Delta H = +ve$ b) $\Delta V = -ve$, $\Delta H = -ve$ c) $\Delta V = +ve$, $\Delta H = -ve$ d) $\Delta V = -ve$, $\Delta H = +ve$
₩ <u></u>	3.	If liquids A and B form an ideal solution
☆		a) The entropy of mixing is zero b) The Gibbs free energy is zero
☆		c) The Gibbs free energy as well as the entropy of mixing are each zero
☆		d) The enthalpy of mixing is zero
☆	4.	Water and ethanol form non – ideal solution with positive deviation from Raoult's law. This solution, will
☆		have vapour pressure a) equal to vapour pressure of pure water b) less than vapour pressure of pure water
*		c) more than vapour pressure of pure water d) less than vapour pressure of pure ethanol
☆	5.	Which liquid pair shows a positive deviation from Raoult's law?
^ ^ ^ ^ ^ ^ ^ ^ ^ ^	٥.	a) Acetone – chloroform b) Benzene – methanol c) Water – nitric acid d) Water – hydrochloric acid
*	6.	In the phenomenon of osmosis, the membrane allow passage of
☆		a) Solute only b) Solvent only c) Both solute and solvent d) None of these
₩ ☆	7.	Molecular weight of glucose is 180, A solution of glucose which contains 18 g per liter is
☆		a) 2 molal b) 1 molal c) 0.1 molal d) 18 molal
☆	8.	Normality of 2 M sulphuric acid is a) 2 N b) 4 N c) N/2 d) N/4
☆☆☆☆	9.	Which of the following is a colligative property?
₩ ☆		a) Osmotic pressure b) Boiling point c) Vapour pressure d) Freezing point
	10.	The freezing point of 0.2 molal K_2SO_4 is $-1.1^{\circ}C$. Calculate van't Hoff facor and percentage degree of
☆		dissociation of K_2SO_4 . K_f for water is 1.86° a) 97.5 b) 90.75 c) 105.5 d) 85.75

10. Chemical Bonding

☆

 $\stackrel{\wedge}{\sim}$

☆

☆ ☆

☆

 $\stackrel{\wedge}{\swarrow}$

		near Donaing			
EVALUATION:		-			
I. Choose the best answer.					
1. In which of the following Compo	unds does the cent	<mark>ral atom</mark> obey	the octet rule	?	
a) XeF ₄ b) AlC) SF ₆	d) SCl		
2. In the molecule $O_A = C = C$	_s the formal char	<mark>ge on O</mark> A, C ar	nd O _B are <mark>respe</mark>	ctively.	
a) -1, 0, + 1		b) +1, 0,-1	c) -2,		d) 0,0,0
3. Which of the following is electron	<mark>1 defici</mark> ent? a) PF	I₃ b) (CH	3) ₂ c) BH ₃	d) NH ₃	
4. Which of the following molecule	c <mark>ontain</mark> no л bond	? a) SO ₂	b) NO ₂ c) (CO_2 d) H_2O	
5. The ratio of number of sigma (σ)	and pi (л) bonds i	n <mark>2- bu</mark> tynal i	S		
a) 8/3 b) 5/3	3 0) <mark>8/2</mark>	d) 9/2	2	
6. Which one of the following is the	likely bond angles	s <mark>of sul</mark> phur te	tr <mark>afluo</mark> ride mo	lecul <mark>e?</mark>	
a) 120º,80º b) 10º	90 28′) <mark>90</mark> 0	d) 89	0, <mark>117</mark> 0	
7. Assertion: Oxygen mole <mark>cule is p</mark> ar	amagne <mark>tic.</mark>				
Reason: It has two unpaired ele	<mark>ectron in its bo</mark> ndi	ng <mark>mo</mark> lecular	<mark>orb</mark> ital		
a) bo <mark>th assertion and reason</mark>	are true and reasc	n i <mark>s t</mark> he cor <mark>re</mark>	ct explanation	of assertion	
b) b <mark>oth assertion</mark> and reason	are true but reaso	n i <mark>s n</mark> ot th <mark>e c</mark> o	orrect <mark>expl</mark> anat	ion of assertion	
c) assertion is true but reason	n is false d) Bo <mark>th</mark> a	iss <mark>er</mark> tion <mark>an</mark> d	rea <mark>son</mark> are fals	e	
8. According to Valence bond theor	y, a bond b <mark>et</mark> ween	two atoms is	formed when		
a) fully filled atomic orbitals	overlap	b) half	filled atomic o	rbitals overlap	
c) non- bonding atomic orbit	als overlap	d) emp	<mark>oty atomi</mark> c orbi	als overlap	
9. In ClF ₃ ,NF ₃ and BF ₃ molecules th	e chlorine, nitroge	n <mark>and</mark> boron a	atoms are		
a <mark>) sp³ hybridised</mark>	b) sp³ ,sr	o ³ and sp ² res _l	pectively		
c) sp² hybridised	d) sp³d,	sp ³ and sp ² hy	<mark>bridised</mark> respe	ctively	
10. When one s and three p orbitals	hybridise,				
a) four equivalent or <mark>bitals at</mark>	900 to each other	will <mark>b</mark> e f <mark>o</mark> rmed	d		
b) four equvivalent orbitals a	t 109º <mark>28'</mark> to ea <mark>ch</mark>	oth <mark>er</mark> wil <mark>l b</mark> e i	for <mark>med.</mark>		
c) f <mark>our equival</mark> ent orbitals, th	at <mark>are</mark> lying th <mark>e s</mark> a	me <mark>pl</mark> ane <mark>wi</mark> ll	be fo <mark>rmed</mark>		
d) n <mark>one of these</mark>					
11. Which of these represents th <mark>e co</mark> r	<mark>rrect order of t</mark> heir	[·] in <mark>cre</mark> asing <mark>b</mark>	<mark>on</mark> d order.		
a) $C_2 < C_2^{2-} < O_2^{2-} < O_2$	b) $C_2^{2-} < C_2^+ < O_2$	< O ₂ ² -			
c) $O_2^{2-} < O_2 < C_2^{2-} < C_2^+$	d) $O_2^{2-} < C_2^{+} < O_2$	< C ₂ ²⁻			
12. Hybridisation o <mark>f central</mark> atom ir	ı PCl5 <mark>invo</mark> lves the	m <mark>ixin</mark> g of orb	oi <mark>tals.</mark>		
a) s, px, py, dx ² , dx ² -y ²	b) <mark>s, px</mark> . py, pxy	. dx²-y²			
c) s, px , py , pz , dx ² -y ²	<mark>d) s, px</mark> , py , dxy	, dx²-y²			
13. The correct order of 0-0 bond l	<mark>ength in</mark> hydrogen	<mark>peroxi</mark> de, ozo	one a <mark>nd oxy</mark> gen	is	
a) $H_2O_2 > O_3 > O_2$	b) $O_2 > O_3 > H_2O_3$	c) $O_2 >$	$H_2O_2 > O_3$	d) $O_3 > O_2 > H_2O_3$	$)_2$
14. Which one of the following is di	=				
a) 0_2 b) 0_2	•	,	e of these		
15. Bond order of a species is 2.5 ar	ıd the number of e	lec <mark>to</mark> ns in its	bon <mark>ding mo</mark> lec	ular orbital is f <mark>or</mark>	md to be

8 The no. of electons in its antibonding molecular orbital is

b) four d) can not be calculated from the given information. a) three c) Zero

16. Shape and hybridisation of IF₅ are a) Trigonal bipyramidal, Sp3d2 b) Trigonal bipyramidal, Sp³d

c) Square pyramidal, Sp³d² d) Octahedral, Sp³d²

 $\stackrel{\wedge}{\Longrightarrow}$

☆ ☆ ☆

 $\frac{1}{2}$

☆

☆

☆☆☆☆☆☆☆☆

 $\stackrel{\frown}{\diamondsuit}$

☆

☆

 $\stackrel{\wedge}{\swarrow}$

17. Pick out the incorrect statement from the following
a) Sp ³ hybrid orbitals are equivalent and are at an angle of 109 ^o 28' with eachother
b) dsp ² hybrid orbitals are equivalent and bond angle between any two of them is 90°
c) All five sp ³ d hybrid orbitals are not equivale <mark>nt out of</mark> these five sp ³ d hybrid orbitals, three are at an
angle of 120°, remainir two are perpendicular to the plane containing the other three
d) none of these
18. The molecules having same hybridisation, shape and number of lone pairs of electons are
a) SeF ₄ , XeO ₂ F ₂ b) SF ₄ , XeF ₂ c) XeOF ₄ , TeF ₄ d) SeCl ₄ , XeF ₄
19. In which of the following molecules / ions BF ₃ , NO ₂ , H ₂ O the central atom is sp ² hybridised?
a) NH_2 - and H_2O b) NO_2 - and H_2O c) BF_3 and NO_2 - d) BF_3 and NH_2 -
20. Some of the following properties of two species, NO ₃ - and H ₃ O+ are described below. which one of them is
correct? a) di <mark>ssimilar</mark> in hybridisati <mark>on fo</mark> r the cent <mark>ral a</mark> tom with <mark>differ</mark> ent structure.
b) isost <mark>ructural</mark> with same h <mark>ybrid</mark> isation <mark>for t</mark> he Centr <mark>al ato</mark> m.
c) differe <mark>nt hybridi</mark> ration for t <mark>he c</mark> entral a <mark>tom</mark> with sa <mark>me s</mark> tructure
d) none of these
21. The types of hybridiration on the five carbon atom from right to left in the, 2,3 pentadiene.
a) sp <mark>3, sp2, sp, sp</mark> 2, sp3 b) sp <mark>3, sp, sp, sp, sp, sp3 c) sp2, sp, sp2, sp2, sp3 d) sp3, sp3, sp2, sp3, sp3</mark>
22. XeF ₂ is isostructural with a) SbCl ₂ b) BaCl ₂ c) TeF ₂ d) ICl ₂ -
23. The percentage of s-character of the hybrid orbitals in methane, ethane, ethene and ethyne are respectively
a) 25, 25, 33.3, 50 b) 50, 50, 33.3, 25 c) 50, 25, 33.3, 50 d) 50, 25, 25, 50
24. Of the following molecules, which have shape similar to carbon dioxide?
a) $SnCl_2$ b) NO_2 c) C_2H_2 d) All of these.
25. Acc <mark>ording to VSEPR theory, the repulsion between diffe</mark> rent parts of electrons obey the order.
a) l.p - l.p > b.p-b.p > l.p-b.p b) b.p-b.p b.p-l.p l.p-b.p
c) l.p-l.p > b.p-l.p > b.p-b.p d) b.p-b.p> l.p-l.p> b.p-l.p
26. Shape of ClF ₃ is a) Planar triangular b) Pyramidal c) 'T' Shaped d) none of these
27. Non- Zero dipole moment is shown by
a) CO ₂ b) p-dichlorobenzene c) carbontetrachloride d) water.
28. Which of the following conditions is not correct for resonating structures?
a) the contributing structure must have the same number of unpaired electrons
b) the contributing structures should have similar energies
c) the resonance hy <mark>brid sh</mark> ould have <mark>high</mark> er energy than any of the contributing structure.
d) none of these
29. Among the following, the compound that contains, ionic, covalent and Co-ordinate linkage is
a) NH ₄ Cl b) NH ₃ c) NaCl d) none of these
30. CaO and NaCl have the same crystal structure and approximately the same radii. It U is the lattice energy of
NaCl, the approximate lattice energy of CaO is
a) U b) 2U c) U/2 d) 4U
Additional:
1. Lattice energy of an ionic compound depends upon:
a) Charge on the ions only b) Size of the ions only c) Packing of the ions only d) Charge and size of the ion
2. Which of the following has the highest ionic character? a) MgCl ₂ b) CaCl ₂ c) BaCl ₂ d) BeCl ₂
3. Among the following the maximum covalent character is shown by the compound
a) $FeCl_2$ b) $SnCl_2$ c) $AlCl_3$ d) $MgCl_2$

 $\stackrel{\bigstar}{\sim}$ 4. The electronegativity of H and Cl are 2.1 and 3.0 respectively. The correct statement (s) about the nature of HCl

is/are: a) 17 % ionic b) 83 % ionic

c) 50 % ionic

d) 100 % ionic

5. Pick out the molecule which has zero dipole moment a) NH₃ b) H₂O c) BCl₃ d) SO₂

 $\frac{1}{4}$ 6. Of the following molecules, the one, which has permanent dipole moment is: a) SiF₄ b) BF₃ c) PF₃ d) PF₅

 \bigstar 7. The hybridization of carbon atoms in C – C single bond of H – C \equiv C = CH = CH₂ is

a) $sp^3 - sp^3$

b) $sp^2 - sp$

c) $sp - sp^2$

d) $sp^3 - sp$

8. The strength of bonds by overlapping of atomic orbitals is in the order

a) s-s>s-p>p-p b) s-s<p-p<s-p c) s-p<s-s<p-p d) p-p<s-s<s-p

b) trigonal bipyramidal

♦ 9. The structure of IF₇ is

a) square pyramidal

d) pentagonal bipyramidal

c) octahedral 2 10. The structure of XeOF₄ is a) tetrahedral b) square pyramidal c) square planner

d) octahedral

11. Which one of the following compounds has sp2 hybridization?

a) CO_2 b) SO_2 c) NO_2^+ d) CO

.12. The shape of XeO_2 F_2 molecule is a) Trigonal bipyramidal b) square planar c) tetrahedral d) see – saw

★ 13. According to MO theory, a) O_2 is paramagnetic and bond order is greater than O_2

b) O_2^+ is paramagnetic and bond order is less than O_2^-

c) O_2^+ is diamagnetic and bond order is less than O_2^-

d) O_2^+ is diamagnetic and bond order is more than O_2^-

14. Bond order of O_2 , O_2^+ , O_2^- and O_2^{2-} is in order

a)
$$0_2^- < 0_2^{2-} < 0_2 < 0_2^+$$
 b) $0_2^2 < 0_2^- < 0_2$ $< 0_2^+$ c) $0_2^+ < 0_2 < 0_2^- < 0_2^{2-}$ d) 0_2 $< 0_2^+ < 0_2^- < 0_2^{2-}$

 \bigstar 15. Which of the following is paramagnetic? a) O_2 -

b) CNc) CO b) CH₄

d) NO+ c) NH₃ d) PH₃

17. The isoelectronic pair is a) Cl_2 , ICl_2

 $\stackrel{\checkmark}{\approx}$ 16. Which of the following has zero dipole moment? a) CH₂Cl₂ b) ICl₂-, ClO₂ c) IF_{2}^{+} , I_{3}^{-}

d) ClO_2^- , ClF_2^+

18. The bond order is maximum in

a) 0_2

b) O_2^- c) O_2^+ d) O_2^{2-}

19. The number of ionic, covalent, and coordinate bond NH₄Cl are respectively c) 1, 2 and 3 d) 1, 1 and 3

a) 1, 3 and 1

a) sp, sp 2 , sp 3

b) 1, 3 and 2

b) sp^2 , sp, sp^3

 $\stackrel{\checkmark}{\approx}$ 20. The hybridization of orbitals of N atom in NO₃-, NO₃+ and NH₄+ are respectively. c) sp, sp 3 , sp 2

d) sp^2 , sp^3 , sp

11. Fundamentals of Organic Chemistry

EVALUATION:

I. Choose the best answer.

Select the molecule which has only one π bond.

a) $CH_3 - CH = CH - CH_3$

b) $CH_3 - CH = CH - CHO$

c) $CH_3 - CH = CH - COOH$

d) All of these

☆

 $^{7}_{CH_{3}}$ $^{6}_{CH_{2}}$ $^{6}_{CH_{3}}$ $^{6}_{CH_{3}$ In the hydrocarbon

in the following sequence. a) sp, sp, sp³, sp², sp³ b) sp², sp, sp³, sp³, sp³ c) sp, sp, sp, sp, sp, sp, sp, d) none of these

3. The general formula for alkadiene is

a) C_nH_{2n}

b) C_nH_{2n-1}

c) C_nH_{2n-2}

d) CnH_{n-2}

4. Structure of the compound whose IUPAC name is 5,6 - dimethylhept - 2 - ene is

[★]5. The IUPAC name of the Compound is

a) 2,3 - Diemethylheptane

b) 3- Methyl -4- ethyloctane c) 5-ethyl -6-methyloctane

d) 4-Ethyl -3 - methyloctane

ĊH₃

* * * * * * * * * * *

lpha6. Which one of the following names does not fit a real name?

a) 3 – Methyl –3–hexanone

b) 4-Methyl -3- hexanone

c) 3- Methyl -3- hexanol

d) 2- Methyl cyclo hexanone.

7. The IUPAC name of the compound CH3-CH= CH - C \equiv CH is

- a) Pent 4 yn-2-ene b) Pent -3-en-l-yne
- c) pent 2- en 4 yne
- d) Pent 1 yn -3 -ene

🌣 8. IUPAC name

- a) 3,4,4 Trimethylheptane b) 2 Ethyl -3, 3 dimethyl heptanes

- c) 3, 4,4 Trimethyloctane
- d) 2 Butyl -2 -methyl 3 ethyl-butane.

$$\begin{array}{ccc} & H & C_4H_9 \\ & & | & | \\ CH_3-C & C-CH_2 \\ & & | & | \\ & C_7H_\epsilon & CH_7 \end{array}$$

- a) 2,4,4 Trimethylpent -2-ene b) 2,4,4 Trimethylpent -3-ene
- c) 2,2,4 Trimethylpent -3-ene d) 2,2,4 Trimethylpent -2-ene
- 4 10. The IUPAC name of the compound
 - a) 3 Ethyl -2– hexene
- b) 3 Propyl -3 hexene
- c) 4 Ethyl 4 hexene
- d) 3 Propyl -2-hexene

$$CH_3$$
- $CH = C - CH_2$ - CH_3
 CH_2 - CH_2 - CH_3

CH,-CH - COOH

ÖН

 $H_3C - \dot{C} - CH = C(CH_3)$

CH,

CH,

11. The IUP<mark>AC name of the compound</mark>

- a) 2 Hydroxypropionic acid b) 2 Hydroxy Propanoic acid
- c) Propan 2– ol –1 oic acid d) 1 Carboxyethanol.

CH,

★12. The IUPAC name

- a) 2 Bromo -3 methyl butanoic acid b) 2-methyl- 3- bromobutanoic acid
- c) 3 Bromo 2 methylbutanoic acid d) 3 Bromo 2, 3 dimethyl propanoic acid.
- 13. The structure of isobutyl group in an organic compound is

- 14. The number of stereoisomers of 1, 2 dihydroxy cyclopentane
 - a) 1
- b)2
- c) 3
- d) 4
- 15. Which of the following is optically active?
 - a) 3 Chloropentane b) 2 Chloro propane
- c) Meso tartaric acid
- d) Glucose

- 16. The isomer of ethanol is a) acetaldehyde
- b) dimethylether
- c) acetone
- d) methyl carbinol
- 17. How many cyclic and acyclic isomers are possible for the molecular formula C₃H₆O?

b) 5

418. Which one of the following shows functional isomerism?

- a) ethylene
- b) Propane
- c) ethanol
- d) CH2Cl2

☆ 19. Find the isomers

- a) resonating structure b) tautomers
- c) Optical isomers
- d) Conformers.
- CH_2 -C-CH, and CH_2 = C CH_2
- 20. Nitrogen detection in an organic compound is carried out by Lassaigne's test. The blue colour formed is due to the formation of.
 - a) $Fe_3[Fe(CN)_6]_2$
- b) $Fe_4[Fe(CN)_6]_3$
- c) $F_{e_4}[F_e(CN)_6]_2$
- d) $Fe_3[Fe(CN)_6]_3$

- 21. Lassaigne's test for the detection of nitrogen fails in
 - a) $H_2N CO NH.NH_2.HCl$

b) NH₂ - NH₂. HCl

c) $C_6H_5 - NH - NH_2$. HCl

d) C₆H₅ CONH₂

	22. Connect pair of compounds which give blue colouration / precipitate and white precipitate respectively, wher
Z	their Lassaigne's test is separately done.
7	a) NH ₂ NH ₂ HCl and ClCH ₂ -CHO b) NH ₂ CS NH ₂ and CH ₃ - CH ₂ Cl
Z	c) NH ₂ CH ₂ COOH and NH ₂ CONH ₂ d) $C_6H_5NH_2$ and ClCH ₂ – CHO.
Z	
Z	a) $[Fe(CN)_5 NO]^{3-}$ b) $[Fe(NO)_5 CN]^+$ c) $[Fe(CN)_5 NOS]^{4-}$ d) $[Fe(CN)_5 NOS]^{3-}$
7	24. An organic Compound weighing 0.15g gave on carius estimation, 0.12g of silver bromide. The percentage of
	bromine in the Compound will be close to a) 46% b) 34% c) 3.4% d) 4.6%
	25. A sample of 0.5g of an organic co <mark>mpound</mark> was treate <mark>d acco</mark> rding to Kje <mark>ldahl's m</mark> ethod. The ammonia evolved
Z	was absorbed in 50mL of 0.5M H_2SO_4 . The remaining acid after neutralisation by ammonia consumed 80mL of
Z	0.5 MNaOH, The percentage of nitrogen in the organic compound is.
7	a) 14% b) 28% c) 42% d) 56%
Z	$\frac{1}{4}$ 26. In an organic compound, phosphorus is estimated as $\frac{1}{4}$ a) Mg ₂ P ₂ O ₇ b) Mg ₃ (PO ₄) ₂ c) H ₃ PO ₄ d) P ₂ O ₅
- 2	27. Ortho and para-nitro phenol can be separated by a) azeotropic distillation b) destructive distillation
	c) steam distillation d) cannot be separated
Z	28. The purity of an organic compound is determined by
Z	a) Chromatography b) Crystallisation c) melting or boiling point d) both (a) and (c)
Z	29. A liquid which decomposes at its boiling point can be purified by
7	a) distillation at atmospheric pressure b) distillation under reduced pressure
Z	c) fractional distillation d) steam distillation.
Z	30. Assertion: 3– carbethoxy -2- butenoicacid. CH ₃ – C = CH – COOH COOC ₂ H ₅
Z	COOC ₂ H ₅
7	Reason: The principal functional group gets lowest number followed by double bond (or) triple bond.
7	(a) both the assertion and reason are true and the reason is the correct explanation of assertion.
Z	(b) both assertion and reason are true and the reason is not the correct explanation of assertion.
Z	(c) assertion is true but reason is false (d) both the assertion and reason are false.
Z	Addional:
Z	1. The first organic compound synthesized in the laboratory from an inorganic compound is
Z	a) NH_4NCO b) $NH_2 - CO - NH_2$ c) CH_3COOH d) CH_4
7	
	a) Metamers b) Chain isomers c) Geometrical isomers d) Position isomers
Z	3. The total number of structural isomers for the compound of the formula $C_4H_{10}O$ is a) 7 b) 6 c) 4 d) 3
Z	4. According to Huckel's rule a compound, is said to be aromatic if' it contains
	a) 4n bonds b) 4n atoms c) (4n + 2) atoms d) (4n + 2) π electrons
	5. IUPAC name of CH \equiv C - CH = CH ₂ is a) but - 3 - ene - 1 - yne b) but - 1 - ene - 3 - yne
Z	c) but – 1 – vne – 3 – ene d) but – 3 – vne – 1 – ene
Z	6. The IUPAC name of the Compound CH ₃ – CH(OH) – COOH is
Z	a) Lactic acid b) 2 – Hydroxy propanoic acid c) 3 – Hydroxy propanoic acid d) Carboxy propanol
Z	4 7. Tautomerism is shown by a) R – C \equiv N b) R – NO ₂ c) R – OH d) R – COOH
-	♦ 8. The method of separation of enantiomers from racemic mixture is known as
Z	a) inversion b) recomination c) resolution d) asymmetric synthesis
Z	9 Which of the following exhibit cis – trans isomerism
Z	a) propene b) 1 - butane c) 2 - butane d) benzene
Z	A
Z	A.
Z	9. Which of the following exhibit cis – trans isomerism a) propene b) 1 – butane c) 2 – butane d) benzene

☆

$\frac{1}{2}$	10. d – tartaric acid and l – tartaric acid can be separated by
***	a) Salt formation b) Fractional distillation c) Fractional crystallization d) Chromatography
₩	11. Paper chromatography is a) Adsorption chromatography b) partition chromatography
₩	
	12. Simple distillation can be used to separate liquids which differ in their boiling points at least by
$\frac{1}{2}$	a) 5°C b) 10°C c) 40 – 50°C d) 100°C
$\frac{1}{\lambda}$	13. A very common adsorbent used in column chromatography is
₩	a) Powdered charcoal b) Alumina c) Chalk d) Sodium carbonate
₩	14. Lassaigne's test is used in qualitative analysis to detect
☆	a) Nitrogen b) Sulphur c) Chlorine d) All of these
*	15. The presence of halogen in an organic compound is detected by
$\frac{1}{2}$	a) Iodoform test b) Silver nitrate test c) Beilstein's test d) Million's test
₩	16. In Kjeldahl's method, the nitrogen presence is estimated as
₩	a) N_2 b) NH_3 c) NO_2 d) N_2O_3
☆	17. Ortho and para nitro phenols can be separated by
☆	a) crystallization b) distillation c) sublimation d) solvent extraction
*	
***	12. Basic Concepts of Organic Reactions
₩ ₩	EVALUATION:
₩	I Choose the best answer
-	I. Choose the best answer. (A) $CH_3CH_2CH_2Br + KOH \rightarrow$
	1. For the following reactions CH ₃ -CH= CH ₂ + KBr +H ₂ O
7	Which of the following statement is correct? (B) $(CH_3)_3CBr + KOH \rightarrow (CH_3)_3COH$
☆ ☆ ☆ ☆	(a) (A) is elimination, (B) and (C) are substitution + KBr
₩	(b) (A) is substitution, (B) and (C) are elimination
	(c) (A) and (B) are elimination and (C) is addition reaction
$\frac{1}{2}$	
	[*] 2. What is t <mark>he hybridisation s</mark> tate of benzy <mark>l ca</mark> rboni <mark>um ion? (a) sp² (b) spd² (c) sp³ (d) sp²d</mark>
✓	3. Decreasing order of nucleophilicity is
₩	
V	(c) $NH_{2}^{-} > CH_{3}O^{-} > OH^{-} > RNH_{2}$ (d) $CH_{3}O^{-} > NH_{2}^{-} > OH^{-} > RNH_{2}$
$\frac{1}{2}$	4. Which of the following s <mark>pecies is</mark> not electr <mark>oph</mark> ilic in na <mark>tur</mark> e?
$\frac{1}{2}$	
X	5. Homolytic fission <mark>of covale</mark> nt bond lead <mark>s to t</mark> he format <mark>ion o</mark> f
₩ •	5. Homolytic fission of covalent bond leads to the formation of (a) electrophile (b) nucleophile (c) Carbo cation (d) free radical 6. Hyper Conjugation is also known as
₩	6. Hyper Conjugation is also known as
$\frac{1}{2}$	(a) no bond resonance (b) B <mark>aker - n</mark> athan effect (c) both (a) <mark>and (b)</mark> (d) none of these
	7. Which of the group has highest +I effect?

₩ •	8. Which of the following species does not exert a resonance effect?
₩	(a) C_6H_5OH (b) C_6H_5Cl (c) $C_6H_5NH_2$ (d) $C_6H_5NH_3$ +
	(a) C_6H_5OH (b) C_6H_5Cl (c) $C_6H_5NH_2$ (d) $C_6H_5NH_3^+$ 9I effect is shown by (a) -Cl (b) -Br (c) both (a) and (b) (d) -CH ₃
	10. Which of the followin <mark>g carbocation will be most stable? (a) Ph.C-+ (b) CH -CH -</mark>
☆	10. Which of the following carbocation will be most stable? (a) Ph_3C^{-+} (b) $CH_3 - \dot{C}H_2 - \dot{C}H_2$ (c) $(CH_3)_2 - \dot{C}H$ (d) $CH_2 = CH - \dot{C}H_2$
	(-) (SII ₃ / ₂ OII (") OII ₂ OII - OII ₂
₩	
₩	30

11. Assertion: Tertiary Carbocations are generally formed more easi Reason: Hyper conjugation as well as inductive effect due to a carbonium ions. (a) both assertion and reason are true and reason is the correct (b) both assertion and reason are true but reason is not the cor (c) Assertion is true but reason is false (d) Both assertion and reason are false 12. Heterolytic fission of C–C bond results in the formation of	lly than primary Carbocations ions.
Reason: Hyper conjugation as well as inductive effect due to a	
carbonium ions.	
(a) both assertion and reason are true and reason is the correct	explanation of assertion.
(b) both assertion and reason are true but reason is not the cor	rect expla <mark>nati</mark> on of assertion.
(c) Assertion is true but reas <mark>on is fals</mark> e	
(d) Both assertion and reason are false	
↓ 12. Heterolytic fission of C–C bond results in the formation of	
(c) Carbocation	(d) <mark>Carban</mark> ion and Carbocation
13. Which of the following represent a set of nuclephiles?	
(a) BF ₃ , H ₂ O, NH ₂ · (b) AlCl ₃ , BF ₃ , NH ₃ (c) CN-, RCH ₂ ·, ROH	(d) H^+ , RNH_3^+ , : CCl_2
14. Which of the following species does not acts as a nucleophile?	
(a) ROH (b) ROR (c) PCl ₃	(d) BF ₃
	<mark>ral</mark> (c) Plan <mark>ar (d)</mark> Pyramidal
Additional:	
1. The shape of carbonium ion is a) Planar b) Linear	c) Pyramidal d) Tetrahedral
2. Which of the following species is paramagnetic	
	arbanion d) All of these
3. In carbonium ion the carbon bearing the positive charge is	
a) sp hybridized b) sp² hybridized c) sp³ hybridiz	
4. Electrophiles are a) Lewis bases b) Lewis acids	c) Amphoteric d) All of these
5. Electrophiles are a) Electron loving species b) Electron ha	
c) Nucleus loving reagents d) Nucleus ha	ting reagents
♦ 6. The electromeric effect in organic compounds is a	
a) Temporary effect b) Permanent effect c) Temporary	
7. + I effect is shown by a) – NO_2 b) – Cl c) – Br	
8. The reaction intermediate produced by homolytic cleavage of bon	
a) carbocations b) carbanions c) free radical	
9. The most stable carbonium ion is a) Methyl carbonium ion	
c) Secondary carbonium ion	d) Tertiary carbonium ion
10. Alkenes readily undergo a) Substitution reactions	b) Addition reactions
c) Elimination reactions	d) Rearrangement reactions
	b) nucleophilic addition
c) electrophilic substitution	d) free radical substitutionb) iso – propyl cation
c) Ethyl cation	d) Triphenylmethyl cation
C) Ethyl cation	a) Triphenyimethyi cation

13. Hydrocarbons

EVALUATION:

☆ ☆

★I. Choose the best answer.

1. The correct statement regarding the comparison of staggered and eclipsed conformations of ethane, is

a) the eclipsed conformation of ethane is more stable than staggered conformation even though the eclipsed conformation has torsional strain.

 $\stackrel{\wedge}{\swarrow}$

b) the staggered conformation of ethane is more stable than eclipsed conformation, because staggered conformation has no torsional strain.

- c) the staggered conformation of ethane is less stable than eclipsed conformation, because staggered \(\frac{1}{2} \) conformation has torsional strain.
- d) the staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has no torsional strain.
- $2. C_2H_5Br + 2Na$ $C_4H_{10} + 2NaBr$ The above reaction is an example of which of the following
 - a) Reimer Tiemann reaction b) Wurtz reaction c) Aldol condensation d) Hoffmann reaction

d) p - s and p - p

3. An alkyl bromide (A) reacts with sodi<mark>um in e</mark>ther to fo<mark>rm 4</mark>, 5- diethy<mark>loctan</mark>e, the compound (A) is

a) CH, (CH,), Br

b) CH₂(CH₂)₂ Br

☆ ★ 4.The C – H bond and C – C bond in ethane are formed by which of the following a) $sp^3 - s$ and $sp^3 - sp^3$ b) $sp^2 - s$ and $sp^2 - Sp^2$

c) sp - sp and sp - sp

c) CH₃(CH₂)₃ CH(Br)CH₃

d) CH, - (CH,), - CH (Br) - CH, CH.

444444444

★ 5. In the following reaction,

☆

*

☆ $\stackrel{\wedge}{\sim}$

☆ ☆

 $\stackrel{\wedge}{\Longrightarrow}$

CH,

CH, - Br

CH,

- ★ 6. Which of the following is optically active
 - a) 2 methyl pentane
- b) citric acid
- c) Glycerol
- d) none of of these

d) C_nH_{2n+2}

7. The compounds formed at anode in the electrolysis of an aquous solution of potassium acetate are

The major product obtained is

- a) CH₄ and H₂
- b) CH₄ and CO₂
- c) C₂H₆ and CO₂
- d) C₂H₄ and Cl₂

- 8. The general formula for cyclo alkanes a) C_nH_n
- b) C_nH_{2n}
- c) C_nH_{2n-2}
- ♦ 9. The compound that will react most readily with gaseous bromine has the formula
 - a) C_3H_6

*

☆

- b) C_2H_2
- c) C₄H₁₀
- d) C_2H_4
- 10. Which of the following compounds shall not produce propene by reaction with HBr followed by elemination (or) only direct elimination reaction

a) 🔽

- b) CH, CH, CH, OH
- c) $H_{2}C = C = 0$
- d) CH, CH, CH, Br
- ★11. Which among the following alkenes on reductive ozonolysis produces only propanone?
 - a) 2 Methyl propene

- b) 2 Methyl but 2 ene
- c) 2, 3 Dimethyl but 1 ene

- d) 2, 3 Dimethyl but 2 ene
- $\stackrel{\checkmark}{\sim}$ 12. The major product formed when 2 bromo 2 methyl butane is refluxed with ethanolic KOH is
 - a) 2 methylbut 2 ene

b) 2 - methyl butan - 1 - ol

c) 2 – methyl but – 1 – ene

d) 2 - methyl butan - 2 - ol

ightharpoonup 13. Major product of the below mentioned reaction is,

$$(CH_3)_2 C = CH_2 \xrightarrow{ICl}$$

- a) 2-chloro -1- iodo 2 methyl propane
- b) 1-chloro-2-iodo-2-methylpropane
- c) 1,2 dichloro 2 methyl propane

☆

☆

☆

d) 1, 2 - diiodo - 2 - methyl propane

14. The IUPAC name of the following compound is

- a) trans-2-chloro-3-iodo 2 pentene b) cis-3 iodo 4 chloro 3 pentane
- c) trans-3-iodo-4-chloro 3 pentene d) cis-2 chloro 3 iodo 2 pentene

$$Cl$$
 $C = C$
 CH_2-CH_3
 $C = C$

$\frac{1}{4}$ 15. Cis – 2 – butene and trans – 2 – butene are

a) conformational isomers b) structural isomers c) configurational isomers d) optical isomers

16. Identify the compound (A) in the following reaction

CHO
$$(i)$$
 (i) (i)

- 17. $CH_2 CH_2 \xrightarrow{(A)} CH \equiv CH$, where A is, a) Zn
- b) Conc.H₂SO₄
 - c) alc. KOH
- d) dil H₂SO₄
- $\frac{1}{4}$ 18. Consider the nitration of benzene using mixed con H₂SO₄ and HNO₃ if a large quantity of KHSO₄ is added to the mixture, the rate of nitration will be a) unchanged b) doubled c) faster d) slower

20. Propyne on passing through red hot iron tube gives

CH,

- $CH_2 CH = CH_2$
 - C1 C1 $CH_2 CH = CH_2$
- c) both (a) and (b)

$$CH_{2} - CH_{2} = CH_{2}$$

$$d)$$

22. Which one of the following is non aromatic?

☆

23. Which of the following compounds will not undergo Friedal – crafts reaction easily?

- a) Nitro benzene
- b) Toluene

- c) Cumene
- d) Xylene

★24. Some meta-directing substituents in aromatic substitution are given. Which one is most deactivating?

- a) COOH
- b) NO₂
- c) $-C \equiv N$
- d) $-SO_3H$

25. Which of the following can be used as the halide component for friedal - crafts reaction?

- a) Chloro benzene
- b) Bromo benzene
- c) chloro ethene
- d) isopropyl chloride

26. An alkane is obtained by decarboxylation of sodium propionate. Same alkane can be prepared by

- a) Catalytic hydrogenation of propene
- b) action of sodium metal on iodomethane
- c) reduction of 1 chloro propane
- d) reduction of bromomethane

27. Which of the following is aliphatic saturated hydrocarbon

- a) C_8H_{18}
- b) C₉H₁₈
- c) C_8H_{14}
- d) All of these

28. Identify the compound 'Z' in the following reaction

- a) Formaldehyde
- b) Acetaldehyde

- c) Formic acid
- d) none of these

29. Peroxide effect (Kharasch effect) can be studied in case of

- a) Oct 4 ene
- b) hex 3 ene
- c) pent 1 ene
- d) but 2 ene

- 30. 2 butyne on chlorination gives a) 1 chloro butane
- b) 1, 2 dichloro butane
 - c) 1, 1, 2, 2 tetrachlorobutane
- d) 2, 2, 3, 3 tetra chloro butane

🔀 Additional:

1. The gas supplied in cylinders for cooking is

- a) marsh gas
- b) LPG

2. Adam's catalyst is: a) platinum metal

- c) mixture CH₄ and C₂H₆
- d) mixture of ethane and propane

- b) palladium c) nickel metal
- d) PtO₂

★ 3. The most stable conformation of ethane is a) Eclipsed

- b) Skew c) Staggered d) All are equally stable

d) isopropyl chloride

🔀 4. In Wurtz reaction, n – hexane is obtained from

- a) n propyl chloride b) n butyl chloride c) Ethyl chloride

- 5. The alkene that exhibits geometrical isomerism is a) propene
 - b) 2 methyl propene
- c) 2 butane d) 2 methyl 2 butane

★ 6. Baeyer's reagent is a) Aqueous bromine solution

- b) Neutral permanganate solution
- c) Acidified permanganate solution 7. Polytetrafluoroethylene is commercially known as a) Teflon
- d) Alkaline potassium permanganate solution
 - - d) Westron

\$\$\$\$\$\$\$\$\$\$

8. The peroxide effect involves

a) Ionic mechanism

- b) Freon c) Lewisite
 - b) Free radical mechanism

- c) Heterolytic fission of double bond d) Homolytic fission of double bond

c) 5

4 9. The number of possible alkynes with molecular formula C_5H_8 is

- a) 3
- b) 4
- d) 6

 $ightright{ iny}10$. Westron is the solvent obtained by the reaction of chlorine with

- a) Ethylene
- b) Ethyne
- c) Ethane

d) Methane

11. Coal tar is obtained as a by product during

- a) Destructive distillation of wood
- b) Destructive distillation of coal
- c) Destructive distillation of bones
- d) steam distillation of light oil

12. Chemical name of the insecticide gammaxene is

- b) Benzene hexa chloride
- c) Chloral
- d) Hexa chloro ethane

13. Benzene is purified by a) distillation b) fractional distillation c) Evaporation d) sublimation

- ★14. Which of the following is not meta directing group?
- a) $-SO_3H$
- b) NO_2 c) - CN
- d) NH₂

14. Haloalkanes and Haloarenes

EVALUATION:

1. The IUPAC name of

- a) 2-Bromo pent-3- ene b) 4-Bromo pent-2-ene c) 2-Bromo pent-4-ene d) 4-Bromo pent-1-ene
- 2. Of the following compounds, which has the highest boiling point?
 - a) n-Butyl chloride
- b) Isobutyl chloride
- c) t-Butyl chloride
- d) n-propyl chloride

3. Arrange the following compounds in increasing order of their density

- A) CCl₄ a) D < C < B < A
- B) CHCl₃
 - C) CH₂Cl₂ b) C > B > A > D
- D) CH₃Cl c) A < B < C < D
- d) C > A > B > D

4. With respect to the position of – Cl in the compound CH_3 – CH = CH – CH_2 – Cl, it is classified as

a) Vinyl

*

☆

- b) Allyl
- c) Secondary
- d) Aralkyl

5. What should be the correct IUPAC name of diethyl chloromethane?

a) 3 - Chloro pentane

- b) 1-Chloropentane
- c) 1-Chloro-1, 1, diethyl methane
- d) 1 -Chloro-1-ethyl propane

c) Bromomethane ★ 6. C -X bond is strongest in a) Chloromethane b) Iodomethane In the reaction

8. Which of the followi<mark>ng c</mark>ompounds wi<mark>ll give</mark> racemic <mark>mixtu</mark>re on nucl<mark>eophil</mark>ic substitutio<mark>n by</mark> OH- ion?

- b) (ii) and (iii)

b) R-CH-ROH c) R-CHO

- c) (iii) d) (i) and (ii)
- CH₃ CH CH₂Br

10. Benzene reacts with Cl₂ in the presence of FeCl3 and in absence of sunlight to form

- a) Chlorobenzene
- b) Benzyl chloride
- c) Benzal chloride
- d)Benzene hexachloride

d) Fluoromethane

- \bigstar 11. The name of $C_2F_4Cl_2$ is _____a) Freon-112 b) Freon-113

d) R-O-R

- c) Freon-114 d) Freon-115
- [★] 12. Which of the followin<mark>g reagent is helpful to differentiate ethylene dichloride and ethylidene chloride?</mark> a) Zn / methanol

a) R-C-RO

- b) KOH / ethanol
- c) aqueous KOH
- d) ZnCl₂ / Con HCl

Column

I (Com-

pound)

Iodoform

Carbon

chloride

tetra

DDT

В

C **CFC**

D

☆

☆

☆

☆

☆

☆

♦ ♦ ♦ ♦

Column II (Uses)

Fire extinguisher

Insecticide

Antiseptic

Refrigerants

ightriangle 13. Match the compounds given in Column I with suitable items given in Column II

Code

☆

☆

- a) $A \rightarrow 2 B \rightarrow 4 C \rightarrow 1 D \rightarrow 3$
- b) $A \rightarrow 3 B \rightarrow 2 C \rightarrow 4 D \rightarrow 1$

- c) A \rightarrow 1 B \rightarrow 2 C \rightarrow 3 D \rightarrow 4
- d) $A \rightarrow 3 B \rightarrow 1 C \rightarrow 4 D \rightarrow 2$
- ★14. **Assertion:** In mono haloarenes, electrophilic substitution occurs at ortho ☆ and para positions. $\stackrel{\wedge}{\sim}$

Reason: Halogen atom is a ring deactivator

- (i) If both assertion and reason are true and reason is the correct explanation of assertion.
- (ii) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (iii) If assertion is true but reason is false. (iv) If both assertion and reason are false.
- 15. Consider the reaction, CH₃CH₂CH₂Br + NaCN → CH₃CH₂CH₂CN + NaBr

This reaction will be the fastest in a) ethanol b) methanol c) DMF (N, N' - dimethyl formamide) d) water

- ★16. Freon-12 is manufactured from tetrachloro methane by
 - a) Wurtz reaction b) Swarts reaction
- c) Haloform reaction d) Gattermann reaction
- 17. The most easily hydrolysed molecule under S_N1 condition is
 - a) allyl chloride
- b) ethyl chloride
- c) ispropylchloride
- d) benzyl chloride
- 18. The carbo cation formed in S_N1 reaction of alkyl halide in the slow step is
 - a) sp³ hybridised b) sp² hybridised
- c) sp hybridised
- d) none of these
- $\stackrel{\checkmark}{\sim}$ 19. The major products obtained when chlorobenzene is nitrated with HNO $_3$ and con H $_2$ SO $_4$
 - a) 1-chloro-4-nitrobenzene
- b) 1-chloro-2-nitrobenzene
- c) 1-chloro-3-nitrobenzene
- d) 1-chloro-1-nitrobenzene
- 20. Which one of the following is most reactive towards nucleophilic substitution reaction?

- 21. Ethylidene chloride on treatment with aqueous KOH gives
 - a) acetaldehyde
- b) ehtyleneglycol
- c) formaldehyde
- d) glycoxal

- 22. The raw material for Rasching process
 - a) chloro benzene
- b) phenol
- c) benzene
- d) anisole

- 23. Chloroform reacts with nitric acid to produce
 - a) nitro toluene
- b) nitro glycerine
- c) chloropicrin d) chloropicric acid

acetone
$$\frac{i) CH_3MgI}{ii) H_2O/H^{-1}}$$
 X, X is

- a) 2-propanol
- b) 2-methyl-2-propanol
- c) 1-propanol
- d) acetonol
- 25. Silverpropionate when refluxed with Bromine in carbontetrachloride gives
- a) propionic acid b) chloro ethane
- c) bromo ethane
- d) chloro propane

Additional:

- ☆ 1. Grignard reagent is formed when alkyl halide reacts with which one of the following
 - a) Mg in alcohol
- b) Mg in acid c) Mg in dry ether

d) MgO

- 🔀 2. Which of the fallowing is used as refrigerant?
- a) CH₃COCH₃
- b) CCl₄ c) C₂H₅Cl
- d) CF₄

- 3. In Dow's process the starting raw material is
- a) Phenol
- b) Chloro benzene
- c) Aniline
- d) Diazobenzene

 $\stackrel{\wedge}{\swarrow}$

₹					
4. Chloro benzene is prepared commercially by					
a) Dow's process b) Decon's process c) Raschig process d) Etard's process					
5. Chloro benzene on treatment with sodium in dry ether gives diphenyl. The name of the reaction is					
a) Fitting reaction b) Wurtz fittig reaction c) Wurtz reaction d) Sandmeyer reaction					
6. The raw materials for the commercial manufacture of DDT are					
a) chloro benzene and chloroform b) chloro benzene and chloro methane					
c) chloro benzene and chloral d) chloro benzene and iodoform					
7. Iodoform is used as a) anaesthetic b) antiseptic c) analgesic d) anti fibrin					
8. Freon – 12 is a) CF ₃ Cl b) CHCl ₂ F c) CF ₂ Cl ₂ d) DDT					
76. Freon = 12 is a j Gr3Gr bj GrG2Pr cj Gr2G2 dj bb1					
C) p, p' – dichloro diphenyl tnchloro benzene d) p, p' – tetra chloro ethane					
10. With Zn – Cu couple and C ₂ H ₅ OH, ethyl Iodide reacts to give					
a) ethers b) diethyl ether c) Iodoform d) Ethane					
11. The reaction of alkyl halide with benzene in presence of anhydrous A1Cl ₃ gives alkyl benzene the reaction is					
known as a) Friedel – craft's reaction b) Carbylamine reaction					
c) Gattermann reaction d) Wurtz reaction					
$12.\mathrm{S_{N^2}}$ reaction leads to a) inversion of configuration b) retention of configuration					
c) partial racemisation d) no racemisation					
13. The order of reactivity of various alkyl halides toward SN1 reaction is					
a) $3^{\circ} > 2^{\circ} > 1^{\circ}$ b) $1^{\circ} > 2^{\circ} > 3^{\circ}$ c) $3^{\circ} = 2^{\circ} = 1^{\circ}$ d) $1^{\circ} > 3^{\circ} > 2^{\circ}$					
14. Chloro benzene can be prepared by reacting benzene diazonlum chloride with					
a) HCl b) Cu ₂ Cl ₂ / HCl c) Cl ₂ / AlCl ₃ d) HNO ₂					
15. Environmental Chemistry					
EVALUATION:					
I. Choose the best answer.					
1. The gageous envelope around the earth is known as atmosphere. The region lying between an eltitudes of 11. EC					
1. The gaseous envelope around the earth is known as atmosphere. The region lying between an altitudes of 11-50					
km isa) Troposphere b) Mesosphere c) Thermosphere d) stratosphere					
2. Which of the following is natural and human disturbance in ecology?					
a) Forest fire b) Floods c) Acid rain d) Green house effect					
3. Bhopal Gas Tragedy is a case of a) thermal pollution b)air pollution c) nuclear pollution d) land pollution					
4. Haemoglobin of the bl <mark>ood form</mark> s carboxy <mark>hae</mark> moglobin <mark>wit</mark> h					
a) Carbon di <mark>oxide b) Carbo</mark> n tetra ch <mark>lorid</mark> e <mark>c) Car</mark> bon monoxi <mark>de d) C</mark> arbonic acid					
5. Which sequence fo <mark>r gree</mark> n house gase <mark>s is ba</mark> sed on GW <mark>P?</mark>					
a) CFC > N_2O > CO_2 > CH_4 b) CFC > CO_2 > N_2O > CH_4					
c) CFC > N_2O > CH_4 > CO_2 d) CFC > CH_4 > N_2O > CO_2					
6. Photo chemical smog formed in c <mark>ongeste</mark> d metropolit <mark>an citi</mark> es mainly c <mark>onsists o</mark> f					
a) Ozone, SO_2 and hydrocarbons b) Ozone, PAN and NO_2					
c) PAN, smoke and SO ₂ d) Hydrocarbons, SO ₂ and CO ₂					
7. The pH of normal rain water is a) 6.5 b) 7.5 c) 5.6 d) 4.6					
8. Ozone depletion will cause a) forest fires b) eutrophication c) bio magnification d) global warming					
9. Identify the wrong statement in the following a) The clean water would have a BOD value of more than 5 ppm					
b) Greenhouse effect is also called as Global warming					
c) Minute solid particles in air is known as particulate pollutants					
d) Biosphere is the protective blanket of gases surrounding the earth					
Supplier to the protective blanket of gases surrounding the curtif					

times 10. Living in the atmosphere of CO is dangerous because it

- a) Combines with O₂ present inside to form CO₂
- b) Reduces organic matter of tissues
- c) Combines with haemoglobin and makes it incapable to absorb oxygen
- d) Diluted the blood
- 11. Release of oxides of nitrogen and hydrocarbons into the atmosphere by motor vehicles is prevented by using
 - a) grit chamber
- b) scrubbers
- c) trickling filters
- d) catalytic convertors

★12. Biochemical oxygen Demand value less than 5 ppm indicates a water sample to be

- a) highly polluted
- b) poor in dissolved oxygen
- c) rich in dissolved oxygen
- d) low COD

13. Match the List I with List II and select the correct answer using the code given below the lists

List I			List II	
A	Depletion of ozone layer	1	CO ₂	
В	Acid rain	2	NO	
С	Photochemical smog	3	SO ₂	
D	Green house effect	4	CFC	

A B C I
a 3 4 1 2
b 2 1 4 3
c 4 3 2 1

^{*}14

☆

List I			List II			
A	Stone leprosy	1	CO			
В	Biological magnification	2	Green house gases			
С	Global warming	3	Acid rain			
D	Combination with	4	DDT			

A B C D
a 1 2 3 4
b 3 4 2 1
c 2 3 4 1

↑ The questions gives below consists of an assertion the reason. Choose the correct option out of the choices given ★ below each question

- i) Both (A) and R are correct and (R) is the correct explanation of (A)
- ii) Both (A) and R are correct and (R) is not the correct explanation of (A)
- iii) Both (A) and R are not correct
- iv) (A) is correct but(R) is not correct
- $\stackrel{\checkmark}{\approx}$ 15. Assertion (A): If BOD level of water in a reservoir is more than 5 ppm it is highly polluted

Reason(R): High biological oxygen demand means high activity of bacteria in water

- a) i
- b) ii
- c) iii
- d) iv

16. Assertion (A): Excessive use of chlorinated pesticide causes soil and water pollution.

Reason (R): Such pesticides are non-biodegradable.

- a) i
- b) ii
- c) iii
- a) iv

17. Assertion (A): Oxygen plays a key role in the troposphere

Reason (R): Troposphere is not responsible for all biological activities

- a) i
- b) ii
- c) iii
- d) iv

♦ Addional :

- 1. The gas responsible for ozone depletion:
- (a) NO and freons
- (b) SO_2
- (c) CO_2
- (d) CO

- ★2. In Antartica ozone depletion is due to the formation of following compound
 - (a) acrolein
- (b) peroxyacetyl nitrate
- (c) SO_2 and NO_2
- (d) chlorine nitrate
- 3. Classical smog occurs in places of (a) excess SO_2 (b) low temperature
- (c) high temperature (d) excess NH₃

4							
4. Which gas is respo	nsible for 'Bhopa	al Gas Trage	dy' in 1984?				
(a) CO	(b) Methyl iso	cynate	(c) SO_2 and NO_2	(d) Ethyl isocynate			
5. Which of the follow	ving is the colde	st region of a	atmosphere				
(a) Thermosp	here (b) Me	esosphere	(c) Troposphere	(d) Stratosphere			
←6. Formation of Lond	on smog takes p	lace in (a)	Winter during day time	(b) summer during day time			
		(c)	summer during morning	time (d) winter during morning time			
🥇 7. The substance whi	ch is not regarde	ed as a pollu	tant? (a) NO_2 (b) C	O_2 (c) O_3 (d) Hydrocarbons			
8. Minamata disease	of Japan is due t	o pollution o	of (a) Aresenic (b) Lead	(c) Cynide (d) Mercury			
9. Which is known as	"Third poison o	f environme	ent" and also creates 'Blue	baby syndrome'			
(a) Nitrate pr	esent in water	(b) Phospl	nate and detergents found	in water			
(c) Cyanide		(d) Pestici	des				
10. Green chemistry	means such reac	tions which	:				
(a) produce c	olour during rea	ctions	(b) reduce the use an	d production of hazardous chemicals			
(c) are related to the depletion of ozone layer (d) study the reactions in plants							
₹11. What is DDT amo	ng the following	? (a)	Greenhouse gas	(b) A fertilizer			
		(c)	Biodegradable pollutant	(d) Non – biodegradable pollutant			
12. Black – foot disease is caused due to groundwater contaminated with excess of							
(a) Nitrate	(b) Fluoride	(c) Arsenio	c (d) Sulphur				
13. Which of the following metal is a water pollutant and causes sterility in human. being?							
(a) As	(b) Mn	(c) Mg	(d) Hg				

--ALL THE BEST----

Time + Effort=Success

Thank God

XI CHEMISTRY VOLUME I & II

Answer Key

1. Basic Concepts of

Chemistry and Chemical

Calculations

- 1. a)40 ml of CO2 gas
- $\frac{1}{2}$ 2. (d) 200 u
- $\frac{1}{2}$ 3. (c) assertion is true but
- **☆**5. a) 102 g
- [★]6. c) 6.022 x 1020
- 7. c) 16 %
- ♣8. c) 0.075
- $\stackrel{\checkmark}{\sim} 10.$ (c) BaCl₂ + H₂SO₄ \rightarrow
- [★]11. b)P4 + 3 NaOH + 3 H2O
 - 12. (b) 52.7
- 213. d) 6.022 x 1024
- ★ 14. a) NO
- **★**15. a) 6.022 x 1023
- $\stackrel{\checkmark}{\sim}$ 16. (c) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-} <$
- 17. c) molar mass of ferrous
- 18. d) the mass of one mole
- $\frac{1}{4}$ 19. c) the ratio between B is
- **☆**20. a) 3.59 g
- [★]21. b) 44 g mol-1
- ⁷22. c) both (a) & (b)
- 23. a) propene
- **★**25. b) 6C12

🔀 Additional :

- $\frac{1}{2}$ 1. (a) 6.023 x 10²³ atoms of C
- ² 2. (c) 0.01
- 3. (b) 6.023 x 10²³
- 4. (c) 5
- **☆**5. (a) HO
- $\frac{1}{2}$ 6. (a) Vapour Density × 2
- **☆** 7. (d) 1
- 💢 8. (d) 44
- ∳ 9. (b) -1
- $\stackrel{1}{\sim} 10$. (b) 111 g mol⁻¹
- 11. (d) 46 amu

☆

☆

- 13. (c) 6 moles
- 14. (b) 0.5 mole
- 15 ()44.01
- 15. (c) 11.2 L
- 16. (b) Fe_2O_3 . x H_2O
- 17. (b) + 6
- 18. (c) 3
- 19. (c) Zn
- 20. (d) $4H_3PO_3 \rightarrow 3H_3PO_4 +$
- 21. (b) 142
- 22.(b) + 3
- 23(d) Cl₂O₇.

2. Quantum Mechanical

Model of Atom

- 1. (c) 30
- 2. (c) 4.42 x 10-18 J
- 3. (b) $\lambda 1 = 2\lambda 2$
- 4. (d) Stark effect
- 5. (b)
- 6. (d) n=6 to n=5
- 7. (a)
- 8. (c) dz^2 , dx^2-y^2
- 9. (b) Spin quantum
- 10. (b) [Xe]4f7 6s2; [Xe]4f7
- 11. (c) 4l+2
- 12. (d) $\sqrt{6} \text{ h/}2\pi$
- 13. (c) 2
- 14. (c)
- 15. (a) 9
- 16. (a) $ns \rightarrow (n-2)f \rightarrow (n-2)f$
- 1)d→np
- 17. (b) (ii),(iv) & (v)
- 18. (b) 17
- 19. (a) Zero
- 20. (c) $1/2m \sqrt{h/\pi}$
- 21. (c) 6.6 x 10-31 cm
- 22. (d) 0.4
- 23. (d) -9E
- 24. (a) $H\psi = E\psi$
- 25. (d) $\Delta E.\Delta X \ge h/4\pi$

- <u> Additional :</u>
- 1. (d) -3.4 eV atom-1
- 2. (a) -1.51 eV atom⁻¹
- 3. (d) 32
- 4. (b) 2
- 5. (a) Zeeman effect.
- 6. (b) 3, 1,-l, $+\frac{1}{2}$
- 7. (c) nodal surface
- 8. (a) s>p>d>f
- 9. (a) 1, 0, 0, + $\frac{1}{2}$
- 10. (b)
- 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁵ 4s¹
- 11. (c) 3d

3. Periodic Classification of

\$\$\$\$\$\$\$\$\$\$\$\$\$\$

♦ ♦ ♦ ♦ ♦

Elements

- 1. (d) bibibium
- 2. (b) AB2
- 3. (d) f-block elements
- 4. (a) I < Br < Cl < F
- 5. (d) fluorine
- 6. (c) Aluminium
- 7. (b) Na < Al < Mg < Si < P
- 8. (a)
- 9. (d) Ca < Al < C < O < F
- 10. (c) Cl > F > Br > I
- 11. (d) Hydrogen
- 12. (c) Argon
- 13. (a) Y > Z > X > A
- 14. (c)
- 15. (a) 1s2, 2s2, 2p6, 3s1
- 16. (c) Oxygen
- 17. (c) +527 kcal mol-1
- 18. (a) s > p > d > f
- 19. (d) None of these
- 20. (b) 575 kJ mol-1
- 21. (a)
- 22. (a) Generally increases
- 23. (d) Be and Al

Additional:

- 1. (d) Be, B, C
- 2. (d) Ga, Ge

- $\stackrel{>}{\sim}$ 3. (b) atomic numbers
- 4. (a) Group 17
- ☆5. (d) Sb
- $\frac{1}{2}$ 6. (b) (n-1)d¹⁻¹⁰ ns⁰⁻²
- $\stackrel{\checkmark}{\sim}$ 7. (a) representative
- $\frac{\cancel{8}}{\cancel{8}}$ 8. (c) ns² np⁶
- $\stackrel{\star}{\sim}$ 9. (d) Oxidation number
- 🏋 10. (c) Atomic radius
- 🐥 11. (c) Cl-
- 쳐 12. (a) Zr, Hf
- $\frac{1}{4}$ 13. (b) Noble gases
- $\stackrel{\star}{\sim} 14$. (c) Fluorine
- 715. (d) Lithium
- 🍌 16. (b) Li, Na
- $\stackrel{\checkmark}{\sim}$ 17. (d) K > Mg > Al > B
- $\sqrt{18}$. (d) All the above

♦ 4. Hydrogen

- **☆**1. (c)
- ² 2. (c) CO + H2
- 💢 3. (b)
- 4. (d) group one elements
- **☆** 5. (c) 1p+2n
- ጵ 6. (a) Palladium, Vanadium
- **☆** 7. (a)
- 🔀 8. (a) 1.2 g
- 9. (d) EDTA
- √ 10. (c) CaCl2
- ☆11. (a) sodium aluminium
- 🔯 12. (a)
- 13. (c) Cr0(02)2
- 14. (c) 5/2
- 🚣 15. (d) 8.4
- ★16. (d) sp3 and sp3
- ☆17. (c) monobasic acid
- 18. (a) tetrahedrally by 4-H
- 19. (b) intra-molecular hydrogen
- 20. (c) both (a) & (b)
- ★21) (c) amphoteric oxide

🔀 Additional :

- 🏋 1. (d) Platinum
- 🚣 2. (c) tritium
- **☆**3. (c) 12.3

☆

☆

- $4.(c) CO + H_2$
- 5. (c) Magnesium and Calcium

- 6. (d) chlorides and sulphates
- 7. (a) $NaOAl_2O_3$. $xSiO_2$. yH_2O
- 8. (d) Heavy water
- 9. (c) EDTA
- 10. (b) 30
- 11. (c) Salicylaldehyde
- 12. (d) Interstitial hydrides
- 13. (b) Vanderwaals bond <
- **14.** (b) o-nitrophenol
- 15. (c) CH₄. 20 H₂O

5. Alkali and Alkaline Earth

Metals

- 1. (c) Density: Li < K < Na <
- 2. (a) Li+ has minimum
- 3. (d) none of these
- 4. (b) Li
- 5. (c) kerosene
- 6. (a) superoxide and pa
- 7. (c) Potassium carbonate
- 8. (b) Magnesium
- 9. (b) MI < MBr < MCl < MF
- 10. (a) Castners process
- 11. (c) Ca(CN)2
- 12. (a) MgCl2
- 13. (a) p-2, q-1, r-4, s-5, t-6,
- 14. (d) both assertion and
- 15. (a)
- 16. (b) MgCO3 > CaCO3 >
- 17. (c) Its salts are rarely
- 18. (c) milk of lime
- 19. (b) NaHCO3
- 20. (b) Ca(OH)2
- 21. (a) Ca2+ ions are not
- 22. (b) CaF2
- 23. (a) CaSO4.2H2O

- 24. (b) CaNCN
- 25. (d) Li2CO3

<u> Additional :</u>

- 1. (b) Cs
- 2. (a) +1
- 3. (d) lilac
- 4. (d) K+
- **5.** (b) strontium
- 6. (b) Calcium hydroxide
- 7. (d) amphoteric
- 8. (d) (i) and (iii)
- 9. (c) Ca(OCl)₂
- 10. (b) dead burnt plast
- 11. (a) Na<K<Rb<Cs<Li
- 12. (a) KO₂

6. Gaseous State

- 1. (d) at high pressure the
- 2. (d) inversely proportion

☆

- 3. (c)
- 4. (b) exert no attractive
- 5. (a) 1/3
- 6. (b) Boyle temperature
- 7. (c) diffusion
- 8. (b) near the hydrogen
- 9. (d) units of pressure and
- 10. (c) 8.3 J mol-1 K-1
- 11. (a) Boyle's Law
- 12. (c) NH3
- 13. (d) I, II and III
- 14. (c) 0.41 dm3
- 15. (c) P
- 16. (b) 4
- 17. (c) 1/8
- 18. (b) 1/T
- 19. (a) P
- 20. (b) NH3
- 21. (c) mol-1 L and L2 atm
- 22. (d) both assertion and
- 23. (c) 3.41 g L-1
- 24. (c)
- 25. (d) HI

Additional:

- 1. (b) increases by three times
- 2. (c) 1/273
- 3. (c) square root of molar

- **☆**4. (d) CO₂
- <u>↓</u> 5. (c) 273.15°C
- ☆6. (b) 303.98 K
- [∕]⁄_⊷7. (b) 4 : 3

<mark>☆ 7. Thermodynamics</mark>

- ²1. (b) DH
- 2. (d) decrease in free
- $\frac{2}{6}$ 3. (b) q = 0
- 4. (d) = 0
- \bigstar 5. (a) w = -ΔU
- 6. (d) mass/volume
- $\frac{1}{4}$ 7. (a) 900 J
- $\frac{2}{4}$ 8. (b) negative
- **☆**9. (b) **67**.6 kcal
- **☆** 10. (a) g<mark>raphite is</mark> more
- 11. (d) 462 kJ
- 12. (d) frictional energy
- $\frac{5}{4}$ 13. (d) $\Delta H < \Delta U$
- 4 14. (c) + 3 kJ
- **☆** 15. (a) 2.48 kJ
- [★]16. (b) 500 R
- 17. (d) ba-22
- $\frac{1}{4}$ 18. (d) 635.66 kJ
- ₹19. (c) 80 kJ mol-1
- $\stackrel{\checkmark}{\sim} 20$. (a) $\Delta H < 0$ and $\Delta S > 0$
- [★]21. (c) adiabatic expansion
- 22. (d) (-, -, +)
 - 23. (b) 27° C
- **☆**25. (a) 300K

<mark>☆Additional :</mark>

- $^{\kappa}_{1}$ 1. (c) inversion temperature
- ² 2. (c) 10⁻⁴ K
- [★]3. (b) 1, 3 and 4
- $\frac{5}{4}$ 4. (c) 2 and 5
- **☆** 5. (a) J K⁻¹ mol⁻¹
- 💢 6. (b) 75%
- $\stackrel{\checkmark}{\sim}$ 7. (c) equal to zero
- 🄀 8. (d) w PΔV
- $\frac{8}{4}$ 9. (d) = 0
- $\stackrel{1}{\sim} 10$. (d) ∆G° = -2.303 RT log K
- 🟃 11. (c) Volume

- 12. (a) $C_p C_v = R$
- 13. (c) heat of combustion

- 14. (d) Mole
- 15. (b) 1 Calorie
- 16. (a) -3227 kJ mol-1
- 17. (b) 57.32 kJ

8. Physical and Chemical

Equilibrium

- 1.a) 20
- 2.b)
- 3. a) The forward reaction
- is exothermic
- 4. c) equilibrium is shifted
- to the left
- 5. a) in<mark>cre</mark>ase in pres<mark>su</mark>re
- 6. a)
- 7. a)
- 8. a) 0.06
- 9. b) largely towards
- reverse direction
- 10. d) (RT)2
- 11. a) P = 24 KP
- 12. d) $PCl5(g) \rightleftharpoons PCl3(g)$
- 13. b) x + 0.5
- 14. a) 36:1
- 15. d) increase by 64
- 16. c) more PCl5 will be
- 17. a) 33%
- 18. b) 5
- 19. c)
- 20. c)
- 21. b)
- 22. d) remain the same
- 23. a) $\Delta H > 0$ for the
- 24. c)
- 25. b) 5 litre

Additional:

1. b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$

- 2. b) proceeds in both
- 3. c) does not depend on the
- 4. b) The rates of forward and
- 5. d) 7.33
- 6. c) (RT)-1/2
- 7. a) $K = 10^3$
- 8. c) Remains unaltered
- 9. d) Concentration of
- 10. c) High temperature
- 11. a) Adding PCl₅

9. Solutions

- 1. (d) 0.04 M
- 2. (d) (a) and (c)
- 3. (b) 7 mL
- 4. (d) 1 x 10⁻⁵
- 5. (d) 2.5 x 10⁻⁴
- 6. (d) $\Delta G_{\text{mix}} = 0$
- 7. (c) CO_2
- 8. (c) $P_1 x_2(P_1 P_2)$
- 9. (b) $\pi V = nRT$
- 10. (d) ethanol + water
- 11. (d) 5x/y
- 12. (c) 101°C
- 13. (b) mole fraction of solute
- 14. (d) 0.1 M Ba $(NO_3)_2$ and 0.1
- 15. (b) $C_8H_{16}O_8$
- 16. (c) 1 x 10⁻⁵
- 17. (c) 2.5 N
- 18. (d) non ideal and shows

☆☆☆

- 19. (d) 0.9965
- 20. (d) 8.89g
- 21. (c) 37°C
- 22. (a) 62.22 Kg mol⁻¹
- 23. (b) 1
- 24. (b) 2.5
- 25. (c)
- **26.** (a) 0.1 M KNO₃
- 27. (a) 2.50
- 28. (a) 2°C

- ×29. (d) 0.92
 - 30. (a) both assertion

Additional:

- 71. d) Molality
- $\sum_{i=1}^{\infty} 2. a) \Delta V = +ve, \Delta H = + ve$
- 3. d) The enthalpy of mixing is
- **☆** zero
- ≱4. c) more than vapour
- pressure of pure water
- 5. b) Benzene methanol
- ₹6. b) Solvent only
- **☆** 7. c) 0.1 molal
- 🚧 8. b) 4 N
- 9. a) Osmotic pressure
- 10. a) 97.5 💢

10. Chemical Bonding

- ★1. (d) SCl₂
- ² 2. (d) 0, 0, 0
- ¹4. (d) H₂O
- 5. (d) 9/2
- **☆**6. (d) 89°, 117°
- $\frac{1}{2}$ 7. (c) assertion is true but
- 🚣 reason is false
- ★8. (b) half filled atomic orbitals

 → overlap
- ☆10. (b)
- $\stackrel{\searrow}{\sim} 11$. (d) $O_2^{2-} < C_2^+ < O_2 < C_2^{2-}$
- $\stackrel{\sim}{1}$ 13. (b) $O_2 > O_3 > H_2O_2$
- $\frac{5}{4}$ 14. (b) 0_2^{2-1}
- ☆ 15. (a) three
- $\stackrel{?}{\sim} 16$. (c) Square pyramidal,
- 78. (a) SeF₄, XeO₂F₂
- $\frac{1}{6}$ 19. (c) BF₃ and NO₂
- ☆20. (a) dissimilar in
- $\frac{1}{2}$ 21. (a) sp³, sp², sp, sp², sp³
- 723. (a) 25, 25, 33.3, 50

- 24. (c) C_2H_2
- 25. (c) l.p l.p > b.p l.p > b.p -

- 26. (c) 'T' Shaped
- 27. (d) water
- 28. (c) the resonance hybrid
- should have higher energy
- 29. (a) NH₄Cl
- 30. (d) 4U

Additional Questions:

- 1. d) Charge and size of the ion
- 2. c) BaCl₂
- 3. c) AlCl₃
- 4. a) 17 % ionic
- 5. c) BCl₃
- 6. c) PF₃
- 7. b) $sp^2 sp$
- 8. a) s s > s p > p p
- 9. d) pentagonal bipyramidal
- 10. b) square pyramidal
- 11. b) SO₂
- 12. d) see saw
- 13. a) O_{2} is paramagnetic and
- bond order is greater than O_2
- 14. b) $0_2^2 < 0_2^- < 0_2 < 0_2^+$
- 15. a) O₂-
- 16. b) CH₄
- 17. d) ClO₂-, ClF₂+
- 18. c) 0_{2} +
- 19. b) 1, 3 and 2
- 20. b) sp^2 , sp, sp^3
- 21. a) Metamers

11. Fundamentals of Organic

Chemistry

- 1. (a) $CH_3 CH = CH CH_3$
- 2. (a) sp, sp, sp³, sp², sp³
- 3. (c) C_nH_{2n-2}
- 4. (a)
- 5.(d) 4-Ethyl -3 methyloctane)
- 6. (a) 3 Methyl 3 hexanone
- 7. (b) Pent -3-en-l-yne
- 8. (c) 3, 4,4 Trimethyloctane
- 9. (a) 2,4,4 Trimethylpent -2
- 10. (a) 3 Ethyl -2– hexene

- 11. (b) 2 Hydroxy
- 12. (c) 3 Bromo 2 -
- 13. (c)
- 14. (c) 3
- 15. (d) Glucose
- 16. (b) dimethylether
- 17. (c) 9
- 18. (c) ethanol
- 19. (b) tautomers
- 20. (b) Fe₄[Fe(CN)₆]₃
- 21. (c) $C_6H_5 NH NH_2$. HCl
- 22. (d) $C_6H_5NH_2$ and
- 23. (c) [Fe(CN)₅NOS]⁴⁻
- 24. (b) 34%
- 25. (b) 28%
- 26. (a) Mg₂P₂O₇
- 27. (c) steam distillation
- 28. (d) both (a) and (c)
- 29. (b) distillation under
- 30. (a)

Additional:

- 1. b) NH₂ CO NH₂
- 2. a) 7
- 3. a) Metamers
- 4. d) $(4n + 2) \pi$ electrons
- 5. b) but -1 ene 3 yne
- 6. b) 2 Hydroxy propanoic

☆

- 7. b) R NO₂
- 8. c) resolution
- 9. c) 2 butene
- 10. a) Salt formation
- 11. b) partition
- 12. c) 40 50°C
- 13. b) Alumina
- 14. d) All of these
- 15. c) Beilstein's test
- 16. b) NH₃
- 17. b) distillation

🖈 12. Basic Concepts of Organic

Reactions

- <u></u> 1.(d)
- 2.(a) sp²
- $\frac{1}{4}$ 3. (b) NH₂- > OH- > -OCH₃ >
- $4. (c) H_3O^+$
- $\frac{1}{2}$ 5. (d) free radical
- **☆**6. (c) both (a)and (b)
- ²√7. (d) (CH₃)₃-C-
- $4 \times 8.$ (d) $C_6H_5NH_{3}^+$
- ²9. (c) both (a) and (b)
- ^{*}11. (a)
- 🝌 12. (d) Carbanion and
- 13. (c) CN-, RCH₂-, ROH
- 14. (d) BF₃

Additional :

- 🏋 1. a) Planar
 - 2. b) A free radical
- 3. b) sp² hybridized
- 🔯 5. a) Electron loving species
- 6. a) Temporary effect
- <mark>Հ</mark> 7. d) CH₃
- 8. c) free radicals
- ☆10. b) Addition reactions
- 11. c) electrophilic substitution
 - 12. d) Triphenylmethyl cation

★ 13. Hydrocarbons

- ^{*} 1.(b)
- 2.(b) Wurtz reaction
- 🝁 3. (d)
 - 4. (a) $sp^3 s$ and $sp^3 sp^3$
- **☆** 5. (c)
- 6. (d) none of of these
- \checkmark 7. (c) C_2H_6 and CO_2
- 🦰 8. (b) C_nH_{2n}
- $\frac{7}{4}$ 9. (a) C₃H₆

 $\stackrel{\wedge}{\Rightarrow}$

- 10. (c)
- 11. (d) 2, 3 Dimethyl 2 ene

- 12. (a) 2 methylbut 2 ene
- 13. (a) 2-chloro -1- iodo 2 -
- 14. (a) trans-2-chloro-3-iodo -
- 15. (c) configurational isomers
- 16. (a)
- 17. (c) alc. KOH
- 18. (d) slower
- 19. (d)
- 20. (a)
- 21. (d)
- 22. (d)
- 23. (a) Nitro benzene
- 24. (b) NO_2
- 25. (d) isopropyl chloride
- 26. (b) action of sodium metal
- 27. (a) C₈H₁₈
- 28. (a) Formaldehyde
- 29. (c) pent 1 ene
- 30. (d) 2, 2, 3, 3 tetra chloro

Additional:

- 1. d) mixture of ethane and
- 2. d) PtO₂
- 3. c) Staggered
- 4. a) n propyl chloride
- 5. c) 2 butene
- 6. d) Alkaline potassium
- 7. a) Teflon
- 8. b) Free radical mechanism
- 9. a) 3
- 10. b) Ethyne
- 11. b) Destructive distillation
- 12. b) Benzene hexa chloride
- 13. b) fractional distillation
- 14. d) NH_2

14. Haloalkanes and

<u>Haloarenes</u>

- 1.(b) 4-Bromo pent-2-ene
- 2.(a) n-Butyl chloride

- 3. (a) D < C < B < A
- 4. (b) Allyl
- 5. (a) 3 Chloro pentane
- 6. (d) Fluoromethane
- 7. (b)
- 8. (c) (iii)
- 9. (b) R- CH R OH
- 10. (a) Chlorobenzene
- 11. (c) Freon-114
- 12. (c) c) aqueous KOH
- 13. (d) $A \rightarrow 3 B \rightarrow 1 C \rightarrow 4 D \rightarrow 2$
- 14. (b)
- 15. (c) DMF
- 16. (b) Swarts reaction
- 17. (d) benzyl chloride
- 18. (b) sp² hybridised
- 19. (a) 1-chloro-4-nitrobenzene
- 20. (d)
- 21. (a) acetaldehyde
- 22. (c) benzene
- 23. (c) chloropicrin
- 24. (b) 2-methyl-2-propanol
- 25. (c) bromoethane

Additional:

- 1. c) Mg in dry ether
- 2. c) C_2H_5Cl
- 3. b) Chloro benzene
- 4. c) Raschig process
- 5. a) Fitting reaction
- 6. c) chloro benzene and chlora
- 7. b) antiseptic
- 8. c) CF₂Cl₂
- 9. a) p, p' dichloro diphenyl
- 10. d) Ethane
- 11. a) Friedel craft's reaction
- 12. a) inversion of
- 13. a) $3^{\circ} > 2^{\circ} > 1^{\circ}$
- 14. b) Cu₂Cl₂ / HCl

15. Environmental

Chemistry

- ♠ 1.(d) stratosphere
- 🚧 2.(a) Forest fire
- 💑 3. (b) air pollution
- 🚧 4. (c) Carbon monoxide
- 5. (c) CFC > N2O > CH4> CO2
- 🚧 6. (b) Ozone, PAN and NO2
- 💢 7. (C) 5.6
- ☆8. (c) bio magnification
- 9. (a) The clean water would have a BOD value of more than 5

- 10. (c) Combines with
- 11. (d) catalytic convertors
- 12. (c) rich in dissolved oxygen

- 13. (c)
- 14. (b)
- 15. (d) iv
- 16. (a) i
- 17. (d)iv

Additional:

- 1. (a) NO and freons
- 2. (a) acrolein
- 3. (b) low temperature

- 4. (b) Methyl isocynate
- 5. (b) Mesosphere
- 6. (d) winter during morning time
- 7. (b) CO₂
- 8. (d) Mercury
- 9. (b) Phosphate and detergents 10. (b) reduce the use and
- 11. (d) Non biodegradable
- 12. (c) Arsenic
- 13. (b) Mn

Thank God

Note:

- ✓ I hope this material will be useful for test practice from the evaluation and additional MCQ with the help of teachers.
- ✓ It will be better to give importance to the evaluation part questions then can study additional questions.
- ✓ Above average students should study text book well for creative MCQ questions
- ✓ If any mistakes or your suggestions, please send your valuable thoughts to that email to help the students
- ✓ It has been updated on October 2022

DEDICATED TO: ALL THE TEACHERS AND STUDENTS

G. SURESH M.Sc, M.A, B.Ed,

P.G. ASSISTANT IN CHEMISTRY &
CAREER COUNSELOR

THE CRESCENT MATRIC HR.SEC.SCHOOL

UTHAMAPALAYAM

THENI [DT]

E mail: vivekasuresh@gmail.com

Scan here for more Materials:

ுநல்லவைநாடி(NallavaiNadi)

"THANK GOD AND THANK YOU ALL"
"ALL THE BEST"