VNR12M

Virudhunagar District Common Examinations Common Second Mid Term Test - November 2022

Standard 12

Time: 1.30 Hrs.

MATHEMATICS

Marks: 50

I. Choose the correct answer from the given four alternatives: 10×1=10

- 1) The position of a particle moving along the horizontal line of any time t is given by $s(t) = 3t^2-2t-8$, the time at which the particle is at rest is,
 - 1) t = 0
- 2) $t = \frac{1}{3}$
- 3) t = 1

- 2) $\lim_{x\to 0} \left(\cot x \frac{1}{x}\right)$ is

- 2) 1
- 3) 2
- 3) The minimum value of the function |3-x|+9 is
 - 1)0

- 2) 3

- 4) The point of inflection of the curve $y = (x-1)^3$ is
- 2) (0, 1)
- 4) (1, 1)
- 5) If $f(x) = \frac{x}{x+1}$, then the differential is given by
 - 1) $\frac{-1}{(x+1)^2} dx$ 2) $\frac{1}{(x+1)^2} dx$ 3) $\frac{1}{x+1} dx$ 4) $\frac{-1}{x+1} dx$

- 6) If $u(x, y) = e^{x^2 + y^2}$ then $\frac{\partial u}{\partial x}$ is equal to
 - 1) $e^{x^2+y^2}$
- 3) x^2u
- 7) f(x, y, z) = xy+yz+zx then f_x-f_z is equal to
- 3) x-z
- 4) y-x

- 8) $\int_{-\pi/2}^{\pi/2} \sin^2 x \cos x \, dx =$
 - 1) $\frac{3}{2}$ 2) $\frac{1}{2}$
- 3) 0
- 4) $\frac{2}{3}$

- 9) If $\frac{(n+2)}{(n)} = 90$ then n is

- 3)5
- 4) 9

- 10) $\int_{0}^{a} \sqrt{a^2 x^2} dx \dots$
 - 1) $\frac{\pi a^3}{16}$

- 2) $\frac{3}{16}\pi a^4$ 3) $\frac{3\pi a^2}{8}$ 4) $\frac{3\pi a^4}{8}$

II. Answer any FOUR questions only:

- 11) Compute the value of 'c' satisfied by the Rolle's theorem for $f(x) = x^2(1-x^2)$; $x \in [0, 1]$
- 12) Find the absolute, extrema of the function $f(x) = x^2 12x + 10$; [1, 2]
- 13) Find df for $g(x) = x^2 + 3x$ and evaluate it for x = 2 and dx = 0.1
- 14) If V(X, Y, Z) = xy+yz+zx, $x, y, z \in R$ find dv.

VNR12M

2

15) Evaluate:
$$\int_{0}^{3} (3x^2 - 4x + 5) dx$$

16) Evaluate:
$$\int_{0}^{\infty} x^5 e^{-3x} dx$$

III. Answer any FOUR questions only:

 $4 \times 3 = 12$

- 17) Find the equation of the tangent and normal to the curve $y = x^2+3x-2$ at the point (1, 2).
- 18) Evaluate: $\lim_{x \to \frac{\pi}{2}} \frac{\sec x}{\tan x}$
- 19) Use the linear approximation to find the approximate values of $\sqrt[3]{26}$.
- 20) In a newly developed city, it is estimated that the voting population (in thousands) will increases according to $V(t) = 30 + 12t^2 t^3$, $0 \le t \le 8$ where t is the time in years. Find the approximate change in voters for the time change from 4 to $4\frac{1}{6}$ year.
- 21) Evaluate: $\int_{0}^{\pi/4} \sin^6 2x \, dx$
- 22) Find the area of the region bounded between the parabola $y^2 = 4x$ and $x^2 = 4y$.

IV. Answer any FOUR questions only:

4×5=20

- 23) A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the tank at a rate of top. If water flows into the tank at a rate of 10 cubic m/min. How fast is the depth of the water increases when the water is 8 meters deep?
- 24) For a function $f(x) = 4x^3+3x^2-6x+1$, find the intervals of monotonicity, local extrema and points of inflection.
- 25) Sketch the curve $y = f(x) = x^3 6x 9$.

26) If
$$U = \sin^{-1} \left[\frac{X + y}{\sqrt{X} + \sqrt{y}} \right]$$
, show that $X = \frac{\partial U}{\partial X} + y = \frac{\partial U}{\partial Y} = \frac{1}{2} \tan U$.

27) Evaluate:
$$\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$$

28) Find the volume of a right circular cone of base radius r and height h.