STD : XII SUB: PHYSICS	aww.P	KANADA M	VV			MARKS: 70 TIME: 3.00	
*****		NIT TEST -	`		******	*****	*****
		PAR	<u> T - A</u>				
CHOOSE THE	BEST AN	SWER:	0et				10 X 1 = 10
1. Atomic number	er of H-lil	ke atom with	ionization	potential 12	22.4 V for <i>n</i>	= 1 is	
(a) 1	(b) 2	(c) 3		(d) 4			
2. The charge of 3. In J.J. Thomse charge as that of only if	on e/m ex	periment, a	beam of ele	ctron is rep	laced by tha		(d) not defined (particle with same tion is achieved
(a) B is increa	ased by 2	08 times		MM Fay	reased by 20		
(c) B is increa	•			•	creased by 1		41
4. The half-life p element B. In						e time of ano	ther radioactive
(a) A and B h	WWW M					e same rate	always
(c) B will deca	y at faste	er rate than A	A	(d) A will d	ecay at fast	er rate than l	В.
5. The nucleus is number A var		1000-	(b) A ^{4/3}			a of nucleus (d) A	. EP30000
otomio numb	on 7 than	the distance	of alogast s	nnmaaah at	alnha nart	iala ta tha nu	with a nucleus of cleus is
(a) 14.4 $\frac{Z}{V}$ Å	(b) 14.	$4\frac{V}{Z}\mathring{A}$	(c) 1.44	$\frac{Z}{V}$ Å (d)	$1.44 \frac{Z}{V} \mathring{A}$		
7. In a hydrogen	atom, the	e electron re	volving in t	he fourth o	rbit, has ang	gular momer	ntum equal to
(a) h	$(\mathbf{b})\frac{h}{-}$	(c) $\frac{4h}{-}$	VW	$(\mathbf{d})\frac{2h}{h}$			
8. The ratio bety	ween the	n first three or	bits of hydr	n ogen atom	is		
(a) 1:2:3		(b) 2:4:6	(c) 1:4:9	(d)	1:3:5		
9. The ratio of the and H is (a)	e waveler)1: 2: 3	ngths radiati (b) 1	on emitted: 4: 9	for the tran (c)	nsition from 3:2:1	n = 2 to n = 3 (d) 4: 9: 36	1 in <i>Li++</i> , <i>He+</i>
10. The electric property valid, then variate	potential tion of ra	of an electro dius of <i>n</i> th o	n is given b rbit <i>r</i> nwith	$y V = V_0 \ln t$	$rac{r}{r_0}$, where r	r0 is a consta number <i>n</i> is	atum equal to I in $Li++$, $He+$ ant. If Bohr atom mod is u in fermi is aining after half of a h $V_0/8$? $v_0/8$
$(a)\mathbf{r}_{\mathbf{n}}\alpha\frac{1}{n}$		(b)rn $\alpha \frac{1}{n^2}$		(c) $\mathbf{r}_{\mathbf{n}} \boldsymbol{\alpha} \ \mathbf{n}^2$		(d) r _n αn	
11. If the nuclear (a) 2.4	r radius o (b) 1.2	f 27 Al is 3.6	fermi, the a	approxima	te nuclear ra (d)3.6	adius of 64C	u in fermi is
12. A radiative of life (that is, at tire	element h ne <i>t</i> = 1/2	as $N\theta$ number $2 T_{1/2}$) (a) N_0	er of nuclei // 2	at t=0. The (b) $N_0/\sqrt{2}$	e number of (c) N ₀ /4	f nuclei rema (d) A	aining after half of a h $N_0/8$
13. Which of th a) n = 2 to	e followi n = 1	$\begin{array}{c} \mathbf{ng} \ \mathbf{transitio} \\ \mathbf{b}) \ \mathbf{n} = 5 \ \mathbf{to} \end{array}$	on will hav on = 2	e highest e c) $n = 6$ to	emission wa n = 2	welength \mathbf{d}) $\mathbf{n} = 4$ to	? n = 1
14 Wave numb	er is def	ined as nun	ther of wa	ve?			

15. An alpha particle of energy 10 meV is scattered through180% fixed uranium nucleus. The distance of the closet approach is the order of -----? (a) 1 Å (b) 10-10 m (c) 10-12 c m (d) 10-15 c m

PART - B

ANSWER ANY SIX QUESTIONS, QNO 22 IS COMPULSORY

16. What are the constituent particles of neutron and proton?

17. What is mean thy activity? Give it's unit?

18. What is mass defect?

19. List out the properties of Neutrino?

20. Show that nuclear density is almost constant for nuclei with Z > 10.

21. The radius of the 5th orbit.

22. Calculate the number of nuclei of carbon - 14 un decayed after 22,920 years if the initial number of carbon - 14 utoms is 10000. The half life of carbon - 14 is 5730 years.

23. Give the results of Rutherford alpha scattering?

24. What is binding energy?

PART - C

ANSWER ANY SIX QUESTIONS, QNO 32 IS COMPULSORY.

25. Discuss alpha decay process with example?

26. What are cathode rays? Write the properties?

27. Discuss the spectral series of hydrogen atom.

28. Write down the postulates of Bohr atom model?

29. What is mean life of nucleus? Give the expression?

30. Define impact parameter?

31. Explain about energy generation in stars?

32. Find the (1) angular momentum (ii) velocity of the electron revolving in the 5 th orbit of hydrogen atom.

33. Explain the variation of average binding energy with the mass number using graph and discuss about its features?

PART - D

NSWER ALL THE QUESTIONS.

34. Obtain the law of radioactivity (OR)

Describe the working of nuclear reactor with a block diagram.

35. Explain the J.J. Thomson experiment to determine the specific charge of electron. (OR)

Explain the idea of carbon dating?

36. Derive the expression for radius of no orbit of a hydrogen atom using Bohr atom model? (OR)

Discuss the Millisan's oil drop experiment to determine the charge of an electron.

37. Briefly explain the elementary particles present in nature (OR)

(a) Discuss the Reta decay process with example? (b) Define Curie?

36. (b) Define Lonization energy and p