Class- X Mathematics Basic (241) Marking Scheme SQP-2022-23

Time Allowed: 3 Hours Maximum Marks: 80

(d/S/2)		Section A	WWW.Padasau	\/\{\}
1	(c) a ³ b ²	- Jasalai Net	- Jasalai Ne	1
2	(c) 13 km/hours	MWW.	WWW	1
3	(b) -10	padasalai Net	padasalai Ne	1
4	(b) Parallel.	An an	37.	1
5	(c) k = 4	www.padasalai.Net	www.Padasalai.Ne	1
6	(b) 12	NATA.	n kula	1
7	(c) ∠B = ∠D	Www.Padasalal	Www.Padasalau	1
8	(b) 5 : 1	idet idea	Ne de la company	1
9	(a) 25°	WWW Pages	WWW.Pages	1
10	(a) $\frac{2}{\sqrt{3}}$	www.Padasalai.Net	www.Padasalai.Ne	1
11	(c) $\sqrt{3}$	14001	- Ne	1
12	(b) 0	WWW.Padasare	WWW Padasan	1
13	(b) 14 : 11	Net	- Jacalai Ne	1
14	(c) 16:9	VINNW T SO	NWW. Coo.	1
15	(d) 147π cm ²	padasalai Net	padasalai Ne	1
16	(c) 20	////		1
17	(b) 8	www.padasalai.Net	www.padasalai.Ne	1
18	(a) $\frac{3}{26}$	na dasalai Net	na dasalai Ne	1
19	(d) Assertion (A) is false but Reason (I	R) is true.	NWW VV -	1

20	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).	
	Section B	
21	For a pair of linear equations to have infinitely many solutions : $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \implies \frac{k}{12} = \frac{3}{k} = \frac{k-3}{k}$	
aas	$\frac{k}{12} = \frac{3}{k} \Rightarrow k^2 = 36 \Rightarrow k = \pm 6$	
O.C.	Also, $\frac{3}{k} = \frac{k-3}{k} \Rightarrow k^2 - 6k = 0 \Rightarrow k = 0, 6.$ Therefore, the value of k , that satisfies both the conditions, is $k = 6$.	
22	(i) In $\triangle ABD$ and $\triangle CBE$	
	P ⇒ ΔABD ~ ΔCBE (AA criterion)	
das	(ii) In $\triangle PDC$ and $\triangle BEC$ $\angle PDC = \angle BEC = 90^{\circ}$ $\angle PCD = \angle BCE \text{ (Common angle)}$	
aas	⇒ ΔPDC ~ ΔBEC (AA criterion)	
das	[OR] In ΔABC, DE AC BD/AD = BE/EC(i) (Using BPT)	t
aas	In ΔABE, DF AE BD/AD = BF/FE(ii) (Using BPT) From (i) and (ii) BD/AD = BE/EC = BF/FE	
	Thus, $\frac{BF}{FE} = \frac{BE}{EC}$	
23	Let O be the centre of the concentric circle of radii 5 cm and 3 cm respectively. Let AB be a chord of the larger circle touching the smaller circle at P	
das	Then AP = PB and OP \perp AB Applying Pythagoras theorem in \triangle OPA, we have	
288	OA ² =OP ² +AP ² \Rightarrow 25 = 9 + AP ² \Rightarrow AP ² = 16 \Rightarrow AP = 4 cm \therefore AB = 2AP = 8 cm	
24	Now, $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)} = \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$	t
das	$= \frac{\cos^2\theta}{\sin^2\theta} = \left(\frac{\cos\theta}{\sin\theta}\right)^2$	
a c 2 l	$= \cot^2 \theta$	t
das	$=\left(\frac{7}{8}\right)^2 = \frac{49}{64}$	

Γ	0.5	www.CBSEtip	s.in
100	25	Perimeter of quadrant = $2r + \frac{1}{4} \times 2 \pi r$	1/2
. Fo		$\Rightarrow \text{Perimeter} = 2 \times 14 + \frac{1}{2} \times \frac{22}{7} \times 14$	1/2
		⇒ Perimeter = 28 + 22 =28+22 = 50 cm	1
Pa		[OR]	
		Area of the circle = Area of first circle + Area of second circle	
196		$\Rightarrow \pi R^2 = \pi (r_1)^2 + \pi (r_1)^2$	1/:
		$\Rightarrow \pi R^2 = \pi (24)^2 + \pi (7)^2 \Rightarrow \pi R^2 = 576\pi + 49\pi$	1/3
		$\Rightarrow \pi R^2 = 625\pi \Rightarrow R^2 = 625 \Rightarrow R = 25$ Thus, diameter of the circle = $2R = 50$ cm.	1
.Po	SIGN.	Section C	
_		Let us assume to the contrary, that $\sqrt{5}$ is rational. Then we can find a and b (\neq 0) such	
Pa	26	that $\sqrt{5} = \frac{a}{b}$ (assuming that a and b are co-primes).	
		So, $a = \sqrt{5} b \Rightarrow a^2 = 5b^2$	1
		Here 5 is a prime number that divides a^2 then 5 divides a also	
Pa		(Using the theorem, if a is a prime number and if a divides p ² , then a divides p, where a is	1/
		a positive integer) Thus 5 is a factor of a	
		Since 5 is a factor of a, we can write a = 5c (where c is a constant). Substituting a = 5c	1
Pa		We get $(5c)^2 = 5b^2 \Rightarrow 5c^2 = b^2$	1/
		This means 5 divides b^2 so 5 divides b also (Using the theorem, if a is a prime number and if a divides p^2 , then a divides p, where a is a positive integer).	
		Hence a and b have at least 5 as a common factor.	1,
Pa		But this contradicts the fact that a and b are coprime. This is the contradiction to our	
		assumption that p and q are co-primes.	1/
-		So, $\sqrt{5}$ is not a rational number. Therefore, the $\sqrt{5}$ is irrational.	/
Pa	27	$6x^{2} - 7x - 3 = 0 \Rightarrow 6x^{2} - 9x + 2x - 3 = 0$ \Rightarrow 3x(2x - 3) + 1(2x - 3) = 0 \Rightarrow (2x - 3)(3x + 1) = 0	1,
		$\Rightarrow 3x(2x-3) + 1(2x-3) = 0 \Rightarrow (2x-3)(3x+1) = 0$ $\Rightarrow 2x-3 = 0 & 3x+1 = 0$	/
		x = 3/2 & x = -1/3 Hence, the zeros of the quadratic polynomials are 3/2 and -1/3.	1,
Pa		For verification	
			,
		Sum of zeros = $\frac{-\text{ coefficient of x}}{\text{coefficient of x}^2}$ \Rightarrow 3/2 + (-1/3) = - (-7) / 6 \Rightarrow 7/6 = 7/6	
Pa		Product of roots = $\frac{\text{constant}}{\text{coefficient of } x^2}$ \Rightarrow 3/2 x (-1/3) = (-3) / 6 \Rightarrow -1/2 = -1/2	•
		Therefore, the relationship between zeros and their coefficients is verified.	
	28	Let the fixed charge by Rs x and additional charge by Rs y per day	
	das	Number of days for Latika = $6 = 2 + 4$ Hence, Charge x + $4y = 22$	
Pa		x = 22 - 4y(1)	1,
Pa			. 1
Pa		Number of days for Anand = $4 = 2 + 2$	
Pa		Number of days for Anand = $4 = 2 + 2$ Hence, Charge $x + 2y = 16$ $x = 16 - 2y \dots (2)$	1,

Therefore, fixed charge = Rs 10 and additional charge = Rs 3 per day [OR] [OR] A			$22 - 4y = 16 - 2y \Rightarrow 2y = 6 \Rightarrow y = 3$ Substituting $y = 3$ in equation (1), we get	s.in
A Q B P 100 km AB = 100 km. We know that, Distance = Speed x Time. AP - BP = 100 \Rightarrow 5x - 5y = 100 \Rightarrow x-y=20(i) AQ + BQ = 100 \Rightarrow x + y = 100(ii) Adding equations (i) and (iii), we get, x - y + x + y = 20 + 100 \Rightarrow 2x = 120 \Rightarrow x = 60 Substituting x = 60 in equation (ii), we get, 60 + y = 100 \Rightarrow y = 40 Therefore, the speed of the first car is 60 km/hr and the speed of the second car is 40 km/hr. 29 Since OT is perpendicular bisector of PQ. Therefore, PR=RQ=4 cm Now, OR = $\sqrt{DP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3$ cm Now, OR = $\sqrt{DP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3$ cm Now, ATRP + $\sqrt{APRO} = 90^\circ$ (:TRP=90°) 8. \(\text{LTPR} + \text{LPTR} = 90^\circ (:TRP=90°) 8. \(\text{LTPR} + \text{LPTR} = \text{90} = \text{0} \text{ininh} = \text{1} \\ 10 10 10 10 10 10 10 10 10	P.P.	das		1
AB = 100 km. We know that, Distance = Speed x Time. AP - BP = 100 \Rightarrow 5x - 5y = 100 \Rightarrow x - y=20(i) AQ + BQ = 100 \Rightarrow x - y = 100(ii) Adding equations (i) and (ii), we get, x - y + x + y = 20 + 100 \Rightarrow 2x = 120 \Rightarrow x = 60 Substituting x = 60 in equation (ii), we get, 60 + y = 100 \Rightarrow y = 40 Therefore, the speed of the first car is 60 km/hr and the speed of the second car is 40 km/hr. Since OT is perpendicular bisector of PQ. Therefore, PR=RQ=4 cm Now, OR = $\sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3cm$ Now, $\angle TPR + \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR + \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR + \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPR - \angle PPR = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle TPO = 90^\circ$ ($\angle TPO = 90^\circ$) 8x $\angle T$	P.P.S	das		V
Substituting x = 60 in equation (ii), we get, $60 + y = 100 \Rightarrow y = 40$ Therefore, the speed of the first car is 60 km/hr and the speed of the second car is 40 km/hr . Since OT is perpendicular bisector of PQ. Therefore, PR=RQ=4 cm Now, $OR = \sqrt{0P^2 - PR^2} = \sqrt{5^2 - 4^2} = 3 \text{cm}$ Now, $OR = \sqrt{0P^2 - PR^2} = \sqrt{5^2 - 4^2} = 3 \text{cm}$ Now, $OR = \sqrt{0P^2 - PR^2} = \sqrt{90^2} \text{ (:TPO=90^2)}$ 8. $CRPO = 2PTR$ So, CRP	PP8	das	AB = 100 km. We know that, Distance = Speed \times Time. AP - BP = 100 \Rightarrow 5x - 5y = 100 \Rightarrow x-y=20(i) AQ + BQ = 100 \Rightarrow x + y = 100(ii)	1/2
Therefore, the speed of the first car is 60 km/hr and the speed of the second car is 40 km/hr. Since OT is perpendicular bisector of PQ. Therefore, PR=RQ=4 cm Now, OR = $\sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3$ cm Now, $\sqrt{TPR} + \angle RPO = 90^{\circ} (\cdot TPO=90^{\circ})$ 8 $\angle TPR + \angle PTR = 90^{\circ} (\cdot TRP=90^{\circ})$ So, $\angle RPO = \angle PTR$ So, $\angle RPO = \angle PTR$ So, $\angle RPO = \angle PTR = 20^{\circ}$ cm 30 LHS = $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{1}{1 - \tan \theta}$ $= \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}$ $= \frac{\tan^2 \theta - 1}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan \theta - 1) (\tan^3 \theta + \tan \theta + 1)}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan^2 \theta + \tan \theta + 1)}{\tan \theta}$ $= \tan \theta + 1 + \sec \theta + 1 + \tan \theta + \sec \theta$ $= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$	Pa	das	$x - y + x + y = 20 + 100 \Rightarrow 2x = 120 \Rightarrow x = 60$	1
Since Of is perpendicular bisector of PQ. Therefore, PR=RQ=4 cm Now, OR = $\sqrt{0P^2 - PR^2} = \sqrt{5^2 - 4^2} = 3$ cm Now, $\sqrt{2}$ TPR + $\sqrt{2}$ PTR = 90° (:TPO=90°) & $\sqrt{2}$ PTR + $\sqrt{2}$ PTR = 90° (:TRP=90°) So, $\sqrt{2}$ RPO = $\sqrt{2}$ PTR $\sqrt{2}$ So, $\sqrt{2}$ RPO = $\sqrt{2}$ PTR $\sqrt{2}$ So, $\sqrt{2}$ PTR $\sqrt{2}$ PTR $\sqrt{2}$ So, $\sqrt{2}$ PTR	P.Pa	das	Therefore, the speed of the first car is 60 km/hr and the speed of the second car	1
$1000 \text{ Now, } 2\text{ FR} + 2\text{ PTR} = 90^{\circ} \text{ (*TRO=90)}$ $8 \angle \text{TPR} + \angle \text{PTR} = 90^{\circ} \text{ (*TRP=90\circ)}$ $800 \angle \text{So, } \angle \text{RPO} = \angle \text{PTR}$ $800 \angle \text{So, } \triangle \text{PRO} \text{ [By A-A Rule of similar triangles]}$ $800 \angle \text{So, } \frac{\Delta}{\text{PPO}} = \frac{\text{RP}}{\text{RG}}$ $900 \Rightarrow \frac{\text{TP}}{\text{Fo}} = \frac{4}{3} \Rightarrow \text{TP} = \frac{20}{3} \text{ cm}$ $100 \text{ LHS} = \frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{1}{1 - \tan \theta}$ $= \frac{\tan^{2} \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}$ $= \frac{\tan^{3} \theta - 1}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan^{3} \theta - 1)(\tan^{3} \theta + \tan \theta + 1)}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan^{3} \theta + \tan \theta + 1)}{\tan \theta}$ $= \tan \theta + 1 + \sec \theta + 1 + \tan \theta + \sec \theta$ $= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= 1 + \frac{\sin^{2} \theta + \cos^{2} \theta}{\sin^{2} \theta + \cos^{2} \theta}$	Pa	29	Therefore, PR=RQ=4 cm Now, OR = $\sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3$ cm	1/2
LHS = $\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = \frac{\tan \theta}{1 - \frac{1}{\tan \theta}} + \frac{\frac{1}{\tan \theta}}{1 - \tan \theta}$ $= \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}$ $= \frac{\tan^3 \theta - 1}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan \theta - 1)(\tan^3 \theta + \tan \theta + 1)}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan^3 \theta + \tan \theta + 1)}{\tan \theta}$ $= \tan \theta + 1 + \sec \theta + 1 + \tan \theta + \sec \theta$ $= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$	Pa	dasi	Now, $\angle TPR + \angle RPO = 90^{\circ}$ (*TPO=90) & $\angle TPR + \angle PTR = 90^{\circ}$ (*TRP=90°) So, $\angle RPO = \angle PTR$ So, $\underline{\triangle}TRP \sim \underline{\triangle}PRO$ [By A-A Rule of similar triangles] So, $\frac{TP}{PO} = \frac{RP}{RG}$	1 1 1
$= \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}$ $= \frac{\tan^3 \theta - 1}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan \theta - 1) (\tan^3 \theta + \tan \theta + 1)}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan^3 \theta + \tan \theta + 1)}{\tan \theta}$ $= \tan \theta + 1 + \sec \theta + 1 + \tan \theta + \sec \theta$ $= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= 1 + \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta}$		30	5 3 3	1/2
$= \frac{\tan \theta (\tan \theta - 1)}{\tan \theta (\tan \theta - 1)}$ $= \frac{(\tan^3 \theta + \tan \theta + 1)}{\tan \theta}$ $= \tan \theta + 1 + \sec \theta + 1 + \tan \theta + \sec \theta$ $= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= 1 + \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta}$	Pa	das	$= \frac{\tan^2 \theta}{\tan \theta - 1} + \frac{1}{\tan \theta (1 - \tan \theta)}$ $= \frac{\tan^3 \theta - 1}{\tan^3 \theta - 1}$	1,
$\tan \theta$ $= \tan \theta + 1 + \sec = 1 + \tan \theta + \sec \theta$ $= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= 1 + \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta + \cos^2 \theta}$	Pa	aas	H21.1 1	1,
$= 1 + \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= 1 + \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}$	200	aasi	$\frac{-}{\tan \theta}$	
$= 1 + \frac{\sin^2\theta + \cos^2\theta}{2}$.P3		WWW	1/
	Pa	das	$=1+\frac{\sin^2\theta+\cos^2\theta}{\cos^2\theta}$	1/

$= 1 + \frac{1}{\sin \theta \cos \theta} = 1 + \sec \theta \csc \theta$ www.CBSEtip	s.in
[OR]	1/2
$\sin \theta + \cos \theta = \sqrt{3} \Rightarrow (\sin \theta + \cos \theta)^2 = 3$	
activities activities activities	1/2
$\Rightarrow 1 + 2\sin\theta\cos\theta = 3 \Rightarrow 1\sin\theta\cos\theta = 1$	1/2
Now $\tan \theta + \cot \theta = \frac{\sin \theta}{1 + \cos \theta}$	1/2
VWAAAA VWAAAA	1/2
$= \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$	
$= \frac{1}{2} = \frac{1}{2} = 1$	1/:
$\sin \theta \cos \theta$ 1	1/
(i) $P(8) = \frac{5}{100}$	1
	1
(iii) P(less than or equal to 12) = 1	1
Section D	
Let the average speed of passenger train = x km/h.	
and the average speed of express train = $(x + 11)$ km/h	1,
As per given data, time taken by the express train to cover 132 km is 1 hour less than the passenger train to cover the same distance. Therefore,	1/2
$\frac{132}{x} - \frac{132}{x + 11} = 1$	1
$\Rightarrow \frac{132(x+11-x)}{x(x+11)} = 1 \Rightarrow \frac{132x11}{x(x+11)} = 1$	1/2
$\Rightarrow 132 \times 11 = x(x+11) \Rightarrow x^2 + 11x - 1452 = 0$	
$\Rightarrow x^2 + 44x - 33x - 1452 = 0$	1
$\Rightarrow x(x+44) -33(x+44) = 0 \Rightarrow (x+44)(x-33) = 0$	1
$\Rightarrow x = -44,33$	1/2
→ X = - 44, 00	/2
As the speed cannot be negative, the speed of the passenger train will be 33 km/h and the speed of the express train will be 33 + 11 = 44 km/h.	1/2
As the speed cannot be negative, the speed of the passenger train will be 33 km/h and the	
As the speed cannot be negative, the speed of the passenger train will be 33 km/h and the speed of the express train will be 33 + 11 = 44 km/h. [OR] Let the speed of the stream be x km/hr So, the speed of the boat in upstream = (18 - x) km/hr	
As the speed cannot be negative, the speed of the passenger train will be 33 km/h and the speed of the express train will be 33 + 11 = 44 km/h. [OR] Let the speed of the stream be x km/hr	1/2
	$[OR]$ $\sin \theta + \cos \theta = \sqrt{3} \Rightarrow (\sin \theta + \cos \theta)^2 = 3$ $\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = 3$ $\Rightarrow 1 + 2\sin \theta \cos \theta = 3 \Rightarrow 1 \sin \theta \cos \theta = 1$ Now $\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ $= \frac{1}{\sin \theta \cos \theta}$ (ii) $P(13) = \frac{0}{36} = 0$ (iii) $P(13) = \frac{0}{36} = 0$ (iii) $P(13) = \frac{0}{36} = 0$ Let the average speed of passenger train = $x + x = x = x = x = x = x = x = x = x = $

	$\Rightarrow 24 \left[\frac{1}{1000} - \frac{1}{1000} \right]$	$\frac{1}{18+x} = 1 \implies 24 \left[\frac{18+x-(18-x)}{(18-x).(18+x)} \right]$	$\left[\frac{x}{x}\right] = 1$	www.CBSEtip	s.in
Pada		$\frac{18+x}{8+x} = 1 \Rightarrow 24 \left[\frac{2x}{(18-x).(18+x)} \right]$			V
	, , ,	(18 - x). $(18 + x)$. $(18 + x)$. $(18 + x)$. $(18 + x)$.	<i>x)</i>		1
		$y = 0 \Rightarrow x = -54 \text{ or } 6$			1/2
Pada		eam can never be negative, the	speed of the stream is 6 km/hr	gasara	1/2
33	Figure				1/2
٥,	Given, To prove	, constructions			1½
app de	Proof				2
1	Application	W.1 G.	VMMVV-		1
34	4 Latines		e conical depression = $\frac{1}{3} \times \pi r^2 l$		½ 1½
Pada	IS Itom		$x \frac{22}{7} \times 0.5^2 \times 1.4 \text{ cm}^3 = 0.366 \text{ cm}$		1½
	n nikaska		conical depression = 4×0.366	cm ³	1/2
368	as dal.Net		1.464 cm ³		
		V V V V I	poidal box = $L \times B \times H$		1/2
		= take in the second	$15 \times 10 \times 3.5 \text{ cm}^3 = 525 \text{ cm}^3$		1½
Popde			lume of box = Volume of cuboic	dal box –	- 4.73
	VANAVA.	Volume of 4 c	conical depressions		1/2
		=	$525 \text{ cm}^3 - 1.464 \text{ cm}^3 = 523.5$	cm ³	
Peada	is ital. Net	[OR	radasalai.Net		1
	* WWW		the cylinder, and r the common	radius of	V (V)
	30 cm	the cylinder and h		Taulus Si	
Paade	\uparrow		face area = CSA of cylinder + 0	CSA of	1/2
	1.	hemisphere			2
		$= 2\pi \text{rn} + 2\pi \text{r}^2 = 2\pi$			
	↓	$= 2 \times \frac{22}{7} \times 30 (145)$	$+ 30) \text{ cm}^2$		1
Page		$= 2 \times \frac{22}{7} \times 30 \times 17$			1/
		7			½ 1
	- <u>widet</u>	$= 33000 \text{ cm}^2 = 3.3$	3 m ²	autMét	<u> </u>
3	5 Class Interval	Number of policy holders (f)	Cumulative Frequency (cf)	(185810111	VV
	Below 20	2	2		
Ppada	20-25	4	6	asalal.Net	NAN.
1 . 1	25-30	18	24	_	V 4/1
as	30-35	21	45	- Lab Net	
Pagas	35-40	33	78	dasar	\\\\\
	40-45	11	89	-	
Ppada	45-50	3	92 98	asalal Ne	VA/A
	50-55 55-60	6 2	100	_	1
	55-60		100		

		www.CBSI	Ltip	s.in
das	Class freque	n/2 = 50, Therefore, median class = $35 - 40$, size, h = 5, Lower limit of median class, I = 35 , ency f = 33 , cumulative frequency cf = 45	(et	
dask		$lian = l + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$ $lian = 35 + \left[\frac{50 - 45}{33}\right] \times 5$	Vet	½ 1½ 11/2 1
das	= 35 + = 35.7	$-\frac{25}{33} = 35 + 0.76$ Therefore, median age is 35.76 years	(et	1
		Section E		
36	1	Since the production increases uniformly by a fixed number every year, the number of Cars manufactured in 1st, 2nd, 3rd,, years will form an AP. So, a + 3d = 1800 & a + 7d = 2600	1/2	
das	2	So d = 200 & a = 1200 $t_{12} = a + 11d \Rightarrow t_{30} = 1200 + 11 \times 200$ $\Rightarrow t_{12} = 3400$	1/2	:
dasi	3	$S_{10} = \frac{n}{2} [2a + (n-1)d] \Rightarrow S_{10} = \frac{10}{2} [2 \times 1200 + (10-1) \times 200]$ $\Rightarrow S_{10} = \frac{13}{2} [2 \times 1200 + 9 \times 200]$ $\Rightarrow S_{10} = 5 \times [2400 + 1800]$ $\Rightarrow S_{10} = 5 \times 4200 = 21000$	1/2 1/2 1/2 1/2 1/2	×9×
aash	ai.W	[OR] Let in n years the production will reach to 31200 $S_n = \frac{n}{2} [2a + (n-1)d] = 31200 \Rightarrow \frac{n}{2} [2 \times 1200 + (n-1)200] = 31200$	1/2	
aasi	ai N	$\Rightarrow \frac{n}{2} [2 \times 1200 + (n-1)200] = 31200 \Rightarrow n [12 + (n-1)] = 312$ $\Rightarrow n^2 + 11n - 312 = 0$ $\Rightarrow n^2 + 24n - 13n - 312 = 0$ $\Rightarrow (n + 24)(n - 13) = 0$ $\Rightarrow n = 13 \text{ or } 24 \text{ As a cap't be negative. So } n = 13$	1/2	\(\sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
37	Case	⇒ n = 13 or – 24. As n can't be negative. So n = 13 Study – 2	1/2	VV

1	LB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \Rightarrow \text{LB} = \sqrt{(0 - 5)^2 + (7 - 10)^2}$	1/2
ai.N	$LB = \sqrt{(5)^2 + (3)^2} \Rightarrow LB = \sqrt{25 + 9} LB = \sqrt{34}$ Hence the distance is 150 $\sqrt{34}$ km	1/2
2	Coordinate of Kota (K) is $\left(\frac{3 \times 5 + 2 \times 0}{3 + 2}, \frac{3 \times 7 + 2 \times 10}{3 + 2}\right)$ = $\left(\frac{15 + 0}{5}, \frac{21 + 20}{5}\right) = \left(3, \frac{41}{5}\right)$	1/2
3	L(5, 10), N(2,6), P(8,6) LN = $\sqrt{(2-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} = \sqrt{9+16} = \sqrt{25} = 5$	1/2
ai.N	NP = $\sqrt{(8-2)^2 + (6-6)^2} = \sqrt{(4)^2 + (0)^2} = 4$ PL = $\sqrt{(8-5)^2 + (6-10)^2} = \sqrt{(3)^2 + (4)^2} \Rightarrow LB = \sqrt{9+16} = \sqrt{25} = 5$	1/2
oM.is	as LN = PL \neq NP, so Δ LNP is an isosceles triangle. [OR]	1/2

		Let A (0, b) be a point on the y – axis then AL = AP www.CBSE	tips.ii	1
S	ai.N	$\Rightarrow \sqrt{(5-0)^2 + (10-b)^2} = \sqrt{(8-0)^2 + (6-b)^2}$	1/2	
		$\Rightarrow (5)^2 + (10 - b)^2 = (8)^2 + (6 - b)^2$	1/2	
a /	al.Na	$\Rightarrow 25 + 100 - 20b + b^2 = 64 + 36 - 12b + b^2 \Rightarrow 8b = 25 \Rightarrow b = \frac{25}{8}$	1/2	
		So, the coordinate on y axis is $\left(0, \frac{25}{8}\right)$	1/2	

Case Study – 3

1	$\sin 60^{\circ} = \frac{PC}{PA}$	1/2
· 15 k/a	$\Rightarrow \frac{\sqrt{3}}{2} = \frac{18}{PA} \Rightarrow PA = 12\sqrt{3} \text{ m}$	1/2
2	$\sin 30^{\circ} = \frac{PC}{PB}$	1/2
ai.N	$\Rightarrow \frac{1}{2} = \frac{18}{PB} \Rightarrow PB = 36 \text{ m}$	1/2
3	$\tan 60^{\circ} = \frac{PC}{AC} \Rightarrow \sqrt{3} = \frac{18}{AC} \Rightarrow AC = 6\sqrt{3} \text{ m}$	1
M.is	$\tan 30^\circ = \frac{PC}{CB} \Rightarrow \frac{1}{\sqrt{3}} = \frac{18}{CB} \Rightarrow CB = 18\sqrt{3} \text{ m}$	1/2
	Width AB = AC + CB = $6\sqrt{3} + 18\sqrt{3} = 24\sqrt{3} \text{ m}$	1/2
BAL	[OR]	
la li	RB = PC = 18 m & PR = CB = 18 $\sqrt{3}$ m	1/2
, Na	$\tan 30^\circ = \frac{QR}{PR} \Rightarrow \frac{1}{\sqrt{3}} = \frac{QR}{18\sqrt{3}} \Rightarrow QR = 18 \text{ m}$	1
al.IV	QB = QR + RB = 18 + 18 = 36m. Hence height BQ is 36m	1/2