COMMON HALF YEARLY EXAMINATION - 2022

Standard X

Reg. No. :

MATHEMATICS

INITAL IN I I I I I I I I I I I I I I I I I I	
ime: 3.00 hrs. Part	
I. Choose the correct answer:	14 x 1 =
1. $A = \{a,b,p\}, B = \{2,3\}, C = \{p,q,r,s\}, the$	n n[(AUC) x B] is
a) 8 b) 20	c) 12 (d) 16
2. Given $f(x) = (-1)^x$ is a function from N	to Z. then the range of f is
a) [11] ' h) N	c) {1, -1}
3. If the HCF of 65 and 117 is expressible in	the form of 65m-117, then the value of m
a) 4 b) 2	c) 1 d) 3
4. Sum of first 'n' terms of the series √2	$+\sqrt{8}+\sqrt{18}+$ is
a) $\frac{n(n+1)}{2}$ b) \sqrt{n}	c) $\frac{n(n+1)}{\sqrt{2}}$ d) 1
5. $x + y - 3z = -6$, $-7y + 7z = 7$, $3z = 9$. For a) $x = 1$, $y = 2$, $z = 3$. c) $x = -1$, $y = -2$, $z = 3$. 6. Which of the following can be calculated as: $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ i) A^2	b) $x = -1$, $y = 2$, $z = 3$ d) $x = 1$, $y = -2$, $z = 3$
 a) (i) and (ii) only c) (ii) and (iv) only 7. In a ΔABC, AD is the bisector of ∠BAI cm, the length of the side AC is 	b) (ii) and (iii) only d) all of these
a) 6 cm b) 4 cm 8. In the figure if PR is tangent to the circle at P and O is the centre of the circle, then ∠POQ is a) 120° b) 100° c) 110° d) 90°	cle

9. (2,1) is the point of intersection of two lines

a) x - y - 3 = 0; 3x - y - 7 = 0

b) x + y = 3; 3x + y = 7

c) 3x + y = 3; x + y = 7

d) x + 3y - 3 = 0; x - y - 7 = 0

10. If the distance between the points (4,p) and (1,0) is 5, then p =

11. If $sin\theta = cos\theta$, then $2 tan^2\theta + sin^2\theta - 1$ is equal to

c) ²/₃

d) $-\frac{2}{3}$

X Ma 12 The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be b) 10 cm a) 12 om

13 The curved surface area of a hemi-sphere is how much times the square of its radius? c) 3n b) 2n d) 4n 14. Which of the following is incorrect? d) P(A) + P(A) = 1 c) $P(\phi) = 1$ a) P(A) > 1 II. Answer any 10 questions. (Q.No.28 is compulsory) $10 \times 2 = 20$ its domain and range. 16. If m, n are natural numbers, for what values of m, does 2" x 5" ends in 5? 10. If $1^3 + 2^3 + 3^3 + \dots + k^3 = 16900$ then find $1 + 2 + 3 + \dots + k$ 18. If $A = \begin{bmatrix} 5 & 4 & 2 \\ 1 & -7 & 9 \\ 3 & 8 & 2 \end{bmatrix}$, then find the transpose of A. 19. Find the zeros of the quadratic expression x2 + 8x + 12 20. If ABC is similar to ADEF such that BC = 3 cm, EF = 4 cm and area of AABC = 54 cm², find the area of ADEF. 21. Show that the points P(-1.5,3), Q(6,-2), R(-3,4) are collinear. 22. Show that the straight lines 3x + 4y = 7 and 9x + 12y - 3 = 0 are parallel. 23. Prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \cos ec\theta + \cot\theta$ 24. Find the angle of elevation of the top a tower from a point on the ground, which is 30 m away from the foot of a tower of height $10\sqrt{3}$ m. 25. The radius and height of a cylinder are in the ratio 5:7 and its curved surface area is 5500 sq.cm. Find its radius and height. 26. Find the diameter of a sphere whose surface area is 154 m². 27. A coin is tossed thrice. What is the probability of getting two consecutive tails? 28. Let f be a function from R to R defined by f(x) = 3x - 2. Find the value of a and b given that (a,4) and (1,b) belong to f. Part - III III. Answer any 10 questions. (Q.No.42 is compulsory) $10 \times 5 = 50$ 29. Let $A = \{x \in W \mid 0 < x < 5\}$, $B = \{x \in W \mid 0 \le x \le 2\}$, $C = \{x \in W \mid x < 3\}$ then verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 30. A function f: [-5, 9] → R is defined as follows 6x+1;-5 < x < 2 $f(x) = |5x^2 - 1|; 2 \le x < 6 F$ $|3x - 4|; 6 \le x \le 9$ 2f(-2)-f(6)

Kindly send me your questions and answerkeys to us: Padasalai.net@gmail.com

x Maths

31. The sum of first n, 2n and 3n terms of an A.P. are S_1 , S_2 and S_3 respectively. Prove that $S_2 = 3(S_1 - C_1)$ Prove that S₃ = 3(S₂ - S₁)

32. If $9x^4 + 12x^3 + 28x^2 + ax + b$ is a perfect square, find the values of a and b.

- 33. If the roots of the equation $(c^2 ab)x^2 2(a^2 bc)x + b^2 ac = 0$ are real and equal, prove that either a = 0 (or) $a^3 + b^3 + c^3 = 3abc$
- 34. If $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ show that $A^2 4A + 5I_2 = 0$

35. State and Prove Thales theorem.

36. Prove analytically that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and is equal to half of its length.

e AABCvare A(2,1), B(6,-1) and C(4,11). Find the equation of straight line along that altitude from the vertex A.

38. The top of a 15 m high tower makes an angle of elevation of 60° with the bottom of an electronic pole and angle of elevation of 30° with the top of the pole. What is the height of the electric pole?

39. A capsule is in the shape of a cylinder with two hemisphere stuck to each of its ends. If the length of the entire capsule is 12 mm and the diameter of the capsule is 3 mm, how much medicine it can hold?

40. Find the coefficient of variation of 24, 26, 33, 37, 29, 31

41. Two dice are rolled together, find the probability of getting a doublet or sum of faces as 4.

42. An organization plans to plant saplings in 25 streets in a town in such a way that one sapling for the first street, three for the second, nine for the third and so on. How many sapling's are need to complete the work?

Part - IV

IV. Answer all the questions.

43. a) Construct a △ABC such that AB = 5.5 cm, ∠C = 25° and the altitude from C to AB is 4 cm. (OR)

Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

A government shop announces a flat 50% discount on every purchase of items for their customers. Draw the graph for the relation between the marked price and discount. Hence find

The marked price when a customer gets a discount of ₹3250 (from graph)

The discount when the marked price is ₹2500 11)

Draw the graph of $y = x^2 - 4x + 3$ and use it to solve $x^2 - 6x + 9 = 0$ b)

Kindly send me your questions and answerkeys to us: Padasalai.net@gmail.com