SSLC Science Half Yearly Common Exam Padasalai's - Answer Key December 2019

Prepared by

Barani Dharan C, MSc, MEd, PGDM

Senior School Coordinator, Isha Vidhya Matric Hr Sec Schools. BT Assistant, Vivekananda Balamandir Matriculation School, Attayampatty, Salem.

Q.no.	Page no.	Answers	
	M	Part I	MMas
1	38	(d) 8.31 J mol ⁻¹ K ⁻¹	NCO 1
2	51	(c) electrical energy	1
3	60	(a) vibrate along the direction of the wave motion	1
4	82	(c) Iron 59	1
5	109	(a) 17 th	1
6	247	(c) 1 –(ii), 2- (iv), 3-(i), 4-(iii)	1
7	146	(a) large surface area	1
8	183	(b) mitochondrial matrix	1
9	221	(c) Duramater	1
10	220	(a) retina of eye)(9) 1
11	247	(d) large feathery stigma	1
12	266	(b) metacentric	1 1 1
	44	Part II	700
13	84	1942)(9 1
		Chicago, USA	1
14	117	No action in the absence of air.	1/2
	MA	Copper dissolves in dil HCl and H ₂ SO ₄ acids in the presence of air.	1/2
	(0)	2Cu + 4HCl + <mark>O2</mark> (air) → 2 CuCl2 + 2 H2O	\(O) 1
15	100	Atomic masses of Ca = 40, P = 30, O = 16.	1/2
		Gram molar mass of Ca3 (PO4)2 = $(40 \times 3) + [30 + (16 \times 4)] \times 2$	1/2
	M	= 120 + (94 × 2) = 120 + 188	
		Gram molar mass of Ca3(PO4)2 = 308 g	1/2 + 1/2
16	149	(one mark per one correct point) (any two)	2
		1. Our body works within the pH range of 7.0 to 7.8	
	MA	2. pH of blood is ranging from 7.35 to 7.45. Any increase or	
	- 0	decrease in this value leads to diseases.	
	19	3. pH of the stomach fluid is approximately 2.0. It helps in the	
		digestion of food without harming the stomach	
	VIV.	4. pH of the saliva normally ranges between 6.5 to 7.5. When the	
		pH of the mouth saliva falls below 5.5, the enamel gets weathered	
17	195	ANS - autonomic nervous system)(9 1
3/101.	ANS comprises of sympathetic and parasympathetic nerves.		1
18	120	(any two methods) (one mark per one correct method)	2
	111.4	1. Alloying: The metals can be alloyed to prevent the process of	
	(9)	corrosion. E.g: Stainless Steel	
		2. Surface Coating – Galvanization: process of coating zinc on iron	
		sheets by using electric current.	
	MA	3. Surface Coating - Electroplating: coating one metal over another	
	-0	metal by passing electric current.	

alai.O	(0)	121.00	an electrochemical process that decorative, durable and corrosion	0.0
		resistant. Aluminium is widely use 5. Surface Coating - Cathodic Prowith another metal which is an ea		
alai.O		which acts as anode.		
19	279	(any two points) (one mark per or	2	
		i. Fossils throw light on phylogeny	and evolution of plants.	
		ii Fossil plants give a historical app	proach to plant kingdom.	
3/31.		iii Fossils are useful in classificatio	n of plants.	
		iv. Fossil plants can be used in the		
	<u> </u>	comparative anatomy.	WINN.	M _M
20	292	Manipulation and transfer of gene	(V) -	1
21	224	to create recombinant DNA (rDN		1
21 22	331 46	1. Script area, 2. Block menu, 3. B R = V/I = 30/2	оск рагетте	2
22	40	R = 15 ohm	Junio .	1 ½ + ½
	(9	Part III	OIU .	/2 T /2
23 (i)	36	When the temperature of a gas is	kent constant, the volume of a	2
23 (1)	WN	fixed mass of gas is inversely prop		WWW.PS
(ii)	37	Ideal gas	Real gas	
3/9/-		1. Atoms or molecules of ideal	Molecules or atoms of real	1
		gas do not interact with each other.	gases interact with each other	
alai.O		2. At high temperature the interatomic or intermolecular forces of attraction are weak.	At very high temperature there is no interatomic or intermolecular force of	1
		N. A. Marine	attraction.	
24 (i)	53	Role of Earth wire:	~10	>r0
alai. ^U		Earth wire provides a low resistan	ce path to the electric current.	1/2
		Eart <mark>h wire sends the curren</mark> t from		1/2
		Earth, whenever a live wire accide	entally touches the body of the	M_{MM}
		metallic electric appliance.	and also thick as a second	1
alai. ^C		Earth wire serves as a protective of electric shocks.	conductor, which saves us from	
/;:\	53	Marits of LED bulb (any four point	my M	1/2
(ii)	.O	Merits of LED bulb (any four point	is no loss of energy in the form of	/2 5x(0)
alai.U		heat. It is cooler than the incande		1/2
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	escent light, the LED bulbs have	
		significantly low power requirement		1/2
		3. It is not harmful to the environi		1/2
alai.Org		4. A wide range of colours is possi		
		5. It is cost-efficient and energy ef		
	W	6. Mercury and other toxic materials are not required.		MMM.,
25(a)	rO	IUPAC name – Ethanol		~r0 .
(i)	163	Structural formula:	2/8/1.01.0	1/2
		H-C	-C-O-H	1/2
		H	H	

	(9)	019	0.60
(ii)		IUPAC name – Ethanoic acid	1/2
. ,		Structural formula:	P3
	MA	H O	MM
	r C\	$H - C - C - OH \cap \emptyset$	1/2
alai. ^U	(9)	H-C-C-OH),,9
Ov.		H	. 08
(b)	133	Volume percentage = Volume of solute × 100	1/2
` ,		Volume of solution	
vai.0	(9)	20 = <u>Volume of ethanol</u> × 100	1/2
310.		200	
	120	Volume of ethanol = $(20 \times 200) / 100 = 40 \text{ ml}$	½ (value) + ½ (unit
26 (i)	183	Oxysomes: The inner mitochondrial membrane bear minute	1
20 (1)	103	regularly spaced tennis racket shaped particles.	7(9)
3/3/.		regularly spaced termis racket shaped particles.	
			Diagram – ½
	MA	F, (100 M)	Parts – ½
	r ()	—→ Stalk	Faits - /2
alai. ^O	(9)(9
/;:\	181	030,000	02
(ii)	191	Dresses househigh autatuanhia auganiana lika ayaan nlauta algaa and	1
	774	Process by which autotrophic organisms like green plants, algae and	1
: 0	(9)	chlorophyll containing bacteria utilize the energy from sunlight to	019
3/3/1.		synthesize their own food.	1
		6CO2 + 12 H2O chlorophyll C ₆ H ₁₂ O ₆ + 6H ₂ O + 6O ₂ ↑	N.P8
	MA	30.1200 31.20 30.2	Man
27 (i)	189	Locomotion in leech:	7(0)
a (.,	_00	(i) Looping or Crawling movement: By the contraction and	1
		relaxation of muscles. The two suckers serve for attachment during	PS
	WW	movement on a substratum.	$m_{M_{M_{N_{N_{N_{N_{N_{N_{N_{N_{N_{N_{N_{N_{N_$
	r ()		510
alai. ^O	19	(ii) Swimming movement	1
Olive		Leeches swim and perform undulating movements in water.	02
		N. M. T. C.	T. WWW.
(ii)	192	Leeches are effective:	///
(11)	132	1. in increasing blood circulation and breaking up blood clots.) ⁽⁹⁾ 2
3/3/1.		2. to treat cardiovascular diseases.	2
		3. Biochemical substances derived from <u>leech saliva</u> are used for	
	MA	preparation of pharmaceutical drugs that can treat hypertension.	10/10
28	224	A <u>reflex action</u> is any response that occurs automatically without	\(\(\tilde{Q}\) 1
3/31.		consciousness.	J. J
		Types:(i) Simple or basic reflexes (ii) Acquired or conditioned	1 28
	WA	reflexes	M_{MM} .
	-0		0
alai.0	19	(i) Simple or basic reflexes are inbuilt and unlearned responses	1
O.		performed without thinking	00
	la,	E.g., winking of eyes when any dust particles enters, sneezing,	WWW.Y
	An	coughing, yawning, etc.	1
, "; O	(9		Dr9 _
9/9/		(ii) Acquired or conditioned reflexes are the result of practice and	
	_	learning.	P ?
	MA	Eg. Playing harmonium by striking a particular key on seeing a	MMAA
		music note.	

	- NY		
29	262	F1 generation: Plants raised were tall and monohybrids.)(9 1
0.,-		F2 generation : Plants were <u>tall and dwarf</u> plants in the phenotypic	1/ 09
		ratio of 3:1. 3 different types f plants were obtained:	1/2
		1. Tall Homozygous – TT (Pure) – 1	
vai 0		2. Tall Heterozygous – Tt – 2	0(9
3/101.		3. Dwarf Homozygous – tt – 1	1/2
		So the genotypic ratio 1:2:1	
		Explanation:	
. 0		Tallness and Dwarfness are determined by a pair of contrasting	7(9
3/31.		factors (T and t). The <u>factors are always pure</u> and when gametes are	1
		formed, the <u>unit factors segregate</u> so that each gamete gets one of	
		the two alternative factors.	WWW
		So, the factors for tallness (T) and dwarfness (t) are separate	1
alai.U		entities. When F1 hybrids are self crossed the two entities separate	
,0-		and then unite independently, forming tall and dwarf plants in F2	
30	204	generation.	
30	281	Ethnobotany is the study of a region's plants and their practical	1
~12i.0		uses through the traditional knowledge of the local culture of	
310		people.	
		Importance of Ethnobotany	
		1. provides traditional uses of plant.	
, _~ ; O		2. gives information about unknown and known useful plants.	3
Slar.		3. Ethnomedicinal data - source of information for chemists,	3
		pharmacologists and practitioners of herbal medicine.	
		4. Tribal communities utilize bark, stem, roots, leaves, flower bud,	
. 0		flowers, fruits, seeds, oils, resins, dyes, gum for the treatment of	
3/3/.		diseases like diarrhoea, fever, headache, diabetes, jaundice,	
		snakebites, leprosy.	
31	294	Stem cells have ability to divide and give rise to more stem cells by	M_{AA} .
		self-renewal and give rise to specialised cells with specific functions	-xr0. 1
alai.		by the process of differentiation.	
		Stem cells in regenerative process:	
		Cells, tissues and organs - permanently damaged or lost - genetic	2
		condition or disease or injury - stem cells are used for treatment of	
alai.O		diseases which is called stem-cell therapy.)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		In treating neurodegenerative disorders like Parkinson's disease	
		and Alzheimer's disease neuronal stem cells used to replace the	
	1,4	damaged or lost neurons.	W *
32(a)	(0	A – Ethanoic acid CH₃COOH	1/2
Slow.	164	B – Ethyl ethanoate CH₃COOC₂H₅	1/2
(b)		$C_2H_5OH + CH_3COOH \xrightarrow{conc.H_2SO_4} CH_3COOC_2H_5 + H_2O$	
		Ethanol Ethanoic acid Ethyl ethanoate	2
0		Editation Editation Edity reduction	
(c)		Esterification	1
		Part IV	18°Q 14°33
33(a)		Law of conservation of linear momentum: There is no change in	
(i)	8	the linear momentum of a system of bodies as long as no net	√(§ 1
alal.		external force acts on them.	
		u_1 u_2 F_A F_B v_1 v_2	
		m_1 m_2 m_1 m_2 m_1 m_2	
		A B A B	1/2

_{alai} .O	(9	Two bodies A and B - masses m ₁ a straight line.	and m_2 - initial velocity u_1 and u_2 -)(9			
		Velocity of the first body (u ₁) >	velocity of the second body (u ₂) er the impact, both of them move	1			
		along the same straight line with a	•	1/2			
alai.		Force on body B due to A, $F_B = m2 (v2-u2)/t$					
		Force on body A due to B, F _A =	0 0000				
		By Newton's III law of motion, Act	· · · · · · · · · · · · · · · · · · ·	1/2			
		· ·	ion force – Reaction force				
alai.U		$F_A = -F_B$	- alai. Ura				
		m1 (v1-u1)/t = -m2 (v2-u2)/t	Pada	1			
		m1v1 + m2v2 = m1u1 + m2u2	MMM				
\.\.\.\.\.\	(9	Linear momentum = mass × veloci	ty National Control	1			
(ii)	12	 Velocity = linear momentum / mas	SS .	17 . 17 98			
		$V = 2.5 / 5 = 0.5 \text{ ms}^{-1}$	· MONAN	1/2 + 1/2			
33(b)	- A	Myopia	Hypermetropia	-0			
(i)	25	Causes:	Causes:				
<i>0</i> ,,,		focal length of eye lens is	The focal length of eye lens is				
		reduced or the distance	increased or the distance	1			
		between eye lens and retina	between eye lens and retina				
121.0		increases.	decreases.				
210		Reason:	Reason:				
		The image of distant objects	The image of nearby objects	1			
		are formed before the retina.	are formed behind the retina.				
alai.U		Correction: concave lens	Correction: Convex lens				
		focal length of the required	focal length of the required	1, 23			
		concave lens is f = -x, x is	convex lens is $f = dD/(d-D)$				
		distance up <mark>to</mark> which myopic	d –distance upto which the				
9/3/.		person can see.	person can see				
		1530	D – distance upto which he				
			wants to see	1/			
				1/2			
/;;\	23						
(ii)	25						
		WWW.	71				
alai.O		Convex lens	Concave lens				
		1. A convex lens is thicker in	A concave lens is thinner in the	1 72			
		the middle than at edges.	middle than at edges.	1			
		2. It is a converging lens.	It is a diverging lens.	v () 1			
alai.U		3. It produces mostly real	It produces virtual images.	, a			
		images 4. It is used to treat	It is used to treat myonic	1/2			
		ANN Y	It is used to treat myopia	$m_{\underline{M}M}$,,			
		hypermeteropia Ores of Aluminium 1. Bauxite A	1202 2420	veO.			
2//2\			IZUJ.ZHZU				
34(a)	(<u>)</u> 115	121.0	191.0	2			
34(a) (i)	115	2. Cryolite N 3. Corundur	la3AlF6	2			

. ((0)	Baeyer's Process	- 0(9	7(9
(ii)	115	Bauxite ore - finely ground - heate	ed under pressure - concentrated	1
(,		caustic soda solution at 150°C - so		
	MI	On diluting it with water - precipit	, AMW	
	-0	filtered, washed, dried and ignited	-	
	19	Three ea, washea, arrea and ignited	AVZA	1
		2AI(OH) ₂ 1000°c	Al ₂ O ₃ + 3H ₂ O	-
	l/N/a	2/11(011)3	-A1203 1 31120	
		Hall's Process	Nº	
	(9)	: ()\9		1/2
		Electrolytic reduction of fused alu	0.5 · · · · · · · · · · · · · · · · · · ·	
	100	Cathode: Iron tank linked with gra	·	1/2
	MA	Anode : A bunch of graphite rods s	suspended in molten electrolyte.	W/2
	(0)	Electrolyte: Pure alumina+ molter	r cryolite + fluors <mark>pa</mark> r (fluorspar	1/2
		lowers the fusion temperature of		1/2
		Temperature: 900 - 950°C Volta	ge used: 5-6 V	
	MA	Overall reaction: $2 \text{ Al}_2\text{O}_3 \rightarrow 4$	AI + 3O₂↑	
	cO.	0.00		
			Bus bar	
		Steel shell	Carbon anode	1/2
	WW	Cı	yolite	WWW.
		Molten	aluminum	
			alummum	
	(9)	121,019	A	
	(9)	Carbon ca	thode lining	1/3
		Carbon ca Aluminium is deposited at the cat	thode lining	1/2
_{Nai} .C	(9	-au	thode lining node and oxygen gas is liberated	1/2
	(9)	Aluminium is deposited at the cat at the anode. Oxygen combines w Hygroscopic substances	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances	T. WWW.
34(b) (i)	131	Aluminium is deposited at the cattathe anode. Oxygen combines was at the anodes of the Hygroscopic substances 1. When exposed to the	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the	1/2
	131	Aluminium is deposited at the cat at the anode. Oxygen combines w Hygroscopic substances 1. When exposed to the atmosphere at ordinary	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary	7. WWW DTC
	131	Aluminium is deposited at the cattat the anode. Oxygen combines w Hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb	7. WWW DTC
	131	Aluminium is deposited at the cattat the anode. Oxygen combines we have a the acceptance of the atmosphere at ordinary temperature, they absorb moisture and do not dissolve.	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve.	1
	131	Aluminium is deposited at the cattat the anode. Oxygen combines we have a combines we have a combines were at the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances	T. WWW.
	131	Aluminium is deposited at the cattat the anode. Oxygen combines we have a the anode. Oxygen combines we have a the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on	1
	131	Aluminium is deposited at the cattat the anode. Oxygen combines we have a combines were at the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air.	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air.	1
	131	Aluminium is deposited at the catt at the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are	1
	131	Aluminium is deposited at the cattat the anode. Oxygen combines we have a combines were at the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air.	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air.	1
(i)		Aluminium is deposited at the catt at the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids.	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids.	1
	131	Aluminium is deposited at the cattat the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids.	1 1 1
(i)		Aluminium is deposited at the catt at the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid	hode and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids.	1
(i)		Aluminium is deposited at the cattat the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids.	1 1 1
(i)		Aluminium is deposited at the catt at the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids.	1 1 1
(i)		Aluminium is deposited at the catt at the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate 3. Silica gel	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids.	1 1 1
(i)		Aluminium is deposited at the cattat the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate 3. Silica gel 4. Gypsum salt	Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids. Deliquescent substances 1. Calcium chloride	1 1 1
(i)		Aluminium is deposited at the catt at the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate 3. Silica gel	Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids. Deliquescent substances 1. Calcium chloride	1 1 1
(ii)	131	Aluminium is deposited at the catt at the anode. Oxygen combines we hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate 3. Silica gel 4. Gypsum salt * Copper sulphate pentahydrate and gypsum molecules respectively. Despite this moisture they are hygroscopic in nature.	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids. Deliquescent substances 1. Calcium chloride	1 1 1
(i)		Aluminium is deposited at the catt at the anode. Oxygen combines well Hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate and gypsum molecules respectively. Despite this moisture they are hygroscopic in nature. Mass percentage = Mass of	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids. Deliquescent substances 1. Calcium chloride	1 1 2
(ii)	131	Aluminium is deposited at the cattat the anode. Oxygen combines work the anode. Oxygen combines work the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate 3. Silica gel 4. Gypsum salt * Copper sulphate pentahydrate and gypsum molecules respectively. Despite this moisture they are hygroscopic in nature. Mass percentage = Mass of (Mass of the solution)	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids. Deliquescent substances 1. Calcium chloride	1 1 2
(ii)	131	Aluminium is deposited at the catt at the anode. Oxygen combines well Hygroscopic substances 1. When exposed to the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate and gypsum molecules respectively. Despite this moisture they are hygroscopic in nature. Mass percentage = Mass of	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids. Deliquescent substances 1. Calcium chloride	1 1 2
(ii)	131	Aluminium is deposited at the cattat the anode. Oxygen combines work the anode. Oxygen combines work the atmosphere at ordinary temperature, they absorb moisture and do not dissolve. 2. Hygroscopic substances do not change its physical state on exposure to air. 3. Hygroscopic substances may be amorphous solids or liquids. Hygroscopic substances 1. Conc.Sulphuric acid 2. Copper (II) sulphate pentahydrate 3. Silica gel 4. Gypsum salt * Copper sulphate pentahydrate and gypsum molecules respectively. Despite this moisture they are hygroscopic in nature. Mass percentage = Mass of (Mass of the solution)	node and oxygen gas is liberated ith graphite to form CO ₂ Deliquescent substances When exposed to the atmospheric air at ordinary temperature, they absorb moisture and dissolve. Deliquescent substances change its physical state on exposure to air. Deliquescent substances are crystalline solids. Deliquescent substances 1. Calcium chloride	1 1 2

	(9)	. 019 . 019	719
35(a)		1058181 V - 105818	
(i)	237	Cortisol.	1 ? ?
('')	237	It helps to maintain the body in living condition and recover it from	1
		the severe effects of stress reactions.	1
/::\	221		
(ii)	231	Physiological effects of Gibberelins:	21/
		1. Application of gibberellins on plants stimulate extraordinary	2½
		elongation of internode. e.g. Corn and Pea	
		2. Treatment of rosette plants with gibberellin induces sudden	
3/3/1.		shoot elongation followed by flowering. This is called bolting.	
		3. Gibberellins promote the production of male flowers in	
		monoecious plants (Cucurbits).	
		4. Gibberellins break dormancy of potato tubers.	
. isi. O		5. Gibberellins are efficient than auxins in inducing the formation of	
3.10		seedless fruit - Parthenocarpic fruits (Development of fruits	
		without fertilization) e.g. Tomato	
(iii)	206	Functions of blood	2½
3/3/1.		1. Transport of respiratory gases (Oxygen & CO2).	
		Transport of digested food materials to the different body cells.	
		3. Transport of hormones.	
		4. Transport of nitrogenous excreto <mark>ry products (ammonia, ure</mark> a,	
12i.0		uric acid).	
311		5. In the protection of the body and defense against diseases.	
		6. As buffer and regulation of pH and body temperature.	
		7. It maintains proper water balance in the body.	
0		019	
35(b)		Rainwater harvesting - collecting and storing rainwater - a	
(i)	322	traditional method of storing rain water in underground tanks,	1
(.,	322	ponds, lakes, check dams.	11/4
alai. ^U		Purpose of rainwater harvesting - make the rainwater percolate	
		under the ground to recharge 'groundwater level'.	
		(i) Roof top rainwater harvesting: Roof-tops - rain catchers - falls	
		on the roof of the houses, apartments, commercial buildings -	1/
: 0		c <mark>ollected and stored</mark> in the surface tank and can be used for	1/2
3/3/1.		domestic purpose	
		(ii) Recharge pit – water from roof tops or open spaces - directed	P
		into the percolation pits for filtration then enters the recharge pits	1/2
		into the percolation pits for filtration then enters the recharge pits or ground wells .	1/2
o. isals		or ground wells.	½ ½
_{alai} .O		or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting	
_{Mai} , C		or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to	
_{alai} .C		or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village	
_{allal} i.C		or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village (iv) Ooranis - small ponds - collect rainwater - used for various	1/2
_{alai} .C		or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village (iv) Ooranis - small ponds - collect rainwater - used for various	1/2
(ii)	301	or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village (iv) Ooranis - small ponds - collect rainwater - used for various domestic purposes (drinking, washing and bathing). POCSO - Protection of Children from Sexual Offences	½ ½
(ii)	301	or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village (iv) Ooranis - small ponds - collect rainwater - used for various domestic purposes (drinking, washing and bathing). POCSO - Protection of Children from Sexual Offences People who traffic children for sexual purposes are also punishable	½ ½ 1
(ii)	301	or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village (iv) Ooranis - small ponds - collect rainwater - used for various domestic purposes (drinking, washing and bathing). POCSO - Protection of Children from Sexual Offences	½ ½ 1
(ii)	301	or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village (iv) Ooranis - small ponds - collect rainwater - used for various domestic purposes (drinking, washing and bathing). POCSO - Protection of Children from Sexual Offences People who traffic children for sexual purposes are also punishable under the provisions relating to the Act.	½ ½ 1 1
(ii)	301	or ground wells. (iii) Digging of tanks or lakes (Eris) - traditional water harvesting system in Tamil Nadu- if the water in one eri overflows - diverted to interconnected eri of the next village (iv) Ooranis - small ponds - collect rainwater - used for various domestic purposes (drinking, washing and bathing). POCSO - Protection of Children from Sexual Offences People who traffic children for sexual purposes are also punishable	½ ½ 1

Prepared by Barani Dharan, Senior School Coordinator, Isha Vidhya Matric Hr Sec Schools.	narassment, Po	ornography.		: 019
Barani Dharan, Senior School Coordinator, Isha Vidhya Matric Hr Sec Schools.	2. To establish	Special Courts for spec	dy trial of such offences.	salal
Barani Dharan, Senior School Coordinator, Isha Yidhya Matric Hr Sec Schools.				
	enior School Coordinate	or, Isha Vidhya Matric Hr Sec S	chools.	
		enior School Coordinate	2. To establish Special Courts for special courts f	2. To establish Special Courts for speedy trial of such offences. enior School Coordinator, Isha Vidhya Matric Hr Sec Schools.