SUN TUITION CENTER -9629216361 HALF YEARLY / PUBLIC MODEL QUESTION PAPER -2022

MODEL -I

Time Allowed: 3 Hours			HIGHE	R SECO	NDARY FIR	ST YEAR	M	aximum Marks: 90
Instructions:		(a) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.						
		(b) Us	e Blue or Blac		write and u CTION-A	nderline ar	nd pencil to o	lraw diagrams.
Note:	(i)	All ques	tions are <mark>com</mark> p	ulsory.				20 X 1 = 20
	(ii)		the correct or rode and the co				given four a	lternatives. Write the
1 The range	of the fu	action fly	$)= [x]-x ,x\in$	Ric				
(1) [0			[2] [0, ∞]	1(13	(3) [0, 1)		(4) (0, 1)	
			hen the base is		(0) [0) -)		(-) (-)	
(1) 5		((2) 7		(3) 6		(4) 9	
3. Let $f_k(x) =$	$\frac{1}{k}$ [sin ^k x -	$-\cos^k x$	where $x \in R$ an	$d k \ge 1$.	Then $f_4(x)$ -	$-f_6(x) =$		
$(1)^{\frac{1}{4}}$		($3)^{\frac{1}{6}}$		$(4)\frac{1}{3}$	
4			ays four rings		0	···ways.		
(1) 4^3			(2) 3 ⁴		(3) 68		(4) 64	
5. The n th ter	m of the	sequence	1,2,4,7,11,···is				3	
$(1) n^3$	$+3n^2 + 2n^2 +$	n ((2) n ³ –3n ² +3r	1.	$(3) \frac{n(n+1)(n-1)}{3}$	+2)	$(4)^{\frac{n^2-n+2}{2}}$	
6. The equati	on of the	line with	slone 2 and th	e lengtl	of the perr	endicular i		gin equal to √5 is
(1) x -	$\cdot 2y = \sqrt{5}$	((2) $2x - y = \sqrt{5}$		(3) $2x - y = 5$	5	(4) x - 2y - 5 =	=0
7. A root of th	ne equati	on $\begin{vmatrix} 3-x \\ -6 \end{vmatrix}$	[2) $2x - y = \sqrt{5}$ -6 3 3 - x 3 3 -6 -	= 0	is			
(1) 6		I 3	3 –6 -	-xl	(3) ()		(4) -6	
Ω If \vec{a} \vec{b} are t	he nociti	ا on vector	z of A and R th	en whic	h one of the	following	. ,	e position vector lies
on AB is	ne posici	on vector	3 Of A and B th	CII WIIIC	in one or the	lonowing	points whose	position vector nes
$(1)\vec{a}$	$\vdash \vec{b}$	($(2)\frac{2\vec{a}-\vec{b}}{2}$		$(3)\frac{2\vec{a}+\vec{b}}{3}$		$(4)\frac{\vec{a}-\vec{b}}{3}$	
$9. \lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 1} \right)$ $(1)e^4$	$\left(\frac{5x+3}{x+3}\right)^x$	is						
$(1)e^4$,	($(2)e^2$		$(3)e^3$		(4) 1	
10. If $pv = 8$	1, then $\frac{d}{d}$	$\frac{p}{r}$ at $v = 9$	is				· ·	
(1)1	d	v ([2)-1		(3)2		(4)-2	
$11. \int \frac{e^{6 \log x} - e^{5}}{e^{4 \log x} - e^{5}}$	$\frac{\log x}{\log x} dx$ is	S			(-)-		(-) -	
(1) x	+ <i>c</i>	($(2)\frac{x^3}{3} + c$		$(3)\frac{3}{r^3}+c$		$(4)\frac{1}{x^2}+c$	
					~		<i>7</i> L	en the events A and B
are				/	5, - ()	4	4	
(1) E		-	ot independen ually likely	t		_	ent but not ed aclusive and	
13. The range	_	_				,		•
(1)(-	∞,−1)∪	$\left(\frac{1}{3},\infty\right)^{1-2}$	$\sin x$ (2) $\left(-1,\right)$	$\frac{1}{3}$	(3) [-1,	$\left(\frac{1}{3}\right]$	(4) (-∞, -1] $\cup \left[\frac{1}{3},\infty\right)$.
		$1 \cdot \log_{11} 1$	$13 \cdot \log_{13} \hat{15} \cdot \log_{13} \hat{15}$	0,	S	_		-
(1) 1		(2) 2		(3) 3		(4) 4	
			phone numbers	having a		f their digits	_	
(1) 90	UUU	(2) 9000		(3) 30240		(4) 69760.	

- 16. Which one of the following is not true about the matrix 0
 - (1) a scalar matrix

- (2) a diagonal matrix
- (3) an upper triangular matrix
- (4) a lower triangular matrix

- 17. The value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$ is
 - $(1)\overline{AD}$
- $(2) \overrightarrow{CA}$
- $(3)\vec{0}$
- $(4) \overrightarrow{AD}$

- 18. $\lim_{n\to\infty} \frac{tan^{-1}x}{x}$ is
- (2)0

- $(3)\infty$
- $(4) \infty$
- 19. The number of points in R in which the function f(x) = |x 4| + |x 9| + sinx is not differentiable is (1)2(3)1
- 20. $\int x^2 \cos x \, dx$ is

- $\begin{array}{ll}
 \cos x \, ax & \\
 (1) \, x^2 \sin x + 2x \cos x 2 \sin x + c \\
 (3) \, -x^2 \sin x + 2x \cos x + 2 \sin x + c
 \end{array} (2) \, x^2 \sin x 2x \cos x 2 \sin x + c \\
 (4) \, -x^2 \sin x 2x \cos x + 2 \sin x + c$

SECTION-B

Note:

Answer any SEVEN questions. (i)

7 X 2 = 14

- Question number 30 is compulsory. (ii)
- 21. Three coins are tossed simultaneously, what is the probability of getting (i) exactly one head (ii) at least one head (iii) atmost one head?
- **22.**Integrate: $sec^2 x + 18 \cos 2x + 10 \sec(5x + 3) \tan(5x + 3)$
- 23. Compute: $\lim_{x \to 1} \frac{\sqrt{x}-1}{x-1}$.
- **24.** If A is a 3×4 matrix and B is a matrix such that both A^TB and BA^T are defined, what is the order of the matrix B?
- **25.** Let $X = \{a, b, c, d\}$ and $R = \{(a, a), (b, b), (a, c)\}$. Write down the minimum number of ordered pairs to be included to R to make it (i) reflexive (ii) symmetric (iii) transitive (iv) equivalence

- **26.** Simplify: (i)(125) $\frac{2}{3}$ (ii) $16^{\frac{-3}{4}}$ **27.** Prove that (b + c) cos A + (c + a) cos B + (a + b) cos C = a + b + c. **28.** If $\frac{1}{7!} + \frac{1}{8!} = \frac{A}{9!}$ then find the value of A.
- **29.** Find the coefficient of x^{15} in $\left(x^2 + \frac{1}{x^3}\right)^{10}$
- **30.** The length of the perpendicular drawn from the origin to a line is 12 and makes an angle 30° with positive direction of the x-axis. Find the equation of the line.

SECTION-C

Note:

Answer any **SEVEN** questions. (i)

7X3 = 21

- Question number 40 is compulsory. (ii)
- **31.** A fruit shop keeper prepares 3 different varieties of gift packages.

Pack-I contains 6 apples, 3 oranges and 3 pomegranates.

Pack-II contains 5 apples, 4 oranges and 4 pomegranates and

Pack -III contains 6 apples, 6 oranges and 6 pomegranates.

The cost of an apple, an orange and a pomegranate respectively are Rs 30, Rs 15 and Rs 45. What is the cost of preparing each package of fruits?

- **32.** Show that the vectors $5\hat{i} + 6\hat{j} + 7\hat{k}$, $7\hat{i} 8\hat{j} + 9\hat{k}$ and $3\hat{i} + 20\hat{j} + 5\hat{k}$ are coplanar.
- 33. A main road in a City has 4 crossroads with traffic lights. Each traffic light opens or closes the traffic with the probability of 0.4 and 0.6 respectively. Determine the probability of
 - a car crossing the first crossroad without stopping (i)
 - a car crossing first two crossroads without stopping (ii)
 - a car crossing all the crossroads, stopping at third cross. (iii)
 - a car crossing all the crossroads, stopping at exactly one cross.
- **34.** Show that the function $\begin{cases} \frac{x^3 1}{x 1}, & \text{if } x \neq 1 \\ 3, & \text{if } x = 1 \end{cases}$ is continuous on $(-\infty, \infty)$

- **35.** Differentiate $y = \frac{x^{\frac{2}{4}}\sqrt{x^2+1}}{(3x+2)^5}$ **36.** Integrate: $\frac{\cos 2x \cos 2\alpha}{\cos x \cos \alpha}$

- **37.** Find the range of the function $f(x) = \frac{1}{1-3\cos x}$ **38.** Find all values of x that satisfies the inequality $\frac{2x-3}{(x-2)(x-4)} < 0$
- **39.** Find the value of $\sqrt{3}$ cosec 20° sec 20°
- **40.** If the roots of the equation $(q-r)x^2 + (r-p)x + p-q = 0$ are equal, then show that p,q and rare in AP.

SECTION-D

Note: Answer all the questions.

7X5 = 35

- 41. (A) Verify that det(AB) = (detA) (detB) for $A = \begin{bmatrix} 4 & 3 & -2 \\ 1 & 0 & 7 \\ 2 & 3 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 & 3 \\ -2 & 4 & 0 \\ 9 & 7 & 5 \end{bmatrix}$ (B) Prove that $\sqrt[3]{x^3 + 7} \sqrt[3]{x^3 + 4}$ is approximately equal to $\frac{1}{x^2}$ when x is large.

 42. (A) Integrate: (i) $\frac{e^x}{e^x 1}$ (ii) $\frac{e^x e^{-x}}{e^x + e^{-x}}$ (iii) $e^{2x} \sin x$ (iv) $e^x (\tan x + \log \sec x)$ (v) $\cos e^2 (5x 7)$

- **(B)** Find p and q, if the following equation represents a pair of perpendicular lines $6x^2 + 5xy - py^2 + 7x + qy - 5 = 0$
- **43. (A)** Prove that the medians of a triangle are concurrent.

- **(B)** Evaluate: $\lim_{x\to 0} \frac{\sqrt{1+\sin x} \sqrt{1-\sin x}}{\tan x}$ **44. (A)** Prove that using the Mathematical induction

$$\sin(\alpha) + \sin(\alpha + \frac{\pi}{6}) + \sin(\alpha + \frac{2\pi}{6}) + \dots + \sin(\alpha + \frac{(n-1)\pi}{6}) = \frac{\sin(\alpha + \frac{(n-1)\pi}{12})x \sin(\frac{n\pi}{12})}{\sin(\frac{\pi}{12})}.$$
(B) Prove that
$$\frac{\cot(180^\circ + \theta)\sin(90^\circ - \theta)\cos(-\theta)}{\sin(270^\circ + \theta)\tan(-\theta)\csc(360^\circ + \theta)} = \cos^2\theta \cot\theta.$$
(A) A simple cipher takes a number and codes it using the function $f(x) = 3x = 4$. Figure 1.

- **45.** (A) A simple cipher takes a number and codes it, using the function f(x)=3x-4. Find the inverse of this function, determine whether the inverse is also a function and verify the symmetrical property about the line y = x (by drawing the lines).

- (B) State and prove the quadratic equation formula.
- **46.** (A) (i) If $y = (cos^{-1}x)^2$, prove that $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} 2 = 0$. Hence find y_2 when x = 0. (ii) If $\sin y = x \sin(a+y)$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$, $a \ne n\pi$.

 - (B) Find the principal value of
 - (i) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$
 - (ii) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ (iii) $\csc^{-1}(-1)$ (iv) $\sec^{-1}\left(-\sqrt{2}\right)$.

 - (v) $\tan^{-1}(\sqrt{3})$.
- **47. (A)** A ball is thrown vertically upward from the ground with an initial velocity of 39.2 m/sec. If the only forceconsidered is that attributed to the acceleration due to gravity, find (i) how long will it take for the ball to strike the ground? (ii) the speed with which will it strike the ground? and (iii) how high the ball will rise?

(OR)

(B) There are two identical urns containing respectively 6 black and 4 red balls, 2 black and 2 red balls. An urn is chosen at random and a ball is drawn from it. (i) find the probability that the ball is black (ii) if the ball is black, what is the probability that it is from the first urn?

Mr.R.MURALI, M.Sc., B.Ed., Cell.No: 9786760672 DHARMAPURI

SUN TUITION CENTER -9629216361

HALF YEARLY / PUBLIC MODEL QUESTION PAPER -2022

	CDEIC MODEE	QUESTION TATER 2022
(a) Check the que	stion paper for fairness of	YEAR Maximum Marks: 90 f printing. If there is any lack of
	Black ink to write and und	•
All guartians are se		20 X 1 = 20
Choose the correct	or most suitable answer f	
$a, x, x \in \mathbb{R}$ and $B = \{(x, x) \in \mathbb{R}\}$	(2) infinitely	many elements
um and product of th	he roots of the equation $2x$	
		(1) 1
iangle e	(2) isosceles (4) scalene to	
(2)x+y=0	(3)x+y=n	(4)both (1) and (2)
$\begin{array}{cccc} 2n & (2) & n^3 - 3n^2 \end{array}$	$+3n$ (3) $\frac{n(n+1)(n+2)}{n(n+1)(n+2)}$	$\frac{1}{2}$ (4) $\frac{n^2-n+2}{n}$
the straight line nassi	ing through (1.3) and nerr	pendicular to $2x-3y+1=0$ is
(2) =	(3) $\frac{2}{-}$	$(4)^{\frac{2}{-}}$
$ \vec{b} = 5$ and the angle	between \vec{a} and \vec{b} is $\frac{\pi}{a}$ the	on the area of the triangle formed by these
	between a ana b is 6, the	the area of the triangle formed by these
	$(3)^{\frac{3}{2}}$	$(4)^{\frac{17}{2}}$
(=) ₄	$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} -7 & -8 \end{bmatrix}$	-91:-
atrix A which satisfie	$SA \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 62 & 24 \end{bmatrix}$	6 J 18
		(4) 3 X 2 NT' and another letter is taken at random
		$(4) \frac{19}{99}$
f two events A and B	are 0.3 and 0.6 respective	
$B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A - 1)$	$(B)^2 = A^2 + B^2$, then th	e value of a and b are
= 1 (2) $a = 1, b$ gnitude 5 and parallel	a = 4 (3) $a = 0, b = 0I to the vector whose direction$	4 (4) $a = 2, b = 4$ ction ratios are 2,3,6 are
$(2)^{\frac{2\hat{\imath}+3\hat{\jmath}+6k}{7}}$	$(3)\frac{5}{7}(2\hat{\imath}+3\hat{\jmath}$	$+6\hat{k}$) $(4) \pm \frac{5}{7}(2\hat{\imath} + 3\hat{\jmath} + 6\hat{k})$
		,
(2) \vec{a}	(3) \vec{b}	(4) \vec{c}
oints in R in which the	e function $f(x) = x - 1 +$	$ x-3 + \sin x$ is not differentiable is
	(3) 1	(4) 4
(2) ₋ 1	(3) 2	(4) -2
+ c then the value of	of k is	(1) 2
	$(3)\frac{-1}{\log 3}$	$(4)\frac{1}{\log 3}$
	(a) Check the questioness, info (b) Use Blue or E All questions are c Choose the correct option code and the ax, $x \in \mathbb{R}$ and $B = \{(x, x) \in \mathbb{R}\}$ and $A = \{(x, x) \in \mathbb{R}\}$ and the angle sides is $A = \{(x, x$	HIGHER SECONDARY FIRST (a) Check the question paper for fairness of fairness, inform the Hall Supervisor im (b) Use Blue or Black ink to write and und SECTION-A All questions are compulsory. Choose the correct or most suitable answer for option code and the corresponding answer. (a) $x, x \in \mathbb{R}$ and $B = \{(x, y) : y = \cos x, x \in \mathbb{R}\}$ then $A \in \mathbb{R}$ then $A \in \mathbb{R}$ and $A \in \mathbb{R}$ the remainder of the roots of the equation $A \in \mathbb{R}$ then $A \in \mathbb{R}$ then $A \in \mathbb{R}$ the straigle is in the straigle is $A \in \mathbb{R}$ the straight line passing through $A \in $

www.CBSEtips.in

17. Let a function f be defined by $f(x) = \frac{x - |x|}{x}$ for $x \ne 0$ and f(0) = 2 then f is

(1) continuous nowhere

(2) continuous everywhere

- (3) continuous for all except x = 1 (4) continuous for all x except x = 0
- 18. If a and b are the real roots of the equation $x^2 kx + c = 0$, then the distance between the points (a, 0) and

 $(1)\sqrt{k^2-4c}$

 $(2) \sqrt{4k^2 - c} \qquad (3) \sqrt{4c - k^2} \qquad (4) \sqrt{k - 8c}$ on having 44 diagonals is..... 19. Number of sides of a polygon having 44 diagonals is.....

(3)11

(4)22

20. If $f(x) = xtan^{-1}x$, then f'(x) is

 $(3)\frac{1}{2}-\frac{\pi}{4}$

(4)2

SECTION-B

Note:

(i) Answer any SEVEN questions.

7X2 = 14

Question number **30** is compulsory. (ii)

- 21. If n(A) = 10 and $n(A \cap B) = 3$, find $n((A \cap B)' \cap A)$
- 22. A quadratic polynomial has one of its zeros $1 + \sqrt{5}$ and it satisfies p(1) = 2. Find the quadratic polynomial.
- 23. Prove that cos(A + B) cos C cos(B + C) cos A = sin B sin(C A).
- 24. Find the value of *n*, if the sum to *n* terms of the series $\sqrt{3} + \sqrt{75} + \sqrt{243} + \cdots$ is $435\sqrt{3}$
- 25. Find the family of straight lines (i) Perpendicular (ii) Parallel to 3x + 4y 12 = 0.

26. Show that $\begin{vmatrix} 4 - x & 4 + x & 4 + x \\ 4 + x & 4 - x & 4 + x \\ 4 + x & 4 - x & 4 - x \end{vmatrix} = 0$ 27. For any vector \vec{r} , prove that $\vec{r} = (\vec{r}.\hat{i})\hat{i} + (\vec{r}.\hat{j})\hat{j} + (\vec{r}.\hat{k})\hat{k}$.

- 28. Find the derivative of $f(x) = \sin x^{\circ}$
- 29. Integrate $\frac{\cos x}{\sin^2 x}$
- 30. If A and B are independent then prove that \bar{A} and \bar{B} are also independent.

SECTION-C

Note:

Answer any **SEVEN** questions. (i)

7 X 3 = 21

- Question number 40 is compulsory. (ii)
- 31. A die is rolled once. If it shows an odd number, then find the probability of getting 3.

32. Integrate $\frac{x \sin^{-1} x}{\sqrt{1-x^2}}$

- 33. If $x = a(\theta + sin\theta)$, $y = a(1-cos\theta)$ then prove that at $\theta = \frac{\pi}{2}$, $y'' = \frac{1}{2}$.
- 34. Examine the continuity of e^x tanx
- 35. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, show that

$$\sin\frac{\theta}{2} = \frac{1}{2} |\vec{a} - \vec{b}|$$

$$\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$$

 $\sin \frac{\theta}{2} = \frac{1}{2} |\vec{a} - \vec{b}|$ 36. Show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x-y)(y-z)(z-x).$

- 37. A line is drawn perpendicular to 5x = y+7. Find the equation of the line if the area of the triangle formed by this line with co-ordinate axes is 10 sq. units.
- 38. If the letters of the word TABLE are permuted in all possible ways and the words thus formed are arranged in the dictionary order (alphabetical order), find the ranks of the words (i) TABLE, (ii) BLEAT
- 39. Construct a cubic polynomial function having zeros at $x = \frac{2}{5}$, $1 + \sqrt{3}$ such that f(0) = -8
- 40. In a \triangle ABC, if a = 12 cm, b = 8 cm and C = 30°, then show that its area is 24 sq.cm.

SECTION-D

Note:

Answer all the questions.

7X5 = 35

41. A) If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x)=3x-5, prove that f is a bijection and find its inverse.

(OR)

- **B)** Resolve into Partial fractions: $\frac{2x}{(x^2+1)(x-1)}$.
- **42.** A) . If $\theta + \varphi = \alpha$ and $\tan \theta = k \tan \varphi$, then prove that $\sin(\theta \varphi) = \frac{k-1}{k+1} \sin \alpha$.

(OR)

- **B)** There are 11 points in a plane. No three of these lies in the same straight line except 4 points, which are collinear. Find, (i) the number of straight lines that can be obtained from the pairs of these points?
 - (ii) The number of triangles that can be formed for which the points are their vertices?
- **43. A)** Prove that $\sqrt{\frac{1-x}{1+x}}$ is approximately equal to $1-x+\frac{x^2}{2}$ when x is very small.

(OR

- B) Show that the equation $2x^2-xy-3y^2-6x+19y-20=0$ represents a pair of intersecting lines. Show further that the angle between them is $\tan^{-1}(5)$.
- **44. A)** If $\begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} = 0$, prove that a,b,c are in G.P. or α is a root of $ax^2 + bx + c = 0$.

(OR)

- **B)** Find the area of the triangle whose vertices are A(3,-1,2), B(1,-1,-3) and C(4,-3,1).
- **45. A)** Evaluate $\lim_{x\to 0} \frac{\tan x \sin x}{x^3}$

(OR)

- B) Find y'' if $x^4 + y^4 = 16$.
- **46.A)** Integrate $\frac{x+1}{x^2-3x+1}$

(OR)

- **B)** The chances of A,B and C becoming manager of a certain company are 5:3:2. The probabilities that the office canteen will be improved if A,B and C become managers are 0.4, 0.5 and 0.3 respectively.(i) Find the probability that the office canteen has been improved (ii) If the office canteen has been improved, what is the probability that B was appointed as the manager?
- **47. A)** Integrate $\frac{x^3}{(x-1)(x-2)}$

(OR)

B) Differentiate $(2x + 1)^5(x^3 - x + 1)^4$.

SUN TUITION CENTER -9629216361

HALF YEARLY / PUBLIC MODEL QUESTION PAPER -2022

MODEL-3

Time Allowed	: 3 Hours	HIGHEF	R SECONDARY FIRST	ΓYEAR	Maximum Marks: 90
Instructions:	(a) Check the question	n paper for fairness o	f printing. If there	is any lack of
			Hall Supervisor imm	-	
	(b) Use Blue or Blacl	s ink to write and ung SECTION-A	derline and pencil	to draw diagrams.
Note:	(i) A	ll questions are comp	ulsory.		20 X 1 = 20
	(ii) C	hoose the correct or n	nost suitable answer	from the given fo	ir alternatives. Write the
	0	ption code and the cor	responding answer.		
1. Let A and B l	oe subset:	s of the universal set N	, the set of natural nu	ımbers. Then $A' \cup$	$[(A \cap B) \cup B']$ is
(1) A		(2) A'	(3) B	(4) N	
2. The function	$f: \mathbb{R} \to \mathbb{R}$	is defined by $f(x) = $	sin x + cos x is		
	odd funct		(2) neither an odd f	unction nor an eve	en function
(3) an e	even func	tion	(4) both odd function		
3. The value of					
(1) 16	- V Z	(2) 18	(3) 9	(4) 12	
4. The number	of roots o	of $(x+3)^4 + (x+5)^4 = 1$	6 is		
(1) 4		(2) 2	(3) 3	(4) 0	
5. Let $f_k(x) = \frac{1}{k}$	$[\sin^k x + c]$	(2) 18 of $(x + 3)^4 + (x + 5)^4 = 1$ (2) 2 $\cos^k x$] where $x \in \mathbb{R}$ and (2) $\frac{1}{12}$	$k \ge 1$. Then $f_4(x) - f_6$	(x) =	
$(1)\frac{1}{4}$		$(2)\frac{1}{12}$	$(3)^{\frac{1}{6}}$	$(4)\frac{1}{3}$	
6. A wheel is sp	oinning at	2 radians/second. Ho	w many seconds will	it take to make 10	complete rotations?
		(2) 20π seconds			
7. There are 10) points in	a plane and 4 of them	are collinear. The nu	ımber of straight l	ines joining any two
points is					
(1) 45		(2) 40	(3) 39	(4) 38	
8. The sum up	to n term:	s of the series $\sqrt{2} + \sqrt{8} + \sqrt{1}$	$\sqrt{18} + \sqrt{32} + \cdots$ is		
$(1)^{\frac{n(n-1)}{2}}$	+1)	(2) 40 s of the series $\sqrt{2} + \sqrt{8} + \sqrt{2}$ (2) 2n (n + 1)	$(3)\frac{n(n+1)}{\sqrt{2}}$	(4) 1	
9. The v-interc	ent of the	straight line passing t	hrough (1.3) and per	nendicular to 2x-	3v +1=0is
$(1)^{\frac{3}{2}}$	ope or the	straight line passing to $(2)\frac{9}{2}$ erminant of $A = \begin{bmatrix} 0 \\ -a \\ b \end{bmatrix}$ (2) abculative and the value $(2)^{\frac{1}{2}}$	(3) $\frac{2}{3}$	$(4)\frac{2}{9}$	oy • 1 010
$(1)\frac{1}{2}$		$(2)\frac{1}{2}$	$(3)\frac{1}{3}$	$(\pm)\frac{9}{9}$	
10 The value of	of the dete	erminant of $A = \begin{bmatrix} 0 \\ a \end{bmatrix}$	$\begin{bmatrix} a & -b \\ 0 & c \end{bmatrix}$ is		
10. The value of	n the dete	$\begin{array}{c c} \text{Initiality of } A = \begin{bmatrix} -a \\ b \end{bmatrix}$			
(1) -2a	bc	(2) abc	(3) 0	$(4) a^2 +$	$-b^2 + c^2$
11. If $\lambda \hat{i} + 2\lambda \hat{i} +$	$2\lambda \hat{k}$ is a u	nit vector then the value	of λ is	(1) 00 1	
$(1)\frac{1}{3}$		$(2)\frac{1}{4}$	$(3)\frac{1}{9}$	$(4)^{\frac{1}{2}}$	
		(-) ₄	(0) 9	(1) 2	
$12. \lim_{x \to 0} \frac{e^{\sin x} - 1}{x}$					
(1) 1		(2) e	$(3)\frac{1}{a}$	(4) 0	
` ,	and f(0) :	= f'(0) = 1, then f(2) is	e		
(1)1	and i(0)	(2)2	(3)3	(4)-3	
(1)1			` '	(4)-3	
14. If $\int \frac{3x}{x^2} dx =$	$k\left(3^{\frac{1}{x}}\right)+$	c, then the value of k i	S		
(1) log	3	$(2) - \log 3$	$(3) - \frac{1}{\log 3}$	$(4)\frac{1}{l0g3}$	
15. If X and Y a	re two ev	ents such that P(X/Y)=			hen P(XUY) is
(1) 1/3		(2) 2/5	(3) 1/6	(4) 2/3	, ,
16.If $y = e^{\sin x}$ t	hen dy/d		•		
(1) y sinx		(2) y cosx	(3) y tanx	(4) none of	these
		f the direction sines of			
(1) 0	-	(2) 1	(3) 2	(4)5	
18.If the elemen	nts of a co	lumn are multiplied wit	h corresponding cofa	ctors of any other o	olumn then their sum is
(1) 0		(2) 1	(3) 2	(4)5	

19.If n(A) = 1 then it is called

(1) null set

(2) singleton set

(3) finite set

(4) both (2) & (3)

20. The number of positive integers greater than 7000 and less than 8000 which are divisible by 5 without repetition of digits is

(1)112

(2)114

(3)110

(4)1001

SECTION-B

Note:

Answer any SEVEN questions. (i)

7 X 2 = 14

Question number **30** is compulsory. (ii)

- 21. Prove that the relation "friendship" is not an equivalence relation on the set of all people in Chennai.
- 22. Write $f(x) = x^2 + 5x + 4$ in completed square form.
- 23. Prove that $\cos 5\theta = 16 \cos^5 \theta 20 \cos^3 \theta + 5 \cos \theta$.
- 24. Find the expansion of $(2x + 3)^5$.
- 25. Find the equations of the straight lines, making the y- intercept of 7 and angle between the line and the y-axis is 30°.

26. Find x, y, a, and b if $\begin{bmatrix} 3x + 4y & 6 & x - 2y \\ a + b & 2a - b & -3 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 \\ 5 & -5 & -3 \end{bmatrix}.$ 27. Find the value or values of m for which m $(\hat{i} + \hat{j} + \hat{k})$ is a unit vector.

- 28. Find y" if y = $\frac{1}{2}$
- 29. Find the probability of getting the number 9, when a usual die is rolled.
- 30. Evaluate $\int \sqrt{4-x^2} dx$

SECTION-C

Note:

Answer any **SEVEN** questions. (i)

- (ii) Question number **40** is compulsory.
- 31. Find the range of the function $f(x) = \frac{1}{1-3\cos x}$.
- 32. Find the square root of $7 4\sqrt{3}$
- 33. If the sides of a \triangle ABC are a = 4, b = 6 and c = 8, then show that 4 cos B + 3 cos C = 2.
- 34. By the principle of mathematical induction, prove that, for all integers $n \ge 1$, $1+2+3+\cdots+n = \frac{n(n+1)}{2}$
- 35. If the area of the triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 square units, find the values of k.
- 36. Show that the points (4,-3,1), (2,-4,5) and (1,-1,0) form a right angled triangle.

37. Evaluate: $\lim_{x \to 0} \frac{3^x - 1}{\sqrt{x + 1} - 1}$

38. Differentiate: $y = \sqrt{x + \sqrt{x}}$

- 39. If for two events A and B,P(A) = $\frac{3}{4}$, P(B)= $\frac{2}{5}$ and AUB=S (sample space), find the conditional probability P(A / B).
- 40. Find the nearest point on the line 3x + 4y = 12 from the origin.

SECTION-D

Note:

Answer all the questions.

7X5 = 35

41. A) If $f: R \to R$ is defined by f(x)=2x-3 prove that f is a bijection and find its inverse.

(OR)

- B) An advertising executive is studying television viewing habits of married men and women during prime time hours. Based on the past viewing records he has determined that during prime time wives are watching television 60% of the time. It has also been determined that when the wife is watching television, 40% of the time the husband is also watching. When the wife is not watching the television, 30% of the time the husband is watching the television. Find the probability that (i) the husband is watching the television during the prime time of television (ii) if the husband is watching the television, the wife is also watching the television
- 42. A) Resolve into partial fractions: $\frac{2x^2+5x-11}{x^2+2x-3}$

(OR)
B) Using Factor Theorem, prove that $\begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix} = (x - y)(y - z)(z - x)(xy + yz + zx)$

43. A) If $\cot \theta$ (1 + $\sin \theta$) =4m and $\cot \theta$ (1 - $\sin \theta$) =4n, then prove that $(m^2 - n^2)^2 = mn$.

B) State and prove Napier's formula.

44. A) Find the number of strings of 5 letters that can be formed with the letters of the word PROPOSITION.

- B) Prove that $\sqrt{\frac{1-x}{1+x}}$ is approximately equal to $1-x+\frac{x^2}{2}$ when x is very small.
- 45. A) Find the derivative of $tan^{-1} \left(\frac{\cos x + \sin x}{\cos x \sin x} \right)$

(OR)

B) If
$$y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$$
, find y'

46. A) Evaluate: $\int \frac{2x+3}{\sqrt{x^2+x+1}} dx$

(OR)

- B) Evaluate: $\int \frac{1}{\sqrt{x+1} + \sqrt{x}} dx$.
- 47. A) Prove that the straight lines joining the origin to the points of intersection of $3x^2 + 5xy 3y^2 + 2x + 3y = 0$ and 3x 2y 1 = 0 are at right angles.

(OR)

B) Prove that a quadrilateral is a parallelogram iff its diagonals bisect each other

10th

ALL SUBJECT

QUESTION BANK

TAMIL & ENGLISH MEDIUM

PRICE

TAMIL RS.100

ENGLISH -RS100

MATHS -RS.150

(IM, 2M, 5M, 8MARKS WITH FULL SOLOTION -Rs. 100)

SCIENCE-RS.120

SOCIAL SCIENCE- RS. 120

+2 MATHS PTA-6

PUBLIC MODEL QUESTION-12

AND BOOK BACK ONE MARKS

PRICE Rs. 200

SUN TUITION CENTER -9629216361

HALF YEARLY / PUBLIC MODEL QUESTION PAPER -2022

MODEL-4

Time Allowed	d: 3 Hou			SECONDARY FIRS		Maximum Marks: 90
Instructions:			heck the question լ	_		ere is any lack of
			airness, inform the Jse Blue or Black i			ncil to draw diagrams.
Note:	(i)	All aue	estions are compu l			20 X 1 = 20
Note	(ii)	Choose	_	st suitable answei		four alternatives. Write th
y = x + 1 true?	and 0	< x < 1	$2\} \text{ and } T = \{(x, y)\}$: x - y is an inv	teger }. Then w	$R \times R$: $S = \{(x, y) :$ hich of the following is
7 7	_		e relation but S is n an equivalence rela	<u>-</u>	relation.	
3 7			quivalence relation			
			relation but T is n		relation.	
		are rea	I numbers $x < y$, b	> 0, then		
(1) xb	< yb		(2) xb > yb	(3) $xb \le yb$	(4) x	$b \ge y b$
$3.\frac{\sin(A-B)}{}$	$+\frac{\sin(B)}{B}$	3 – C)	$+\frac{\sin(C-A)}{\cos C\cos A}$ is			
cos A cos B	cos E A + sin	Cos C	cos C cos A	(3) 0	(4) co	s A + cos B + cos C
` '			re positive integers	. ,	(4) 00	3 A + CO3 D + CO3 C
(1) r!	c of f cor	isceativ	(2) (r-1)!	(3) (r + 1)!	(4) r	r
` ,	s the sur	n of n te				ue of $S_n - 2S_{n-1} + S_{n-2}$ is
(1) d			(2) 2d	(3) 4d	(4) d	
6. If the equat of a side is	ion of th	ie base (opposite to the ver	tex (2, 3) of an equ	uilateral triangle	e is $x + y = 2$, then the length
$(1)\sqrt{\frac{3}{2}}$			(2) 6	(3) √6	(4) 3	$\sqrt{2}$
(1) A + (3) A +	B is skev B is a dia	v-symme agonal m	atrix (4) A + B is symmetric) A + B is a zero mat	rix	xes respectively.Then the
angle betwe				•		
	0		(2) 60°	(3) 90°	(4) 3	0°
9. $\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}$	- =					
(1) 1			(2) 0	(3) - 1	$(4)\frac{1}{2}$	
$10.\frac{d}{dx} \left(e^{x+5log} \right)$				_	_	_
(1) e^x .	$x^{4}(x +$	5)	$(2) e^x \cdot x(x+5)$	$(3)e^{x} + \frac{5}{x}$	(4) e	$x = \frac{5}{x}$
$11. \int \frac{\sec x}{\sqrt{\cos 2x}} dx$	x is			2		,
	$n^{-1}(\sin x)$			(2) $2 \sin^{-1}($,	
` ,	$n^{-1}(\cos$	-		(4) $sin^{-1}(t)$	•	
_	_			oalls. If two balls a	re drawn simul	taneously, then the
7		oth are c	lifferent colours is	64		73
(1) $\frac{68}{10!}$	5		$(2)\frac{71}{105}$	$(3)\frac{64}{105}$	$(4)\frac{7}{1}$	<u>05</u>
		-	netric and skew – s	-		
	o matri		(2) row m		olumn matric	(4) scalar matric
	t the squ	iare of t	he direction cosine		(4) 0	
(1) 1 15. Does $f(x)$	$=\lim_{n\to\infty} [x]$	a] exists	(2) 0 ?	(3) 2	(4) 3	
(1) n	x→n		(2) $n-1$	(3) $n-2$	(4) n	a+1

$$(1) x = 0$$

(2)
$$x = 1$$

(3)
$$x = 2$$

$$(4) x = -1$$

$$(1) \frac{1}{4} \log \left| \frac{2+x}{2-x} \right|$$

$$(2) \log \left| \frac{2+x}{2-x} \right|$$

$$(3) \frac{1}{4} \log \left| \frac{2-x}{2+x} \right| \qquad (4) \log \left| \frac{2-x}{2+x} \right|$$

(4)
$$\log \left| \frac{2-x}{2+x} \right|$$

16. Test of $f(x) = x^{\frac{1}{3}}$ is (1) x = 0(2) x = 117. Integration of $\frac{1}{4-x^2}$ is $(1) \frac{1}{4} log \left| \frac{2+x}{2-x} \right|$ (2) $log \left| \frac{2+x}{2-x} \right|$ 18. Probability of impossible event is

(4) none of these

19. Two sets A and B are disjoint

$$(4) A \cap B = A \cup B$$

 $20.|x-a| = rn \text{ iff } r \ge 0 \text{ and}$

$$(1) x - a = r$$

(2)
$$x - a = 0$$

(3)
$$x + a = r$$

$$(4) x - a = \pm r$$

SECTION-B

Note:

Answer any **SEVEN** questions. (i)

- 7 X 2 = 14
- Question number 30 is compulsory. (ii)
- **21.** If $X = \{1, 2, 3, ... 10\}$ and $A = \{1, 2, 3, 4, 5\}$, find the number of sets $B \subseteq X$ such that $A B = \{4\}$
- **22.** If the equations $x^2 ax + b = 0$ and $x^2 ex + f = 0$ have one root in common and if the second equation has equal roots, then prove that ae = 2(b + f).
- **23.** Prove that $(\sec A \csc A)(1 + \tan A + \cot A) = \tan A \sec A \cot A \csc A$.
- 24. Find the number of ways of arranging the letters of the word RAMANUJAN so that the relative positions of vowels and consonants are not changed.
- **25.** Write the nth term of the sequence $\frac{3}{1^22^2}$, $\frac{5}{2^23^2}$, $\frac{7}{3^24^2}$... as a difference of two terms. **26.** Find the equation of the straight line parallel to 5x 4y + 3 = 0 and having x-intercept 3.
- 27. Definition of triangle law of addition.
- **28.** Calculate $\lim_{x\to 2} \frac{|x|}{x}$. **29.** Defintion of Anti Derivative.

29. Defintion of Anti Derivative.

30. Find the matrix A such that
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A^T = \begin{bmatrix} -1 & -8 & -10 \\ 1 & 2 & -5 \\ 9 & 22 & 15 \end{bmatrix}.$$

Note:

Answer any **SEVEN** questions. (i)

- 7 X 3 = 21
- (ii) Question number 40 is compulsory.
- 31. A town has 2 fire engines operating independently. The probability that a fire engine is available when needed is 0.96. (i) What is the probability that a fire engine is available when needed?
 - (ii) What is the probability that neither is available when needed?
- **32.** Do the limits of following exist as $x \to 0$? State reasons for your answer? $\frac{x[x]}{\sin|x|}$
- **33.** If f is differentiable at a point $x = x_0$, then f is continuous at x_0
- 34. If GM and HM denote the geometric mean and the harmonic mean of two nonnegative numbers, then $GM \ge HM$. The equality holds if and only if the two numbers are equal.
- 35. An exam paper contains 8 questions, 4 in Part A and 4 in Part B. Examiners are required to answer 5 questions. In how many ways can this be done if (i) There are no restrictions of choosing a number of questions in either parts. (ii) At least two questions from Part A must be answered.
- **36.** Find the nearest point on the line 2x + y = 5 from the origin.
- **37.** Differentiate $f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$
- **38.** Integrate: $x^2 \cos x$
- **39.** Solve $\tan^2 x = 3$
- **40.** Prove that $\sqrt{5}$ is an irrational number.

SECTION-D

Note:

Answer all the questions.

7X5 = 35

41. (A) Prove that
$$\begin{vmatrix} (q+r)^2 & p^2 & p^2 \\ q^2 & (r+p)^2 & q^2 \\ r^2 & r^2 & (p+q)^2 \end{vmatrix} = 2pqr(p+q+r)^3.$$

(B) Let \vec{a} and \vec{b} be the two vectors to find the unit vectors perpendicular to both \vec{a} and \vec{b} .

42. (A) Prove that $\sqrt{\frac{1-x}{1+x}}$ is approximately equal to $1-x+\frac{x^2}{2}$ when x is very small.

- **(B)** Discuss f(x) = |x| is the continuous at all points of the real line \mathbb{R} .
- **43.** (A) Show that the equation $4x^2 + 4xy + y^2 6x 3y 4 = 0$ represents a pair of parallel lines. Find the distance between them.

(OR)

- (B) State and Prove the Quotient Rule.
- **44. (A)** Find the pints of discontinuity of the function, where $f(x) = \begin{cases} \sin x, 0 \le x \le \frac{\pi}{4} \\ \cos x, \frac{\pi}{4} < x < \frac{\pi}{2} \end{cases}$

(OR)

- **(B)** Prove that the medians of a triangle are concurrent.
- **45. (A)** To prove that $\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin ax b \cos bx) + c$ **(OR)**
 - **(B)** Find the derivative: $Y = x^{logx} + (log x)^x$
- **46. (A)** Using Heron's formula, show that the equilateral triangle has the maximum area for any fixed perimeter.

(OR)

- **(B)** Evaluate: $\int \frac{x+1}{x^2-3x+1} dx$ **47. (A)** If $+B+C=\frac{\pi}{2}$, then Show that $\tan A \tan B + \tan B \tan C + \tan C \tan A = 1$.

(B) A construction company employs 2 executive engineers. Engineer-1 does the work for 60% of jobs of the company. Engineer-2 does the work for 40% of jobs of the company. It is known from the past experience that the probability of an error when engineer-1 does the work is 0.03, whereas the probability of an error in the work of engineer-2 is 0.04. Suppose a serious error occurs in the work, which engineer would you guess did the work?

SUN TUITION CENTER -9629216361 HALF YEARLY / PUBLIC MODEL QUESTION PAPER -2022

MODEL -5

	Check the question paper irness, inform the Hall Su Use Blue or Black ink to	pervisor immediately.	f there is any lack of
(ii) Choo	uestions are compulsory .	able answer from the giv	20 X 1 = 20 en four alternatives. Write the option
1. Let $f_k(x) = \frac{1}{k} [\sin^k x + \cos^k x]$	•		
	$(2)\frac{1}{12}$		$(4)\frac{1}{2}$
2. The number of ways in wh want to attend the party tog	ich a host lady invite 8 pe	ople for a party of 8 out of	of 12 people of whom two do not
3. If the square of the matrix	$\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the unit matrix	x of order 2, then α , β ar	ad γ should satisfy the relation.
	$(2) 1 - \alpha^2 - \beta \gamma = 0$	$(3) 1 - \alpha^2 + \beta \gamma = 0$	$(4) 1 + \alpha^2 - \beta \gamma = 0$
(1) - 2	(2) - 1	(3) 0	(4) 0
$\frac{dx}{(1)\frac{\pi}{180}}cosx^{\circ}$	$(2)\frac{1}{90}\cos x^{\circ}$	$(3)\frac{\pi}{90}\cos x^{\circ}$	$(4)\frac{2}{\pi}\cos x^{\circ}$
6. $\int \sqrt{\frac{1-x}{1+x}} dx$ is			
$(1)\sqrt{1-x^2} + \sin^{-1}x$	+c $x + 2sinx + c$	(2) $\sin^{-1} x - \sqrt{1 - x^2}$	+c
7. A, B, and C try to hit a targ			
targets are $\frac{3}{4}, \frac{1}{2}, \frac{5}{8}$. The pro	bability that the target is h	it by A or B but not by C	Cis
$(1)\frac{21}{64}$	(2) $\frac{7}{32}$	(3) $\frac{9}{61}$	$(4) \frac{7}{8}$
8. Dot product between any to			8
(1) 0	$(2)\frac{\pi}{2}$		(4) $\frac{\pi}{6}$
9. The pair of straight lines th	4	4	
(1) 0			
10. Locus of a point P moves			
(1) Ellipse	(2) circle	(3) square	(4) angle bisector of the Δxoy .
11. Harmonic mean of two po		(2) 2ab	ab
$(1)\frac{1}{a+b}$	$(2)\frac{a+b}{2}$	$(3)\frac{2ab}{a+b}$	$(4)\frac{ab}{a+b}$
12. Sum of $1 + 3 + 5 + \dots + 6$		m ²	
(1) 2n	$(2)\frac{n(n+1)}{2}$	$(3)\frac{n^2}{2}$	$(4) n^2$
13. Another notation $sin^{-1}x$ i			
(1) cosecant x	(2) tan x	(3) $arc \sin x$	(4) cotant x
14. If $\propto +\beta = \frac{\pi}{2}$, $\sin(\propto +\beta)$			
(1) 1	(2) 2	(3) 3	(4) 4
15. $a^x = 1$ iff x is (1) 1	(2) ∞	(3) 0	(4) 4
16. Solve of odd function $\sqrt{6}$		(3) 0	(7) 7
(1) 2	$-4x - x^{-} = x + 4 \text{ is}$ (2) -1	(3) 1	(4) -5
17. Solve of odd function is	x-/ -	√.	
(1) Odd	(2) even	(3) both odd and even	(4) none of these
18. $f(x) = x x $ is	(0) 1	(0)	
(1) Increasing	(2) decreasing	(3) strictly increasing	(4) strictly decreasing

(4) does not exists

- 19. The n different objects arranged in arrow is nP_n is
 - $(1) n \qquad (2) r$
 - (3) n^{r}
- (4) n!
- 20. If $f(x) = \begin{cases} x+2 \\ 5 \\ 8-x \end{cases} 1 < x < 3 \\ x = 3 \\ x > 3 \end{cases}$, then at x = 3, f'(x) is

 (2)-1 (3)0

SECTION-B

Note:

(i) Answer any **SEVEN** questions.

7X2 = 14

- (ii) Question number 30 is compulsory.
- 21. For a sports meet, a winners' stand comprising of three wooden blocks is in the form as shown in figure. There are six different colours available to choose from and three of the wooden blocks is to be painted such that no two of them has the same colour. Find the probability that the smallest block is to be painted in red, where red is one of the six colours.
- 22. If $f(x) = |x + 100| + x^2$, test whether f'(-100) exists.
- 23. Compute: $\lim_{h\to 0} \frac{1}{\sqrt{x+h}-\sqrt{x}}$, x>0.
- 24. Find the projection of \overrightarrow{AB} on \overrightarrow{CD} where A,B,C,D are the points (4,-3,0), (7,-5,-1), (-2,1,3), (0,2,5).
- 25. Give your own examples of matrices satisfying the conditions in each case: A and B such that $AB \neq BA$.
- 26. Evaluate: $\int e^x \left(\frac{1}{x} \frac{1}{x^2}\right) dx$.
- 27. Solve $\tan 2x = -\cot \left(x + \frac{\pi}{3}\right)$.
- 28. Prove that $nC_r = \frac{n}{r} \times (n-1)C_{(r-1)}$.
- 29. In \triangle ABC to show that $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$
- 30. Define Condition of perpendicular lines.

SECTION C

Note:

(i) Answer any **SEVEN** questions.

7 X 3 = 21

- (ii) Question number 40 is compulsory.
- 31. If $\log_2 x + \log_4 x + \log_{16} x = \frac{7}{2}$, find the value of x.
- 32. A simple cipher takes a number and codes it, using the function f(x) = 3x 4. Find the inverse of this function, determine whether the inverse is also a function and verify the symmetrical property about the line y = x (by drawing the lines).
- 33. Prove: $nC_r + nC_{r-1} = (n+1)C_r$.
- 34. Write the first 4 terms of the logarithmic series $\log(\frac{1+3x}{1-3x})$
- 35. Find the locus of a point P moves such that its distances from two fixed points A(1,0) and B (5,0), are always equal.
- 36. Evaluate: $\int \sqrt{25x^2 9} dx$
- 37. In a circle of diameter 40 cm, a chord is of length 20 cm. Find the length of the minor arc of the chord.
- 38. Define Laplace Expansion.
- 39. Define Polygon Addition.
- 40. Calculate $\lim_{x \to 4} \frac{16-x^2}{4+x}$.

SECTION-D

Note:

Answer all the questions.

7X 5 = 35

- 41. (A) Let $A = \{0, 1, 2, 3\}$. Construct relations on A of the following types:
 - (i) not reflexive, not symmetric, not transitive.
 - (ii) not reflexive, not symmetric, transitive.
 - (iii) not reflexive, symmetric, not transitive.
 - (iv) not reflexive, symmetric, transitive.
 - (v) reflexive, not symmetric, not transitive.

(OR)

(B) Resolve into Partial fractions: $\frac{2x}{(x^2+1)(x-1)}$

42. (A) Prove that Geometrical meaning of a Scalar product of projection of one vector on another vector.

- (B) Express the matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$ as the sum of a symmetric and a skew-symmetric matrix.
- 43. (A) A consulting firm rents car from three agencies such that 50% from agency L, 30% from agency M and 20% from agency N. If 90% of the cars from L, 70% of cars from M and 60% of the cars from N are in good conditions (i) what is the probability that the firm will get a car in good condition? (ii) if a car is in good condition, what is probability that it has come from agency M?

(B) Prove that
$$\sin\left(\frac{A}{2}\right) + \sin\left(\frac{B}{2}\right) + \sin\left(\frac{C}{2}\right) = 1 + 4\sin\left(\frac{\pi - A}{4}\right)\sin\left(\frac{\pi - B}{4}\right)\sin\left(\frac{\pi - C}{4}\right)$$
, if $A + B + C = \pi$.

44. (A) Prove that $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log |x + \sqrt{x^2 + a^2}| + c$.

- (B) Using the Mathematical induction, show that for any natural number $n \ge 2$, $\left(1 \frac{1}{2^2}\right)\left(1 \frac{1}{3^2}\right)\left(1 \frac{1}{4^2}\right)...\left(1 \frac{1}{n^2}\right) = \frac{n+1}{2n}$.
- 45. (A) (i) Define jump continuous. (ii) Compute $\lim_{x\to a} \frac{x^n-a}{x-a} = na^{n-1}$. (B) The 2^{nd} , 3^{rd} and 4^{th} terms in the binomial expansion of $(x+a)^n$ are 240, 720 and 1080 for a suitable value of x. Find x, a
- 46. (A) State and prove Heron's formula.

(OR)

- (B) Find the distance (i) between two points (5, 4) and (2, 0) (ii) from a point (1, 2) to the line 5x + 12y 3 = 0(iii) between two parallel lines 3x + 4y = 12 and 6x + 8y + 1 = 0.
- 47. (A) State and prove Binomial Theorem for Positive integral index.

(OR)

(B) Evaluate: $(3x + 4)\sqrt{3x + 4}$.

SUN TUITION CENTER -9629216361

HALF YEARLY / PUBLIC MODEL QUESTION PAPER -2022

				MODEL-6	
Time Allowed:	: 3 Hour	'S	HIGHER SE	CONDARY FIRST YE	AR Maximum Marks: 90
Instructions:			heck the question paper	r for fairness of printing.	
				Supervisor immediately.	1.73
					l pencil to draw diagrams.
		(0)		ECTION-A	ponon to aray, anagrams.
Note:	(i)	All que	estions are compulsory		20 X 1 = 20
11010.	(ii)				ven four alternatives. Write the option
	(11)				ven roth afternatives. Write the option
		code ai	nd the corresponding ar	iswei.	
			_		
1. If $y = \cos(\sin \theta)$	(x^2) , the	$n \frac{dy}{dx}$ at x	$s = \frac{\pi}{100}$ is		
	j,	dx	$\sqrt{2}$		
(1)-2			(2)2	$(3)-2\sqrt{\frac{\pi}{2}}$	(4)0
(1)-2			(2)2	$(3)^{-2}\sqrt{\frac{2}{2}}$	(4)0
2. The value of	f lim sin	$\frac{x}{1}$ is		•	
2. The value of	$x \to 0 \sqrt{x}$	2 13			
(1) 1			(2)-1	(3) 0	(4) limit does not exist
3. If the point ((8.−5) lie	es on the	$\frac{x^2}{16} - \frac{y^2}{25} = k$, then	the value of k is	
	0, 0) 110	011 1110	16 25		(4) 2
(1) 0	1 1	1	(2) 1	(3) 2	(4) 3
4. The sequence	$e^{\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3+3}}}$	12,13731	-,form an		
(1) AP	V3 V3T	VZ V3TZV	(2) GP	(3) HP	(4) AGP.
5. If $a^2 - aC_2 = a$	2-a C. f	hen the s		(8) 111	(1) 11011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i a C4 i	iicii tiic	(2) 3	(3) 4	(4) 5
, ,	C	Ú11	` '		· ·
		neiogran	ns that can be formed f	rom a set of four parallel	lines intersecting another set of three
parallel line	es.				
(1) 6			(2) 9	(3) 12	(4) 18
7. The solution	n of 5 <i>x</i> –	-1 < 24	and $5x + 1 > -24$ is		
(1)(4, 3)	5)		(2)(-5,-4)	(3)(-5,5)	(4)(-5,4)
8. There is no l	· ·	from A			
(1) m =			(2) m = n	$(3) m \ge n$	$(4) m \le n$
		ie eaid t	to be an odd function	(s) $m \equiv m$	(1) $10 = 10$
7. A function j	$\mathcal{M} \rightarrow \mathcal{M}$	f(x)	(2) f(x) - f(x)	(3) both	(A) none of those
(1) / (-	-x) — —	$\int (X)$	(2) f(-x) = f(x) + $bx + c = 0$, then	(3) both	(4) none of these
$(1) \alpha +$	$\beta = -\frac{1}{2}$	<u>0</u>	$(2) \alpha \beta = \frac{c}{a}$	(3) both	(4) none of these
11. $\sin 0 = 0$ is		и	a		
	' ∶ nπ, n ∈	- 7		$(2) \theta = (2n + 1)^{\pi}$	7
` '				(2) $\theta = (2n+1)\frac{\pi}{2}$, n	z e z
\ /	$=(-1)^n \eta$			(4) none of these	
12. To solve an	equation	n of the	form $a\cos\theta + b\sin\theta$	=c	
$(1) \theta =$	$=2n\pi$		$(2) \theta = 2n\pi \pm \emptyset$	$(3) \theta = 2n\pi + \alpha \pm \emptyset$	$(4) \theta = 2n\pi + \alpha$
13. Relation be	tween Pe	ermutati	on and Combinations		
				(3) $r! - \frac{nP_r}{n}$	(4) All
			$(2) nC_r = \frac{nP_r}{r!}$	$n \cup T$	
14. In the expan	nsion of	$(a+b)^2$	$n, n \in N$. The co-efficient	ent at equidistant from the	e beginning and from the end are equal
due to the fa	act that				
(1) n!			(2) r!	$(3) nC_r = nC_{n-r}$	$(4) nC_r = nC_{n+r}$
	nate of t	he imag	e of the point (x_1, y_1)		c + by + c = 0 are given by
x-x	$y - y_1$	(a:	$x_1 + by_1 + c$	$(2) x - x_1 y - y_1 2$	(ax_1+by_1+c)
$(1)\frac{a}{a}$	$\bar{a} = \frac{1}{b}$	=	$\frac{x_1+by_1+c)}{a^2+b^2}$	$(2)\frac{x - x_1}{a} = \frac{y - y_1}{b} = -\frac{2}{a}$	$\frac{1}{a^2+b^2}$
(3) $\frac{y-y}{y-y}$	$\frac{a_1}{a_2} = -\frac{a_2}{a_2}$	x_1+by_1+	<u>c)</u>	$(4)\frac{x - x_1}{a} = -\frac{(ax_1 + by_1 - a^2 + b^2)}{a^2 + b^2}$	<u>+c)</u>
$\frac{(5)}{b}$		a^2+b^2		$a^{2}+b^{2}$	
	tries of a	row or	a column are zero, ther		40.2
(1) 1			(2) 0	(3) 2	(4) 3
		matrix A			= a, Then the factor of $ A $ is
(1) (x -				(3)(x-a)	$(4) (x-a)^2$
18. <i>l</i> , <i>m</i> , <i>n</i> are the	he direct	ion cosi	ne of a vector ,iff l^2 +	$m^2 + n^2 =$	
(1) 1			(2) 0	(3) 2	(4) 3

$$19. \int \frac{f'(x)}{f(x)} \ dx =$$

 $(1)\log|f(x)|+c$

(3) $\log |f'(x)| + c$

(4) f'(x) + c

20. $P(A/B) = \frac{P(A \cap B)}{P(B)}$, provided $P(B) \neq 0$ then

(1) Condition

(2) Multiplication theorem

(3) Independent event

(4) Total probability event

SECTION-B

Note:

Answer any **SEVEN** questions. (i)

7 X 2 = 14

- Question number 30 is compulsory. (ii)
- 21. The number of relations from a set containing m elements to a set containing n elements is 2^{mn}. In particular the number of relations on a set containing n elements is 2^{n^2} .
- 22. Factorize: $x^4 + 1$
- 23. Find the value of $\sin 34^{\circ} + \cos 64^{\circ} \cos 4^{\circ}$.
- 24. Find the coefficient of x^{15} in $\left(x^2 + \frac{1}{x^3}\right)^{10}$.
- 25. If P(r,c) is mid point of a line segment between the axes, then show that $\frac{x}{r} + \frac{y}{c} = 2$.
- 26. 4 boys and 4 girls form a line with the boys and girls alternating. Find the number of ways of making this line.
- 27. Solve: $\lim_{r \to 1} \frac{x^{m-1}}{x^{n-1}}$, m and n are integer.
- 28. State Baye's Theorem.
- 29. Write Bernoulli's formula and Integration by parts method.
- 30. Prove that $\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$.

SECTION-C

Note:

Answer any **SEVEN** questions. (i)

7 X 3 = 21

- Question number 40 is compulsory. (ii)
- 31. If f: $[-2, 2] \rightarrow B$ is given by $f(x)=2x^3$, then find B so that f is onto.
- 32. The equations $x^2 6x + a = 0$ and $x^2 bx + 6 = 0$ have one root in common. The other root of the first and the second equations are integers in the ratio 4:3. Find the common root.
- 33. The Government plans to have a circular zoological park of diameter 8 km. A separate area in the form of a segment formed by a chord of length 4 km is to be allotted exclusively for a veterinary hospital in the park. Find the area of the segment to be allotted for the veterinary hospital.
- 34. How many three-digit numbers are there with 3 in the unit place? (i) with repetition (ii) without repetition.
- 36. Expand $\frac{1}{(1+3x)^2}$ in the powers of x. Find a condition on x for which the expansion is valid.
- 37. If A is a square matrix such that $A^2 = A$, find the value of $7A (I + A)^3$.
- 38. State and prove function of a Function Rule.
- 39. If A and B are independent, Then \bar{A} and B are also independent.
- 40. Test the differentiability of the function f(x) = |x 2| at x = 2.

SECTION-D

Note:

Answer all the questions.

7X5 = 35

- 41. (A) (i) Prove that $((A \cup B' \cup C) \cap (A \cap B' \cap C')) \cup ((A \cup B \cup C') \cap (B' \cap C')) = B' \cap C'$.
 - (ii) If $\mathcal{P}(A)$ denotes the power set of A, then find $n(\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset))))$.
 - (iii) Check the relation $R = \{(1, 1), (2, 2), (3, 3), ..., (n, n)\}$ defined on the set $S = \{1, 2, 3, ..., n\}$ for the three basic relations.

- (B) Show that $\begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = (a+b+c)(a-b)(b-c)(c-a).$
- 42. (A) Evaluate: $\int (x-3)\sqrt{x+2}$

(OR)

- (B) Integration $x \log x + x$.
- 43. (A) Prove that the points whose position vectors $2\hat{\imath} + 4\hat{\jmath} + 3\hat{k}$, $4\hat{\imath} + \hat{\jmath} + 9\hat{k}$ and $10\hat{\imath} \hat{\jmath} + 6\hat{k}$ form a right angled triangle. (OR)
 (B) Draw the graph (i) $f(x) = x^2$ (ii) $f(x) = \frac{1}{2}x^2$ (iii) $f(x) = 2x^2$

44. (A) Two cards are drawn from a pack of 52 cards in succession. Find the probability that both are Jack when the first drawn card is (i) replaced (ii) not replaced.

(OR)

- (B) If the letter of the word "LUCKY" are permuted in all possible ways and the strings thus formed are arranged in the dictionary order. Find the rank of the word.
- 45. (A) Evaluate: $\lim_{x \to \infty} \left(\frac{x^2 2x + 1}{x^2 4x + 2} \right)^x$

(OR)

- (B) Find the angle between Pair of straight lines.
- 46. (A) If $A + B + C = \pi$, prove that $\cos^2 A + \cos^2 B + \cos^2 C = 1 2\cos A \cos B \cos C$.

(OR)

- (B) If $y = tan^{-1}\left(\frac{1+x}{1-x}\right)$, find y'
- 47. (A) Using the Mathematical induction, show that for any integer $n \ge 2$, $3n^2 > (n + 1)^2$ (OR)
 - (B) State and prove Napier's formula.

10th

ALL SUBJECT

QUESTION BANK

TAMIL & ENGLISH MEDIUM

PRICE

TAMIL RS.100

ENGLISH -RS100

MATHS -RS.150

(IM, 2M, 5M, 8MARKS WITH FULL SOLOTION -Rs. 100)

SCIENCE-RS.120

SOCIAL SCIENCE- RS. 120

+2 MATHS PTA-6

PUBLIC MODEL QUESTION-12

AND BOOK BACK ONE MARKS

PRICE Rs. 200

Sun Tuition Center -9629216361

half yearly / public model question paper -2022

HIGHER SECONDARY FIRST YEAR **Time Allowed: 3 Hours Maximum Marks: 90 Instructions:** Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately. Use **Blue** or **Black** ink to write and underline and pencil to draw diagrams. **SECTION-A** Note: All questions are **compulsory**. 20 X 1 = 20(i) Choose the correct or most suitable answer from the given four alternatives. Write the option (ii) code and the corresponding answer. 1. Find a so that the sum and product of the roots of the equation $2x^2 + (a-3)x + 3a - 5 = 0$ are equal is (3)02. In a $\triangle ABC$, if (i) $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} > 0$ (ii) $\sin A \sin B \sin C > 0$, then (2) Only (i) is true (1) Both (i) and (ii) are true (3) Only (ii) is true (4) Neither (i) nor (ii) is true. 3. The equation of the locus of the point whose distance from y-axis is half the distance from origin is $(2) x^2 - 3y^2 = 0$ (3) $3x^2 + y^2 = 0$ (4) $3x^2 - y^2 = 0$ $(1) x^2 + 3y^2 = 0$ 4. The number of ways in which the following prize be given to a class of 30 boys first and second in mathematics, first and second in physics, first in chemistry and first in English is $(1) 30^4 \times 29^2$ $(2)\ 30^3 \times 29^3$ $(3)\ 30^2 \times 29^4$ (2) $sec(xe^x) + c$ $(1) \cot(xe^x) + c$ (3) $\tan(xe^x) + c$ (4) $\cos(xe^x) + c$ 6. If $f(x) = x^2 - 3x$, then the points at which f(x) = f'(x) are (1) both positive integers (2 both negative integers (3) both irrational (4) one rational and another irrational 7. Let f be a continuous function on [2,5]. If f takes only rational values for all x and (3) = 12, then f(4.5) is equal to $(1)^{\frac{f(3)+f(4.5)}{5.5}}$ $(4)^{\frac{f(4.5)+f(3)}{1.5}}$ (2)12(3) 17.58. The number of reflexive relations on a set containing n elements is $(1)2^{n^2}$ $(4)2^n$ 9. $\cos(60^{\circ}-A)\cos A\cos(60^{\circ}+A) =$ $(1)\frac{1}{4}\cos 3A$ (2) Tan 3A $(3)^{\frac{1}{4}}$ Sin 3A (4)Cot3A 10. The value of $Sin(22\frac{1}{2}^{\circ})$ is $(1)^{\frac{\sqrt{2-\sqrt{2}}}{2}}$ $(4)\frac{\sqrt{\sqrt{2}-2}}{2}$ 11. If $(n-1)P_3:nP_4=1:10$, then n is (1)10(3)3(4)812. The number of ways of arranging the letters of the word BANANA is (2)50(3)60(1)48(4)6213. The $(r+1)^{th}$ term in the expansion of $(a+b)^n$, $n \in N$ is $(1)T_{r+1} = nC_r a^{n-r} b^r, r=0,1,2,...,n$ $(2)nC_r = nC_{n-r}$ (3) $T_{r+1} = nC_r a^n b^{n-r}, r=0,1,2,...,n$ 14. $1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots$ is (4) $nC_r + nC_{n-r} = (n+1)C_r$ $(4)e^{-1}$ (3)e15. $(1+x)^{-1} = 1-x+x^2-x^3+...$ is valid only when (1)|x| < 1(2) |x| > 1 $(3) |x| \leq 1$ $(4) |x| \ge 1$ 16. The equations $a_1x + b_1y + c_1 = 0$. and $a_2x + b_2y + c_2 = 0$, such that both $c_1 > 0$ and $c_2 > 0$, and if

(3)right

(4)none of these

 $a_1a_2 + b_1b_2 < 0$, then the angle between them is

(2)obtuse

(1)acute

17. If any two matrices A and B of suitable orders then

$$(1)(A^T)^T = A$$

$$(2) (kA^T) = kA^T$$

$$(3) (AB)^T = B^T A^T$$

(4)All the three

18. If two rows of a square matrix are identical then its determinant is

(2)3

(4)1

19. If A and B are two square matrices of same order n then

$$(1)|AB| = |A||B|$$

(2)If
$$|AB| = 0$$
 then either $|A| = 0$ or $|B| = 0$

(3)
$$|A^n| = |A|^n$$

(4)All the three

20. If A and B are any two events then $P(A \cap \overline{B})$ is

$$(1)P(A)-P(A\cap B)$$

(3)P(B)

 $(4)P(B)-P(A\cap B)$

SECTION-B

Note:

Answer any **SEVEN** questions. (i)

7 X 2 = 14

(ii) Question number 30 is compulsory.

21. Simplify:
$$\sec \theta \begin{bmatrix} \sec \theta & \tan \theta \\ \tan \theta & \sec \theta \end{bmatrix} - \tan \theta \begin{bmatrix} \tan \theta & \sec \theta \\ \sec \theta & \tan \theta \end{bmatrix}$$
22. Show that $\vec{a}X(\vec{b} + \vec{c}) + \vec{b}X(\vec{c} + \vec{a}) + \vec{c}X(\vec{a} + \vec{b}) = \vec{0}$

22. Show that
$$\vec{a}X(\vec{b} + \vec{c}) + \vec{b}X(\vec{c} + \vec{a}) + \vec{c}X(\vec{a} + \vec{b}) = \vec{0}$$

23. Check if
$$\lim_{x \to -5} f(x)$$
 exists or not, where $f(x) = \begin{cases} \frac{|x+5|}{x+5} & \text{for } x \neq -5 \\ 0 & \text{for } x = -5 \end{cases}$

24. Differentiate $y = (x^3 - 1)^{100}$

25. Integrate
$$4\cos(5-2x) + 9e^{3x-6} + \frac{24}{6-4x}$$

- 26. A man has 2 ten rupee notes, 4 hundred rupee notes and 6 five hundred rupee notes in his pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of hundred rupee denomination and also its probability?
- 27. Check the relation $R = \{(1, 1), (2, 2), (3, 3), ..., (n, n)\}$ defined on the set $S = \{1, 2, 3, ..., n\}$ for the three basic relations.
- 28. Solve $ax^2 + bx + c = 0$ by using completing the square.
- 29. Define radian measure.
- 30. Define the Inclusion-Exclusion principle.

SECTION-C

Note:

Answer any **SEVEN** questions.

7 X 3 = 21

- Question number 40 is compulsory. (ii)
- 31. Prove that $\lim_{x \to 0} \frac{\sin x}{x} = 1$
- 32. Find the derivatives from the left and from the right at x = 1 (if they exist) for the function f(x) = |x 1|. Is it differentiable at x=1 or not?
- 33. Integrate $\frac{8^{1+x}+4^{1-x}}{2^x}$
- 34. If A and B are independent then prove that \bar{A} and \bar{B} are independent.
- 35. Check whether the function f(x) = x|x| defined on [-2, 2] is one-to-one or not. If it is one-to-one, find a suitable co-domain so that the function becomes a bijection.
- 36. Prove that $\frac{\cot(180^\circ + \theta)\sin(90^\circ \theta)\cos(-\theta)}{\sin(270^\circ + \theta)\tan(-\theta)\csc(360^\circ + \theta)} = \cos^2\theta \cot\theta.$
- 37. Show that the points (4, -3, 1), (2, -4, 5) and (1, -1, 0) form a right angled triangle.
- 38. Draw the graph of the Logarithmic and exponential functions.
- 39. Prove that $tan3A = \frac{3tanA tan^3A}{1 3tan^2A}$
- 40. Show that $nC_r + nC_{r-1} = (n + 1) C_r$

SECTION-D

Note: Answer all the questions. 7X5 = 35

- 41. A) Determine if f defined by $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is continuous is \mathbb{R} (OR)
 - B) Draw the graph of $y = 2 \sin(x 1) + 3$
- 42. A) Find the derivative with $tan^{-1}\left(\frac{\sin x}{1+\cos x}\right)$ with respect to $tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$
 - B) Prove that $cos(\alpha + \beta) = cos\alpha cos\beta sin\alpha sin\beta$
- 43. A) For the graph $y = x^2$, draw $(i)y = x^2 + 1$, $(ii)y = (x + 1)^2$
 - B) Solve $cos\theta = cos\alpha$
- 44. A) State and prove 'Law of Cosines'.

(OR)

- B) Find the number of strings of 5 letters that can be formed with the letters of the word "MATHEMATICS".
- 45. A) A main road in a City has 4 crossroads with traffic lights. Each traffic light opens or closes the traffic with the probability of 0.4 and 0.6 respectively. Determine the probability of
 - a car crossing the first crossroad without stopping (i)
 - a car crossing first two crossroads without stopping (ii)
 - (iii) a car crossing all the crossroads, stopping at third cross.
 - a car crossing all the crossroads, stopping at exactly one cross. (iv)

(OR)

- B) Write any five forms equation of straight line.
- 46. A) At a particular moment, a student needs to stop his speedy bike to avoid a collision with the barrier ahead at a distance 40 metres away from him. Immediately he slows (retardation) the bike under braking at a rate of 2 8 metre/second. If the bike is moving at a speed of 24m/s, when the brakes are applied, would it stop before collision?

(OR)

- B) Discuss the relation between a Determinant and its cofactor determinant.
- 47. A) Show that the points whose position vectors $4\hat{\imath}+5\hat{\jmath}+\hat{k},$ $-\hat{\jmath}-\hat{k}$, $3\hat{\imath}+9\hat{\jmath}+4\hat{k}$ and $-4\hat{\imath}+4\hat{\jmath}+4\hat{k}$ are coplanar.

are coplanar. (OR)

B) If A_i, B_i, C_i are the cofactors of a_i, b_i, c_i respectively,
$$i = 1$$
 to 3 in $|A| = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$, show that

$$\begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix} = |A|^2$$

www.TrbTnpsc.com

HIGHER SECONDARY FIRST YEAR MATHEMATICS

QUARTERLY MODEL QUESTION PAPER – 1

Time	Allowed: 2.	30 Ho	urs]		[Maximum Marks:90				
Instr	uctions:	(a)	Check the question paper for fairness of printing. If there				g. If there	is any	
			lack of fair	ness, in	form the Hall	Superv	Supervisor immediately.		
		(b)	Use Blue of	r Black	ink to write	and und	lerline a	nd pencil t	o draw
			diagrams.						
				SECT	<u> ION – I</u>				
Note	(i)	All q	uestions are	compul	sory.			20×1 =	= 20
	(ii)				most suitable tion code and			_	
1.	If $A = \{(x, y)\}$	(y): y =	$sinx, x \in \mathbb{R}$	and $B =$	$=\{(x,y):y=0$	$cosx, x \in$	\mathbb{R} the	en $A \cap B$ c	ontains
	(1) no element				(2) infinitely many elements				
	(3) only one	e eleme	ent		(4) cannot be determined.				
2.	The number	er of relations on a set containing 3 elements is							
	(1) 9		(2) 81		(3) 512	(4) 1024		
3.	The function	n f:[($[-1, 2\pi] \rightarrow [-1,$	1] defin	ed by $f(x) =$	$=\sin x$ is	S		
	(1) one-to	one		(2) on	to				
	(3) bijection	ı		(4) ca	nnot be defin	ed			
4.	Let $f: \mathbb{R} \to$	$ ightharpoonup \mathbb{R}$ be	defined by	f(x) = 1	- x . Then t	the rang	ge of f i	is	
	(1) \mathbb{R}		$(2) (1, \infty)$		$(3) (-1, \infty)$	((4) (−∞,	1]	
5.	If a quadratic equation with real co-efficient has no real roots, then its discrimination						ninant is		
	(1) 0		(2) < 0		(3) > 0	(4) 1		
6.	If $ x+2 \le 9$, then	x belongs to	0					
	$(1) (-\infty, -7)$)	(2) [-11,-7	']	$(3) (-\infty, -7)$	∪[11,∞) (4	(-11,7)	

www.TrbTnpsc.com

7.	If a and b are the roots of the equation $x^2 - kx + 16 = 0$ and satisfy $a^2 + b^2 = 32$,
	then the value of k is/are

- (1)10
- (2) 8
- (3) 8.8
- (4) 6

8. If
$$\sqrt{x+14} < 2$$
 then x belongs to

- (1) [-14,-10)
- (2)(-14,-10)
- $(3) (-\infty, -10)$
- (4)[-14,-10)

9.
$$\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + ... + \cos 179^{\circ}$$
 is

- (1) 0
- (2)1
- (3) -1

Which one of the following is not true for any θ ? 10.

- (1) $\sin \theta = -\frac{3}{4}$ (2) $\cos \theta = -1$ (3) $\tan \theta = 25$ (4) $\sec \theta = \frac{1}{4}$

A wheel is spinning at 2 radians/second. How many seconds will it take to make 10 11. complete revolutions?

(1) 10π seconds

(2) 20π seconds

(3) 5π seconds

(4) 15π seconds

12.
$$\frac{\sin 10^{\circ} - \cos 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}}$$
 is

- $(1) \tan 35^{\circ}$
- (2) $\sqrt{3}$
- (3) tan 75°
- (4) 1

13. The product of r consecutive positive integers is divisible by

- (1) r!
- (2) (r-1)!
- (3)(r+1)!
- (4) r^{r}

The number of sides of a polygon having 44 diagonals is 14.

- (1)4
- (2) 4!
- (3) 11
- (4)22

If ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in AP then the value of n is 15.

- (1) 14
- (2) 11
- (3)9
- (4)5

The sum of the digits in the unit's place of all the 4-digit numbers formed by 3, 4, 5 16. and 6, without repetition, is

- (1)432
- (2) 108
- (3) 36
- (4)72

www.TrbTnpsc.com

17. If a is the arithmetic mean and g is the geometric mean of two numbers, then

- (1) $a \leq g$
- (2) $a \ge g$
- (3) a = g
- (4) a > g

The coefficient of x^8y^{12} in the expansion of $(2x+3y)^{20}$ is 18.

- (2) 2^83^{12} (3) $2^83^{12} + 2^{12}3^8$ (4) ${}^{20}C_82^83^{12}$

The value of $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots$ is 19.

- (1) $\frac{e^2+1}{2e}$ (2) $\frac{(e+1)^2}{2e}$ (3) $\frac{(e-1)^2}{2e}$ (4) $\frac{e^2+1}{2e}$

The remainder when 52⁴⁰ is divided by 17 is 20.

- (1) 1
- (2)3

SECTION – II

Answer any **SEVEN** questions. Note: (i)

 $7 \times 2 = 14$

- Question number 30 is compulsory.
- If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, find $n((A \cup B) \times (A \cap B) \times (A \triangle B))$. 21.
- In the set \mathbb{Z} of integers, define mRn if m-n is a multiple of 12. Prove that R is an 22. equivalence relation.
- If $A \times A$ has 9 elements $S = \{(a,b) \in A \times A : a > b\}$, where (2,-1) and (2,1) are two 23. elements, then find the remaining elements of S.
- Prove that $\log a + \log a^2 + \log a^3 + \dots + \log a^n = \frac{n(n+1)}{2} \log a$. 24.
- Solve: $(x-2)(x+3)^2 < 0$. 25.
- If $A + B = 45^{\circ}$, show that $(1 + \tan A)(1 + \tan B) = 2$ 26.
- Prove that $\frac{\sin 4x + \sin 2x}{\cos 4x + \cos 2x} = \tan 3x$ 27.
- 28. Out of the 6 consonants and 4 vowels, how many strings of 3 consonants and 2 vowels can be formed?
- Show that $\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 \frac{1}{n+1}$ 29.
- Prove that $\log_4 2 \log_8 2 + \log_{16} 2 \dots = 1 \log_e 2$. 30.

www.TrbTnpsc.com

SECTION - III

Note:

(i) Answer any **SEVEN** questions.

 $7 \times 3 = 21$

 $y = x^3$

- (ii) Question number 40 is compulsory.
- 31. If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x 5, prove that f is a bijection and find its inverse.
- 32. Using the given curve $y = x^3$, draw $y = (x+1)^3$ with the same scale.

- 33. If one root of $k(x-1)^2 = 5x 7$ is double the other root, show that k = 2 or -25.
- 34. Resolve into partial fractions : $\frac{10x+30}{(x^2-9)(x+7)}$.
- 35. Suppose that a boat travels 10 km from the port towards east and then turns 60° to its left. If the boat travels further 8 km, how far from the port is the boat?
- 36. If $A + B + C = \frac{\pi}{2}$, prove that $\sin 2A + \sin 2B + \sin 2C = 4\cos A\cos B\cos C$.
- 37. How many different selections of 5 books can be made from 12 different books if
 - (i) Two particular books are always selected?
 - (ii) Two particular books are never selected?
- 38. How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5 if the repetition of digits is not allowed?
- 39. Find the coefficient of x^{15} in the expansion $\left(x^2 + \frac{1}{x^3}\right)^{10}$.
- 40. In a $\triangle ABC$, if $\tan \frac{A}{2} = \frac{5}{6}$ and $\tan \frac{C}{2} = \frac{2}{5}$, then show that a,b,c are in A.P.

www.TrbTnpsc.com

SECTION - IV

Note: Answer all the questions.

 $7 \times 5 = 35$

41. (a) Show that the range of the function $\frac{1}{2\cos x - 1}$ is $\left(-\infty, -\frac{1}{3}\right] \cup \left[1, \infty\right)$.

(OR)

- (b) Let $f,g:\mathbb{R} \to \mathbb{R}$ be defined as f(x) = 2x |x| and g(x) = 2x + |x|. Find $f \circ g$.
- 42. (a) Prove that the solution of $\frac{x+1}{x+3} < 3$ is $(-\infty, -4) \cup (-3, \infty)$.

(OR)

- (b) Determine the region in the plane determined by the inequalities $2x + 3y \le 35, y \ge 2, x \ge 5$.
- 43. (a) If $x \cos \theta = y \cos \left(\theta + \frac{2\pi}{3}\right) = z \cos \left(\theta + \frac{4\pi}{3}\right)$, then prove that xy + yz + zx = 0. (OR)
 - (b) Solve $\sqrt{3} \tan^2 \theta + (\sqrt{3} 1) \tan \theta 1 = 0$.
- 44. (a) If the letters of the word APPLE are permuted in all possible ways and the strings then formed are arranged in the dictionary order, show that the rank of the word APPLE is 12.

(OR)

- (b) A van has 8 seats. It has two seats in the front with two rows of three seats behind. The van belongs to a family, consisting of seven members, F,M, S₁, S₂, S₃, D₁,D₂. How many ways can the family sit in the van if
 - (i) There are no restriction?
 - (ii) Either F or M drives the van?
 - (iii) D_1,D_2 sits next to a window and F is driving?

www.TrbTnpsc.com

45. (a) Using Mathematical Induction, show that for any natural number n,

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

(OR)

- (b) Prove that $\sqrt[3]{x^3 + 7} \sqrt[3]{x^3 + 4}$ is approximately equal to $\frac{1}{x^2}$ when x is large.
- 46. (a) Find the sum up to the 17^{th} term of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots$

(OR)

- (b) Show that $\frac{5}{1\times 3} + \frac{5}{2\times 4} + \frac{5}{3\times 5} + \dots = \frac{15}{4}$
- 47. (a) Let $A = \{2,3,5\}$ and the relation $R = \{(2,5)\}$, write down the minimum number of ordered pairs to be included to R to make it an equivalence relation.

(OR)

(b) If $x = \sum_{n=0}^{\infty} \cos^{2n}\theta$, $y = \sum_{n=0}^{\infty} \sin^{2n}\theta$ and $z = \sum_{n=0}^{\infty} \cos^{2n}\theta \sin^{2n}\theta$, $0 < \theta < \frac{\pi}{2}$ then show that xyz = x + y + z.
