HALF YEARLY EXAM - DECEMBER-2022

11 - STD

MATHS

Time	: 3 Hours			Maximum Marks : 90				
		Part - I						
Note	: i) All questions	are compulsory		20 × 1 = 20				
	ii) Choose the most appropriate answer from the given four alternatives and the option code and the corresponding answer							
1.	The number of relations on a set containing 3 elements is							
	a)9	b)81	c) 512	d) 1024				
2.	The number of constant functions from a set containing m elements to a set containing n elements is							
	a) mn	b) m	c)n	d) m+n				
3.	The number of solutions of $x^2 + x-1 = 1$ is							
	a)1	b)0	c) 2	d)3				
4.	4. If $log_a 243 = 5$, then the value of a is							
	a)1	b)3	c) 2	d)0				
5. Which of the following is not true?								
		$\frac{3}{4}$ b) $\cos\theta = -1$	c) $tan\theta = 25$	d) $sec\theta = \frac{1}{4}$				
6.	6. Number of sides of a polygon having 44 diagonals is							
	a)4	b)4!	c)11	d) 22				
7.	16,8 respectively is							
	a) 10	b)6	c)5	d)4				
8	. The value of	$1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots$ is						
	$a) \frac{e+e^{-1}}{2}$	b) $\frac{e^2+e^{-1}}{2}$	c) $\frac{e+e^{-1}}{e}$	$d)\frac{e^2-1}{2e}$				
9	9. Which of the following equation is the locus of (at²,2at)							
	M. M.			$= a^2 \qquad d) y^2 = 4ax$				
10	The area of the triangle formed by the lines $x^2 - 4y^2 = 0$ and $x = a$ is							
	a) 2a ²	$b)\frac{\sqrt{3}}{2}a^2$	c) $\frac{1}{2} a^2$	$d)\frac{2}{\sqrt{3}}a^2$				
11. If A is a square matrix, then which of the following is not symmetric?								
1	$a)A+A^T$		$c)A^{T}A$	$d)A-A^{T}$				
				11 - Maths Page				

12.

The value of the determinant of $A = \begin{bmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{bmatrix}$ is

	a) -2abc	b) abc	c)0	d) $a^2 + b^2 + c^2$				
13 .	If $ \overrightarrow{a} + \overrightarrow{b} = 60$, $ \overrightarrow{a} - \overrightarrow{b} = 40$ and $ \overrightarrow{b} = 46$, then $ \overrightarrow{a} $ is							
	a)42	b)12	c)22	d)32				
14.	Find the value -\(\lambda\) for perpendicular	Find the value λ for the vectors $\vec{a}=2\hat{\imath}+\lambda\hat{\jmath}+\hat{k}$ and $\vec{b}=\hat{\imath}-2\hat{\jmath}+3\hat{k}$ are perpendicular						
	a) $\frac{5}{2}$	$b)\frac{-5}{2}$	$c)\frac{2}{5}$	d)-2				
15 .	$\lim_{x\to 0}\frac{a^x-b^x}{x}=$							
	a) log ab	b) $\log(\frac{a}{b})$	c) $\log(\frac{b}{a})$	$d)\frac{a}{b}$				
16.	The derivative of $f(x) = x x $ at $x = -3$ is							
	a)6	b')-6	c) does not exist	d)0				
17.	Evaluate the integra	Evaluate the integrals : x^{-1}						
	$a) \log x$	b)0	c)1	$d)\frac{1}{x}$				
18.	$\int tan^{-1} \left[\sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}} \right]$	$\int dx =$	0,5					
	a) $x^2 + c$ b)	$2x^2 + c \qquad c$	$(\frac{x^2}{2} + c)$ d) -	$\frac{x^2}{2} + c$				
19.	A number is selected from the set {1,2,3,,20}. The probability that the selected number is divisible by 3 or 4 is							
H HILL	$a)\frac{2}{5}$	b) $\frac{1}{8}$	$c)\frac{1}{2}$	d) $\frac{2}{3}$				
20	If two events A and B are independent such that P(A)=0.35 and P(AUB)=0.6, then P(B) is							
		b) $\frac{1}{13}$	$c)\frac{4}{13}$	d) $\frac{7}{13}$				
	The same of	Part - II						
Note	: i) Answer any Sev			7 × 2 = 14				
21.	ii) Question number 30 is compulsory If $n(A)=10$ and $n(A \cap B)=3$, find $n((A \cap B) \cap A)$.							
22.	Solve: $ 2x-3 = x-5 $							
23.	Find the value of sin 150°							
24.	Using binomial theorem , Find the value of 94							
25 .	ind the equation of a straight line cutting an intercept of 5 from the negative							
	direction of the y -axis and is inclined at an angle 150 $^{\circ}$ to the x -axis.							
11 - Maths Page -2								

26. Determine the value of
$$x + y$$
 if $\begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix}$.

- 27. If $\frac{1}{2}$, $\frac{1}{\sqrt{2}}$, a are the direction cosines of some vector, then find a.
- 28. Differentiate: $y = e^{sinx}$
- 29. Integrate with respect to x: \sqrt{x}
- 30. Given that P(A)=0.52, P(B)=0.43 and P(A \cap B)=0.24, find P(A \cap B).

Part - III

Note : i) Answer any Seven questions

 $7 \times 3 = 21$

- ii) Question number 40 is compulsory
- 31. In the set Z of integers, define mRn if m-n is divisible by 7. Prove that R is an equivalence relation.
- 32 . Rationalize the denominator of $\frac{\sqrt{5}}{(\sqrt{6}+\sqrt{2})}$.
- 33 . If the roots of the equation $(q-r)x^2+(r-p)x+p-q=0$ are equal, then show that p, q, and r are in AP.
- 34. If $((n+2)P_4) = 42 \times n_{P_2}$, prove that n = 5.
- 35. Find the distance i) between two parallel lines 3x + 4y = 12 and 6x + 8y + 1 = 0.
- 36. Show that $\begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}^2 = \begin{vmatrix} b^2 + c^2 & ab & ac \\ ab & c^2 + a^2 & bc \\ ac & bc & a^2 + b^2 \end{vmatrix}$.
- 37. If $\vec{a} = -3\hat{\imath} + 4\hat{\jmath} 7\hat{k}$ and $\vec{b} = 6\hat{\imath} + 2\hat{\jmath} 3\hat{k}$, verify
 - i) \vec{a} and $\vec{a} imes \vec{b}$ are perpendicular to each other .
- 38. Prove that $\lim_{x\to a} \frac{x^n a^n}{x a} = na^{n-1}$.
- 39. Integrate with respect to x: $\int \frac{x+1}{3x^2+6x+2} dx$
- 40. An integer is chosen at random from the first ten positive integers. Find the Probability that it is i) an even number ii) multiple of three.

Part - IV

Note: i) Answer all the questions

 $7 \times 5 = 35$

- 41. a) If $f: R \to R$ is defined by f(x) = 2x 3 prove that f is a bijection and find its inverse. (OR)
 - b) Evaluate the integrals : $\int \frac{3x+5}{x^2+4x+7} dx$
- 42. a) Resolve into partial fractions: $\frac{x+1}{x^2(x-1)}$. (OR)

11 - Maths Page -3

- b) A construction company employs 2 executive engineers. Engineer-1 does the work for 60% of jobs of the company. Engineer-2 does the work for 40% of jobs of the company. It is known from the past experience that the probability of an error when engineer-1 does the work is 0.03, whereas the probability of an error in the work of engineer-2 is 0.04. Suppose a serious error occurs in the work, which engineer whould you guess did the work?
- 43 . a) Express the following matrices as the sum of a symmetric matrix and a

skew – symmetric matrix : A =
$$\begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$$

(OR)

b) If
$$A+B+C=\frac{\pi}{2}$$
, prove that

Sin2A + Sin2B + Sin2C = 4 CosA CosB CosC.

44. a) Using Factor theorem, Show that $\begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} = (x-a)^2 (x+2a)$.

b) If
$$y = e^{\tan^{-1}x}$$
, show that $(1 + x^2)y'' + (2x - 1)y' = 0$

45. a) Prove that the points whose position vectors $2\hat{\imath} + 4\hat{\jmath} + 3\hat{k}$, $4\hat{\imath} + \hat{\jmath} + 9\hat{k}$, and $10\hat{\imath} - \hat{\jmath} + 6\hat{k}$ form a right angled triangle.

(OR)

- b) Prove that $\sqrt[3]{x^3+7} \sqrt[3]{x^3+4}$ is approximately equal to $\frac{1}{x^2}$ when x is large.
- 46. a) The medians of a triangle are concurrent.

(OR)

b) Find the value of k, if the following equation represents a pair of straight lines .

Further find whether these lines are parallel or intersecting,

$$12x^2 + 7xy - 12y^2 - x + 7y + k = 0$$

47. a) By the principle of Mathematical induction, prove that for all integers $n \ge 1$,

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$
(OR)

b) Evaluate:
$$\lim_{x\to\infty} \left(\frac{x+2}{x-2}\right)^x$$
.

11 - Maths Page -4