Class: 12	KALLAKURI	R	egister	1
.comn	ION HALFYI	EARLY EXAMI	NATION - 2022	- 23
Time Allowed: 3.00 H	ours]	MATHEMATIC	S	[Max. Marks: 90
V		PART -A		20 X 1 = 20
. Answer all the Qu				
I. If $A^T A^{-1}$ is symmet	얼마리 내가 있었다. 그 없는데 그래요요? 이			
(1) A^{-1}	$(2) \cdot \left(A^T\right)^2$		(4) $(A^{-1})^2$ (4) A^T	
2. If A,B are orthogo	onal matrices, then	$(AB)^T(AB)$		
(1) A	(2) B	(3) I	$(4) A^T$	
		nplex numbers z, iz, an	and $z + iz$ in the Argand's di	agram is
$(1) \frac{1}{2} z ^2$	(2) $ z ^2$	(3) $\frac{3}{2} z ^2$	(4) $2 z ^2$	
•	$\langle \cdot \rangle$			
4. The principal argum	ent of the complex nu	umber $\frac{\left(1+i\sqrt{3}\right)^2}{4i\left(1-i\sqrt{3}\right)}$ is		
		$4i(1-i\sqrt{3})$		
$(1) \frac{2\pi}{3}$	(2) $\frac{\pi}{2}$	(3) $\frac{5\pi}{6}$	$(4)\frac{\pi}{2}$	
		, , , , , , , , , , , , , , , , , , ,	2	
5. If α , β , and γ are t	he roots of $x^3 + px^2$	$+qx+r$, then $\sum \frac{1}{\alpha}$ is		
$(1) - \frac{q}{r}$	(2) <u>p</u>	(3) $\frac{q}{}$	$(4) - \frac{q}{}$	
	[25] - 10 [10] -		(' ') — p	
6. The domain of the fu	[2017] [4.14] 이 [2018] [4.14] [4.14] [4.14] [4.14] [4.14] [4.14]	하는 사람들이 모든 사람들이 하면 하였다.		
	(2) [-1, 1]	(3) [0, 1]	(4) [-1, 0]	
(1) 3		$v^2 = 12x$, then the value	The state of the second state of the second	
[[] 막다는 많이 가입됐다면 없어들면	$(2) -1 + 3)^2 = -4\left(y - \frac{3}{4}\right)$	젊은 아이에서 아이들이 내려가 되었습니다. 아이들은 살이 그렇게 하큐트리 말했다.	(4) 9	
(1) (-3 , 4)		$(3, \frac{4}{3})$ (3)	(2 3)	1,
9. Distance from the or			(4) ($-3, -\frac{1}{4}$)
(1) 0	(2) 1 (3) 2	(4) 3		
		are coplanar, then the	value of m	
(1) m= -3	(2) m= 3	(3) m= -4		
11. Angle between y^2	$= x \text{ and } \cdot x^2 = y \text{ at the } x$		(4) m= 1	
(1) $\tan^{-1}\frac{3}{4}$	(2) $\tan^{-1}\left(\frac{4}{3}\right)$	(3) $\frac{\pi}{2}$	(4) $\frac{\pi}{4}$	
12. The point of inflec	tion of the curve $y =$	$(x-1)^3$ is		The Later
(1) (0,0)	(2) (0,1)	(3) (1,0)	(4) (1,1)	
446년 - 그리고 16년 15일 - 그리다	'', 이번 경기 가게 하는 '' 크림을 다고 다.	CONTRACTOR ASSESSMENT		

13. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is

(1)
$$x + \frac{\pi}{2}$$

(1)
$$x + \frac{\pi}{2}$$
 (2) $-x + \frac{\pi}{2}$ (3) $x - \frac{\pi}{2}$

(3)
$$x - \frac{\pi}{2}$$

$$(4) -x - \frac{\pi}{2}$$

14. If $f(x) = \int_{1}^{x} \frac{e^{\sin u}}{u} du$, x > 1 and $\int_{1}^{3} \frac{e^{\sin x^{2}}}{x} dx = \frac{1}{2} [f(a) - f(1)]$, then one of the possible value of a is

15 The value of $\int_0^1 x^3 (1-x)^4 dx$

$$(1) \frac{1}{460}$$

$$(2) \frac{1}{360} \qquad (3) \frac{1}{720}$$

$$(3)\frac{1}{720}$$

$$(4)\frac{1}{280}$$

16. The differential equation of the family of curves $y = Ae^x + Be^{-x}$, where A and B are arbitrary constants is

(1)
$$\frac{d^2y}{dx^2} + y = 0$$

(1)
$$\frac{d^2y}{dx^2} + y = 0$$
 (2) $\frac{d^2y}{dx^2} - y = 0$ (3) $\frac{dy}{dx} + y = 0$ (4) $\frac{dy}{dx} - y = 0$

(3)
$$\frac{dy}{dx} + y = 0$$

$$(4) \frac{dy}{dx} - y = 0$$

17. The degree and order of the differential equation $x^2 \frac{d^2y}{dx^2} + \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}} = 0$ is

(1)4,2

18. If in 6 trials, X is a binomial variate which follows the relation 9P(X=4)=PX=2), then the probability of success is

19 The dual of $\neg (p \lor q) \lor [p \lor p(\land \neg r)]$ is

$$(1) - (p \wedge q) \wedge [p \vee (p \wedge \neg r)] \qquad (2) (p \wedge q) \wedge [p \wedge (p \vee \neg r)]$$

(2)
$$(p \wedge q) \wedge [p \wedge (p \vee \neg r)]$$

(3)
$$\neg (p \land) \land [p \land (p \land r)]$$
 (4) $\neg (p \land q) \lor [p \land (p \lor \neg r)]$

$$(4) \rightarrow (p \land q) \lor [p \land (p \lor \neg r)]$$

20. Which one of the following is a binary operation on Division?

$$(4) Q \{0\}$$

PART -B

7X2 = 14

II. Answer any Seven Questions (Question no . 30 is Compulsory)

21. Prove that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

22. Find the Square root of 4+3i

23. Find a polynomial equation of minimum degree with rational coefficients, having $3 + \sqrt{2}$ as a root.

24. Find the equation of the ellipse for foci $(0,\pm 4)$ and end points of major axis are $(0,\pm 5)$.

25. Prove that $[\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}] = 0$

26. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 3 and dx = 0.02

27. Evaluate: $\int_{a^2+x^2}^{\infty} dx, a > 0, b \in \mathbb{R}.$

ndom variable X has the following probability mass function:

X	1	2	3	4 .	5
f(x)	k^2	$2k^2$	$3k^2$	2 <i>k</i>	34

K/12/Mat/2

- 29. Establish the equivalence property: $p \rightarrow q = -p \lor q$
- 30. Evaluate: sin(sin-1(16))

$$7X3 = 21$$

III. Answer any Seven Questions (Question no . 40 is Compulsory)

31. Verify
$$(AB)^{-1} = B^{-1}A^{-1}$$
 with $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$

- 32. State and Prove that Triangle inequality
- 33. Find the value of $\sin^{-1}(-1) + \cos^{-1}\left(\frac{1}{2}\right) + \cot^{-1}(2)$
- 34. Find the equations of tangent and normal to the parabola $x^2 + 6x + 4y + 5 = 0$ at (1, -3)
- 35. If the straight lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{m^2}$ and $\frac{x-3}{1} = \frac{y-2}{m^2} = \frac{z-1}{2}$ are coplanar, find the distinct real values
- 36. Evaluate: $\lim_{x\to 0} \left(\frac{\sin x}{x^2} \right)$
- 37. If $w(x,y) = x^3 3xy + 2y^2$, find the linear approximation for w at (1,-1).
- 38. Solve $\frac{dy}{dx} = \sqrt{\frac{1 y^2}{1 x^2}}$
- 39. The probability that Q hits a target at any trial is $\frac{1}{4}$. He tries at the target 10 times. Find the probability that he hits the target (i) exactly 4 times (ii) at least one time.
- 40. Evaluate: $\int_0^{\frac{\pi}{2}} \log(\tan x) dx$

$$7X5 = 35$$

IV. Answer all the Questions

41. Solve
$$\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 = 0$$
, $\frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0$, $\frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$ by Cramer's rule (OR)

Solve the equation $z^3 + 8i = 0$, where $z \in R$.

42. Solve the equation $6x^4 - 5x^3 - 38x^2 - 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.

If
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$$
 and $0 < x, y, z < 1$, then show that $x^2 + y^2 + z^2 + 2xyz = 1$.

K/12/Mat/3

43. Assume that water issuing from the end of a horizontal pipe, 7.5m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5m below the line of the pipe, the flow of water has curved outward 3m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?

(OR)

Find parametric form of vector equation and Cartesian equations of the plane passing through the points (2,2,1),(1,-2,3) and parallel to the straight line passing through the points (2,1,-3) and (-1,5,-8).

44. Prove by vector method that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.

(OR)

A police jeep, approaching an orthogonal intersection from the northern direction, is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east. The police determine with a radar that the distance between the jeep and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?

45. For the function $f(x) = 4x^3 + 3x^2 - 6x + 1$ find the intervals of monotonicity, local extrema, intervals of concavity and points of inflection.

(OR)

If
$$v(x,y) = \log(x + y)$$
, Prove that $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} = 1$

46. Find the area of the region bounded between the parabola $x^2 = y$ and the curve y = |x|.

(OR)

Solve
$$\left(1+2e^{x/y}\right)dx+2e^{x/y}\left(1-\frac{x}{y}\right)dy=0$$
.

47. The probability density function of the random variable X is given by

$$f(x) = \begin{cases} 16xe^{-4x} & \text{for } x > 0\\ 0 & \text{for } x \le 0 \end{cases}$$

find the mean and variance of X.

(OR)

(i) closure property, (ii) commutative property, (iii) associative property (iv) existence of identity, and (v) existence of inverse for following operation on the given set. $m * n = m + n - mn ; m, n \in \mathbb{Z}$

K/12/Mat/4