COMMON HALF YEARLY EXAMINATION - 2022

Standard XII MATHEMATICS

Dog No						
Reg.No.						

Time: 3.00 hours

. Part - I

I Choose the correct answer

 $20 \times 1 = 20$

Marks: 90

1. If \bar{a} and \bar{b} are unit vectors such that $[\bar{a}, \bar{b}, \bar{a} \times \bar{b}] = \frac{1}{4}$ then the angle between \bar{a} and \bar{b}

- a) 1/6
- b) T/4
- c) $\frac{\pi}{3}$

d) 1/2

2. If the planes $\vec{r} \cdot (2\hat{i} - \lambda\hat{j} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{i} + \hat{j} - \mu\hat{k}) = 5$ are parallel then the value of λ and µ are

- a) $\frac{1}{2}$, -2 b) $-\frac{1}{2}$, 2 c) $-\frac{1}{2}$, -2 d) $\frac{1}{2}$, 2

3. The vertex of the parabola $x^2 - 8y - 1$ is

- a) $(-\frac{1}{8},0)$ b) $(\frac{1}{8},0)$ c) $(-6,\frac{9}{2})$ d) $(\frac{9}{2},-6)$

4. Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

- a) 2ab
- b) ab
- c) √ab
- d) %

5. $\tan^{-1}(\frac{1}{4}) + \tan^{-1}(\frac{2}{9})$ is equal to

- a) $\frac{1}{2}\cos^{-1}(\frac{3}{5})$ b) $\frac{1}{2}\sin^{-1}(\frac{3}{5})$ c) $\frac{1}{2}\tan^{-1}(\frac{3}{5})$ d) $\tan^{-1}(\frac{1}{2})$

6. The polynomial $x^3 - kx^2 + 9x$ has three real zeros if and only if k satisfies

- c) |k|>6

7. The conjugate of a complex number is $\frac{1}{i-2}$, then the complex number is

- b) $\frac{-1}{1+2}$
- c) $\frac{-1}{1}$
- d) $\frac{1}{1-2}$

8. The product of all four values of $(\cos \frac{\pi}{3} + i \sin \frac{\pi}{s})$ is

d) 2

9. If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$, then |adj (AB)| =

d) -20

10. Let A be a non-singular matrix then which one of the following is false?

a) $(adjA)^{-1} = \frac{A}{|A|}$

b) I is an orthogonal matrix

c) adj (adj A) = |A|n A

d) If A is symmetric then adj A is symmetric

(2)

XII Mathematics

- 11. Subtraction is not a binary operation in

b) Z

- d) Q
- 12. Which one is the inverse of the statement $(p \vee q) \rightarrow p \wedge q$?
 - a) $(p \land q) \rightarrow (p \lor q)$

- b) $\neg (p \lor q) \rightarrow (p \land q)$
- c) $(\neg p \lor \neg q) \to (\neg p \land \neg q)$
- d) $(\neg p \land \neg q) \rightarrow (\neg p \lor \neg q)$
- 13. A random variable X has binomial distribution with n = 25 and p = 0.8, then standard deviation of X is
 - a) 6

b) 4

c) 3

- 14. The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{\frac{1}{3}} + x^{\frac{1}{4}} = 0$ are
 - respectively
 - a) 2,3
- b) 3.3
- c) 2.6

d) 2.4

- 15. The Integrating factor of $\frac{dy}{dx}$ + y cot x = 1 is
 - a) cot x
- b) tan x
- c) sin x
- d) cos x

- 16. The value of $\int_{0}^{1} \log \left(\frac{x}{1-x} \right) dx$
 - a) 0
- b) 2
- c) 4

d) 5

- 17. The value of $\int_{0}^{\infty} e^{-3x} x^2 dx$ is
 - a) $\frac{7}{27}$ b) $\frac{5}{27}$
- c) 4/27
- d) $\frac{2}{27}$

- 18. If $u(x.y) = e^{x^2+y^2}$ then $\frac{\partial u}{\partial x}$ is equal to
 - a) $e^{x^2+y^2}$ b) 2 xu
- c) x^2u

- d) y^2u
- 19. The position of a particle moving along a horizontal line of any time t is given by $s(t) = 3t^2 - 2t - 8$. The time at which the particle is at rest is
 - a) t = 0
- b) $t = \frac{1}{3}$

d) t = 3

- 20. Angle between $y^2 = x$ and $x^2 = y$ at the origin is

 - a) $tan^{-1} \frac{3}{4}$ b) $tan^{-1} \left(\frac{4}{3}\right)$ c) $\frac{\pi}{3}$

d) 11/1

Part - II

II. Answer any 7 questions. (Q.No.30 is compulsory)

 $7 \times 2 = 14$

- 21. Prove that $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$ is orthogonal.
- 22. Find the value of $\sin^{-1}(\sin(5\pi/4))$

(3)

XII Mathematics

- 23. Simplify $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$ into rectangular form.
- 24. Discuss the maximum possible number of positive and negative roots of the polynomial equation $9x^9 - 4x^8 + 4x^7 - 3x^6 + 2x^5 + x^3 + 7x^2 + 7x + 2 = 0$
- 25. If \vec{a} , \vec{b} , \vec{c} are three vectors, prove that $|\vec{a} + \vec{c}$, $|\vec{a} + \vec{b}$, $|\vec{a} + \vec{b} + \vec{c}| = |\vec{a} |\vec{b} |\vec{c}|$
- 26. Let $f(x) = \sqrt[3]{x}$, find the liniear approximation at x = 27 use the linear approximation to approximate ₹27.2
- 27. Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin^{10} x dx$
- 28. Write the Maclaurin series expansion of the function ex
- 29. Construct the truth table for the statement $\neg(p \land \neg q)$
- 30. Find the differential equation of the curve represented by $xy = ae^{x} + be^{-x} + x^{2}$

Part - III

III. Answer any 7 questions. (Q.No.40 is compulsory)

 $7 \times 3 = 21$

- 31. Find the square root of 6 8i
- 32. if α and β are the roots of the quadratic equation $2x^2 7x 13 = 0$, construct a quadratic equation whose roots are α^2 and β^2 .
- 33. Find the value of $\sin^{-1} \left(\cos \left(\sin^{-1} \left(\sqrt{3} / 2 \right) \right) \right)$
- 34. Find the equation of the hyperbola with foci (± 3 , 5) and eccentricity e = 2
- 35. Find the angle between the lines 2x = 3y = -z and 6x = -y = -4z
- 36. Evaluate the limits if necessary use l'Hôpital Rule $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x} \right)$
- 37. Evaluate: $\int_{0.1+x^2}^{1} \frac{2x}{1+x^2} dx$
- 38. Solve: $\frac{dy}{dx} = \sqrt{\frac{1 y^2}{1 + y^2}}$
- 39. The mean and variance of a binomial variate X are respectively 2 and 1.5, find P(X = 0)
- 40. If $A = \begin{bmatrix} -3 & -2 \\ \lambda & -2 \end{bmatrix}$, find the value of λ so that $A^2 = \lambda A 2I$

IV. Answer all the questions.

 $7 \times 5 = 35$

Investigate the values of λ and μ the system of linear equations 2x + 3y + 5z = 9, 7x + 3y - 5z = 8, $2x + 3y + \lambda z = \mu$ have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

XII Mathematics

Solve the following equation $x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$ b)

42. a) If
$$z = x + iy$$
 and $arg\left(\frac{z - i}{z + 2}\right) = \frac{\pi}{4}$, then show that $x^2 + y^2 + 3x - 3y + 2 = 0$ (OR)

- On lighting a rocket cracker it gets projected in a parabolic path and reaches a b) maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Find the angle of projection.
- Find the non parametric form of Vector equation and Cartesian equation of the plane passing through the point (2,3,6) and paralle to the straight lines

$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$$
 and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$ (OR)

A random variable X has the following probability mass function.

х	1	2	3	-4	5	6
f(x)	k	2k	6k	5k	6k	10k

- Find (i) P(2 < X < 6) ii) $P(2 \le X < 5)$ iii) $P(X \le 4)$ iv) P(3 < X)Find the angle between the curves $y = x^2$ and $x = y^2$ at their points of intersection (0.0) and (1.1)
 - b) Prove that $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left[\frac{x + y + z xyz}{1 xy yz zx} \right]$

45. a) If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2} \tan u$ (OR)

- Verify (i) Closure property (ii) Associative property (iii) Existence of identity (iv) Existence of inverse and (v) Commutative property for the operation +5 and Z5 using table corresponding to addition modulo 5.
- Prove by Vector method that the perpendiculars (altitudes) from the vertices to 46. a) the opposite sides of a triangle are concurrent.
 - For the ellipse $4x^2 + y^2 + 24x 2y + 21 = 0$ find the centre vertices foci and the length of latus rectum.

47. a) Evaluate the definite integral
$$\int_{\frac{\pi}{8}}^{3\pi/8} \frac{1}{1 + \sqrt{\tan x}} dx$$
 (OR)

A hollow cone with base radius 'a' cm and height 'b' cm is placed on a table show that the volume of the largest cylinder that can be hidden underneath is 49 times volume of the cone.