HALFYEARLY EXAMINATION - 2022

12 - Std

Mathematics

Marks: 90

Time: 3.00 hrs.

PART-I

Note: i) All questions are compulsory. ii) Choose the most appropriate answr from the given four alternatives and write the option code and the corresponding answer.

If A is a nonsingular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ then $\begin{pmatrix} A^T \end{pmatrix}^{-1} = \begin{pmatrix} A^T \end{pmatrix}^{-1}$

a)
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$$

a)
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ d) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$

d)
$$\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$$

The rank of the matrix $\begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$ is

If z is a non zero complex number, such that $2iz^2 = \frac{1}{z}$ then |z| is

The product of all four values of $\left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)^{3/4}$ is

If α , β , γ are the zeros of $x^3 + px^2 + qx + r$, then \sum_{α}^{1} is

a)
$$\frac{-q}{r}$$

b) -
$$\frac{p}{r}$$

c)
$$\frac{q}{r}$$

d)
$$\frac{-q}{r}$$

The number of real numbers in $[0, 2\pi]$ satisfying $\sin^4 x - 2 \sin^2 x + 1$ is 6.

 $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12}$ is equal

a)
$$2\pi$$
 b) π c) 0

If $\sin^{-1} x + \cot^{-1} (1/2) = \pi/2$ then x is equal to

a) $\frac{1}{\sqrt{5}}$

c) $\frac{2}{\sqrt{5}}$

d) $\frac{\sqrt{3}}{2}$

12 - Maths ussi - 1

9.	The radius of the circle $3x^2 + by^2 + 4bx - 6by + b^2 = 0$ is							
	a) 1	b) 3	c) $\sqrt{10}$	d) √11				
10.	The focus of $y^2 = 4ax$ is							
	a) (-a, 0)	b) (a, 0)	c) (0, a)	d) (0, -a)				
11.	a) $(-a, 0)$ b) $(a, 0)$ c) $(0, a)$ If the direction cosines of a straight line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$ then a) $C = \pm 3$ b) $C = \pm \sqrt{3}$ c) $C > 0$ d) $0 < C < 1$							
12,								
	If $[aXb, bXc, cXa] = 64$, then $[a, \overline{b}, \overline{c}]$ is equal to							
	a) 64		c) 6	c) 4				
13.	Angle between $y^2 = x$ and $x^2 = y$ at the origin is							
	a) tan-1 (3/4	b) tan-1 (4/3)	c) ^π / ₂	d) π/4				
14.	The point of inflection of the curve $y = (x - 1)^3$ is							
	a) (0, 0)	b) (0, 1)	c) (1, 0)	d) (1,1)				
15.	The approximate change in the volume V of a cube of side x matres caused							
	by increasing the side by 1% is							
		n³ b) 0.03x m³	c) 0.03x ² m ³	d) 0.03 x ³ m ³				
16.	The percentage error of fifth root of 31 is approximately how many times							
	1 - 7	age error in 31						
	a) $\frac{1}{31}$	b) $\frac{1}{5}$	c) 5	d) 31				
17.	The value of $\int_{0}^{1} x(1-x)^{99} dx$ is							
	1	1	1	1				
	a) 11000	b) $\frac{1}{10100}$	c) 10010	d) 10001				
18.	The order and degree of the differential equation							
	$\sqrt{\sin x (dx + dy)} = \sqrt{\cos x (dx - dy)}$ are							
	a) 1,2	b) 2,2	c) 1,1	d) 2,1				
19.	A random variable X has binomial distribution with $n = 25$ and $p = 0.8$ then standard deviation of X is							
				W				
	a) 6	b) 4	c) 3	d) 2				
20.	In the set Q define $a\Theta b = a + b + ab$ for what value of y, $3\Theta(y\Theta 5) = 7$?							
	a) $y = \frac{1}{3}$	b) $y = -\frac{2}{3}$	c) $y = -3/2$	d) y = 4				
	49-24 - 3/15-11-1	712.		12 - Maths usau - 2				
	ALC: THE STATE OF							

PART-II

Note: 1) Answer any seven questions.
2) Question number 30 is compulsory.

 $7 \times 2 = 14$

- 21. If adj $A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ then find A^{-1} ,
- 22. Write $\frac{1}{1+2i}$ in rectangular form.
- 23. Prove that in an algebraic structure the identify element (if exists) must be unique.
- 24. Find the value of 2 $\cos^{-1}(1/2) + \sin^{-1}(1/2)$.
- 25. Find the centre and radius of the circle $2x^2 + 2y^2 6x + 4y + 2 = 0$.
- 26. Find the magnitude of the force about the point (2,0,-1) of a force $2\hat{i} + \hat{j} \hat{k}$, whose line of action passes through the origin.
- 27. Prove that the function $f(x) = x^2 2x 3$ is strictly increasing is $(2, \infty)$.
- 28. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 3, dx = 0.02.
- 29. Evaluate : $\int_{0}^{\pi/2} \cos^7 x \, dx$
- 30. Find polynomial equation of minimum degree with rational coefficients, having $2 + \sqrt{3}i$ as a root.

PART-III

Note: 1) Answer any seven questions.

2) Question number 40 is compulsory.

 $7 \times 3 = 21$

- 31. If $A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$, then verify A (adjA) = (adj A) A = |A| I_2 .
- 32. Show that the square root of 6 8i is $\pm (2\sqrt{2} i\sqrt{2})$.
- 33. Find the lengths of major and minor axes of the ellipse $9x^2 + 25y^2 = 225$.
- 34. With usual notations, in a triangle ABC using vectors prove that $a^2 = b^2 + c^2 2bc \cos A$.
- 35. Find the Maclaurin's Series expansion of the function ex.
- 36. Show that the percentage error in the nth root of a number is approximately 1/n times the percentage error in the number.
- 37. Establish the equivalence property $p \rightarrow q \equiv \neg pvq$.
- 38. Solve: $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.

12 - Maths பக்கம் - 3

- The mean and variance of a binomial variate x are respectively 2 and 1.5 find p(x = 1).
- Evaluate: $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$

PART-IV

Note: Answer all the questions.

 $7 \times 5 = 35$

- 41. a) Test for consistently of the following system of linear equations and if possible solve x + 2y - x = 3, 3x - y + 2z = 1, x - 2y + 3z = 3, x - y + z + 1 = 0. (OR)
 - b) Find the angle between the curves $y = x^2$ and $y = (x 3)^2$.
- a) If $2\cos\alpha = x+1/x$ and $2\cos\beta = y+1/y$, show that 42.

i)
$$x/y + y/x = 2\cos(\alpha - \beta)$$
 ii) $x^m/y^n + y^n/x^m = 2i\sin(m\alpha - n\beta)$. (OR)

- b) Prove that among all the rectangles of the given perimeter, the square has maximum area.
- a) Solve (x-2)(x-7)(x-3)(x+2) + 19 = 0 (OR)
 - b) A random variable x has the following probability mass function

X	1	2	3	4	5	6
f(x)	k	2k	6k	5k	6k	10k

Find i) P(2 < x < 6) ii) $P(2 \le x < 5)$ ii) $P(x \le 4)$ iv) P(3 < x)

- a) If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$, then show that x + y + z = xyz. (OR) b) The maximum and minimum distances of the Earth from the Sun respectively are 152 X 106 km 94.5 X 106 km. The Sun is at one focus of the elliptical
- 45. a) By vector method, prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$. (OR)

b) $u = \cos -1 \left(\frac{x-y}{\sqrt{x} + \sqrt{y}} \right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} \frac{1}{2} \cot u = 0$.

orbit. Find the distance from the Sun to the other focus.

- a) Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b_0} = 1$. (OR) b) Verify (i) closure property ii) Commutative property iii) associative property iv) existence of identify and v) existence of inverse for the operation X,1 "on a set $A = \{1,3,4,5,9\}$ of the set of remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$.
- .47. a) Find the parametric vector non parametric vector and Cartesian form of the equations of the plane passing through the three non-collinear points (3,6,-2), (-1,-26) and (6,4,-2) (OR)
 - b) The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours.

12 - Maths ussib - 4