	www.Padasalai.Net	www.CBSEtips.in
V12P Virudhunagar District Common Examinations Common Half Yearly Examination - December 2022		
Standard 12		
Time: 3	.00 hrs PHYSICS	Marks: 70
	Part - I Answer all the questions. ii) Choose the	most appropriate answer from the given
	four options and write the option code and	the corresponding answer. 15×1=15
	${}^{10}_{5}$ B and ${}^{13}_{6}$ C nuclei are examples of a) Isotpes b) Isobars	c) Isotones d) All of the above
2)	a) isotpes of and at a distance 3F	from the centre of a charged
2)	conducting spherical shell of radius 'R	' is 'E'. The electric field at a distance
	$\frac{R}{2}$ from the centre of the sphere is	
	h 2E/	c) zero d) infinity
3)	a) L // / / / / / / / / / / / / / / / / /	ance of a wire is 0.00125/°C. At 20°C
5)	the resistance of the wire is 1Ω . The temperature of	resistance of the whe is 222 de the
	h 700°	c) 850°C d) 820°C
4)	Which of the following metals exhibits	c) Iron d) Zinc
- 1	a) Platinum b) Nickel A wire of length ' <i>l</i> ' carries a current '	c) Iron d) Zinc I' along the v-direction and magnetic
5)	A wire of length \hat{z} carries a current $\vec{B} = \beta / (\hat{z} + \hat{z} + \hat{k})$	and the magnitude of Lorentz force
	field is given by $\vec{B} = \frac{\beta}{\sqrt{3}} (\hat{i} + \hat{j} + \hat{k}) t$	esia. The magnitude of Estence force
	acting on the wire is a) $\sqrt{\frac{2}{3}}\beta I\ell$ b) $\sqrt{\frac{1}{3}}\beta I\ell$	$\sqrt{1}$ BI
	a) $\sqrt{\frac{2}{3}\beta I \ell}$ b) $\sqrt{\frac{1}{3}\beta I \ell}$	c) $\sqrt{2\beta I\ell}$ d) $\sqrt{2\beta I}$
6)	In an oscillating LC circuit, the maximucharge on the capacitor when the end	perav is stored equally between the
	a) Q' b) $\sqrt{5}$	c) $\frac{Q}{5}$ d) Q
7)	electric and magnetic fields is a) $\frac{Q}{2}$ b) $\sqrt{3}$ In a transformer, the number of turns	in the primary and the secondary are
,,	410 and 1230 respectively. If the curr	ent in the primary is 6A, then that in
	the secondary coil is	c) 12A d) 1A
9)	a) 2A b) 18A The electric flux between the two plan	tes of a capacitor varies with time as
6)	$\phi_{\rm E} = 3.6\pi \times 10^4 {\rm t} {\rm Nm^2c^{-1}}$ The displacement current between the plates is	
	a) 5 μA b) 2 μA	c) 1 µA d) zero
9)	The primary use of a zener diode is	
	a) Rectifier b) amplifier	c) oscillator d) voltage regulator
10)	In an electron microscope, the elect 14 KV. If the voltage is changed to 22	4 KV, then the de Broglie wavelength
	associated with the elctrons would	
	a) increase by two times	b) decrease by two times
	c) decrease by four times	d) increase by four times
11)	The ratio between the first three orbit a) 1:2:3 b) 2:4:9	c) 1:4:9 d) 1:3:5
12)	The number of neutrons inside a nu	cleus having the maximum average
,	binding energy per nucleon is	
	a) 26 b) 30	c) 56 d) 40
13)	When a biconvex lens of glass having refraction	the liquid must have refractive index
	a) less than one	b) less than that of glass
	c) greater than that of glass	d) equal to that of glass
14)	The focal lengths of objective lens and ey	epiece of an astronomical telescope are
	f_0' and f_e' respectively. The approxim	hate length of the telescope is
	a) $f_0 f_e$ b) $f_0 f_e$	c) $f_0 + f_e$ d) $f_0 - f_e$
	~//I _e U/I ₀ Ie	

Kindly send me your questions and answerkeys to us : Padasalai.net@gmail.com

V12P^{www.Padasalai.Net}

15) The barrier potential of a silicon diode is a) 0.7 V b) 0.3 V c) 2 V

Part - II

Note: i) Answer any six of the following questions.

- ii) Questions no. 24 is compulsorily.
- 16) Mention any two applicatoins of capacitors.
- 17) A copper wire of cross-sectional area 0.5 mm² carries a current of 0.2 A. if the free electron density of copper is 8.4×10^{28} m⁻³, then compute the drift velcoity of free electrons.
- 18) State Ampere's circuital law.
- 19) Define RMS value of alternating current.
- 20) What is meant by Fraunhofer lines?
- 21) Write any two differences between Fresnel diffraction and Fraunhofer diffraction.
- 22) W⁺ v does sky apper blue?
- 23) Define impact parameter.
- 24) Calculate the cut-off wavelength and cut-off frequency of x-rays from an x-ray tube of accelerating potential 20,000 V.

Part - III

6×3=18

5×5=25

- Note: i) Answer any six questions.
 - *ii)* Questions no 33 is compulsorily.
 - 25) Obtain the expression for energy stored in a capacitor.
 - 26) What is seebeck effect? Mention any two uses of Seebeck effect.
 - 27) A short bar magnet has a magnetic moment of 0.5 JT⁻¹. Calculate the magnitude of the magnetic field produced by the bar magnet at a point on the axial line at a distance of 0.1 m from the centre of the bar magnet.
 - 28) Explain the various energy losses in a transformer.
 - 29) Write any six properties of electromagnetic waves.
 - 30) State and prove Brewster's Law.
 - 31) State the laws of Photoelectric Emission.
 - 32) State and prove De Morgan's Theorems.
 - 33) What is the focal length of the combination if a lens of focal length–70 cm is brought in contact with a lens of focal length 150 cm? What is the power of the combination?

Part - IV

Note: i) Answer all the questions.

- 34) a] Derive the expressioni for electric field at a point on the equitorial line of an electric dipole. (OR)
 - b] i) Obtain the relation $N = N_0 e^{-\lambda t}$ in radio activity.
 - ii) The energy released per fission of $^{235}_{92}$ U nuclens is 200 MeV. Calculate the number of fissions required for 1 W power.
- 35) a] Obtain the condition for balancing the Wheatstone's Bridge. (OR)
 - b] Based on Huygen's principle, prove the laws of refraction.
- 36) a] i) What is a galvanometer? Mention its principle.ii) Discuss the conversion of a galvanometer into an ammeter. (OR)
 - b] Eplain the construction and working of a full wave rectifier.
- 37) a] Describe the Davisson Germer experiment which demonstrated the wave nature of electrons. (OR)
 - b] Write and describe the Maxwell's equiations in integral form.
- 38) a] Obtain the expressions for (i) Resultant voltage (ii) Impedance and (iii) phase angle in LCR series circuit using phaser diagram. **(OR)**
 - b] Describethe Fizeau's method to determine the speed of light.

Kindly send me your questions and answerkeys to us : Padasalai.net@gmail.com

www.CBSEtips.in

6×2=12