Sample Question Paper

CLASS: XII

Session: 2022-23

Applied Mathematics (Code-241)

Marking Scheme Section – A

	Section – A	
	Each question carries 1-mark weightage	WWW.Pac
1.	$x \equiv 27 \pmod{4}$ $\Rightarrow x - 27 = 4k$, for some integer k $\Rightarrow x = 31$ as $27 < x \le 36$ (C) option	
2.	(D) option	
3.	$n = 26 \Rightarrow t = 3.07 > t_{25}(0.05) = 2.06$ (B) option	A Pac
4.	$n = 34 \Rightarrow v = 34 - 1 = 33$ (B) option	WWW.Pad
al Wet	Speed of boat downstream = u = 10 km/h And, speed of boat upstream = v = 6 km/h	na Pad
5.	⇒ Speed of stream = $\frac{1}{2}$ (u – v) = 2 km/h (B) option	//////////////////////////////////////
al:Met	A Salai Net	m_d2
6.	(C) option	WWW.Fac
7.	Truck A carries water = $100 - (\frac{20 \times 1500}{1000}) = 70 \ l$ Truck B carries water = $80 - (\frac{20 \times 1000}{1000}) = 60 \ l$ (C) option	WWW.Pac
8.	Let the face value of the bond = x Then, $\frac{10}{200}x = 1800 \Rightarrow x = 36000$ (D) option	WWW.Pac
9.	(C) option	. oada
10.	(D) option	VWWW.Y.
11.	$D = \frac{C - S}{n} = \frac{480000 - 25000}{10} = 45500$ (B) option	Pad
12.	(A) option	
13.	$\int \frac{dy}{y \log y} = \int \frac{dx}{x}$ $\Rightarrow \log(\log y) = \log x + \log \mathcal{C} $	www.Pad
13.	$\Rightarrow \log(\log y) = \log Cx $ $\Rightarrow y = e^{ Cx }$	VV 44 - 1

	(B) option				
14.	$\left[\left(\frac{60000}{10000} \right)^{\frac{1}{4}} - 1 \right] \times 100 = \left[\sqrt[4]{6} - 1 \right] \times 100$	asal			
	(C) option				
i.Net	Cheaper Dearer 0 480				
15.	Mean 300 300				
	⇒ 180 : 300 = 3 : 5 (C) option				
l'Mer	padasalal Net	asal			
16.	(D) option				
17.	(C) option				
18.	(B) option	asa			
	P(Win in one game) = P(Lose in one game) = $\frac{1}{2}$				
19.	\Rightarrow P (Beena to win in 3 out of 4 games) = 4C_3 . $\left(\frac{1}{2}\right)^4 = \frac{1}{4} = 25\%$				
19.	Assertion is correct and Reason is the correct explanation for it (A)option	asa			
i Net	Effective rate of interest = Nominal rate – inflation rate = $12.5 - 2 = 10.5\%$ Assertion is correct	asa			
20.	Reason is true but not supportive of assertion (B) option				
Wei	Section – B	asa			
	Each question carries 2-mark weightage				
21.	P = 250000, R = 7500, $i = r/400$ $\Rightarrow 250000 = \frac{7500 \times 400}{2} \Rightarrow r = 12$	1			
	THE REPORT OF THE PERSON OF TH	1			
22.	$\Rightarrow r = 12$				
	$\Rightarrow r = 12$ $a - 8 = 1 \Rightarrow a = 9$	_			
	$a - 8 = 1 \Rightarrow a = 9$ $3b = -2 \Rightarrow b = -\frac{2}{3}$	1			
	$a - 8 = 1 \Rightarrow a = 9$ $3b = -2 \Rightarrow b = -\frac{2}{3}$ $-c + 2 = -28 \Rightarrow c = 30$	-ak			
	$a - 8 = 1 \Rightarrow a = 9$ $3b = -2 \Rightarrow b = -\frac{2}{3}$ $-c + 2 = -28 \Rightarrow c = 30$ $\Rightarrow 2a + 3b - c = -14$	1			
	$a - 8 = 1 \Rightarrow a = 9$ $3b = -2 \Rightarrow b = -\frac{2}{3}$ $-c + 2 = -28 \Rightarrow c = 30$	1			
	$a - 8 = 1 \Rightarrow a = 9$ $3b = -2 \Rightarrow b = -\frac{2}{3}$ $-c + 2 = -28 \Rightarrow c = 30$ $\Rightarrow 2a + 3b - c = -14$ OR	1			

	Subject to constraints:	1			
	$x + y \le 960$				
	$5x + y \le 2400$	seal			
24	$x, y \ge 0$	1			
24.	Speed of boat in still waters = x km/h Speed of stream = y km/h				
	Distance travelled = d km				
	Time taken to travel downstream = $\frac{d}{x+y}$				
	~.,				
	Time taken to travel upstream = $\frac{d}{x-y}$				
	Then, $\frac{2d}{x+y} = \frac{d}{x-y} \Rightarrow x : y = 3:1$	1			
	OR	1			
	Param runs 5 m in 3 seconds				
	\Rightarrow time taken to run 200 m = $\frac{3}{r} \times 200 = 120$ seconds	asali			
	$\frac{7 \text{ time taken to rain 200 m}}{5} = \frac{120 \text{ seconds}}{5}$	4			
	Anui 's time = 120	1			
	Anuj 's time = 120 – 3 = 117 seconds	asal			
25.	$V_f = 437500, V_i = 350000$	1			
	Nominal rate = $\frac{V_f - V_i}{V_i} \times 100$				
	v_i	sela			
	437500 - 350000	1			
	$= \frac{437500 - 350000}{350000} \times 100 = 25\%$	1			
Met	Section – C	نعادد			
	Each question carries 3-mark weightage	asan			
26.	$f'(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$	1			
		1			
	$\Rightarrow x = 1,2,3$	asali			
	Strictly increasing in $(1,2)\cup(3,\infty)$	1			
27.	Strictly decreasing in $(-\infty,1)\cup(2,3)$	1			
27.	Γ2500 651	asal			
	Daily diet of team A = $\begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2500 & 65 \\ 1900 & 50 \\ 2000 & 54 \end{bmatrix} = \begin{bmatrix} 12700 \\ 334 \end{bmatrix}$	4.5			
	[2000 54]	1.5			
	T 12700 relation and 224 relation (1991)	salai			
	Team A consumes 12700 calories and 334 g vitamin	gow.			
	Daily diet of team B = $\begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2500 & 65 \\ 1900 & 50 \\ 2000 & 54 \end{bmatrix} = \begin{bmatrix} 10300 \\ 273 \end{bmatrix}$				
	[2000 54] [273]	1 5			
	Padasalah Padasalah Padasalah Padasalah Padasalah Pada	1.5			
	Team B consumes 10300 calories and 273 g vitamin				
28.	$\int \frac{dx}{(1+e^x)(1+e^{-x})}$	-0(9)			
11.1	$\frac{1}{(1+e^{x})(1+e^{-x})}$	asan			
	$= \int \frac{e^x dx}{(1+e^x)^2}$	3			

$$=\int \frac{dt}{t^2}, \text{ where } t = e^x + 1 \text{ and } dt = e^x dx$$

$$= \frac{-1}{t} + C$$

$$= \frac{-1}{1+e^x} + C$$
OR
$$\int \frac{x}{I} \log(1 + x^2) dx, \text{ Integration by parts } I = \log(1 + x^2). \int x dx - \int \left[\frac{dx}{dx} \log(1 + x^2). \int x dx\right] dx$$

$$= \frac{x^2}{2} \log(1 + x^2) - \int \left[\frac{2x}{1+x^2}. \frac{x^2}{2}\right] dx$$

$$= \frac{x^2}{2} \log(1 + x^2) - \int \left[x - \frac{x}{1+x^2}\right] dx$$

$$= \frac{x^2}{2} \log(1 + x^2) - \int \left[x - \frac{x}{1+x^2}\right] dx$$

$$= \frac{x^2}{2} \log(1 + x^2) - \frac{x^2}{2} + \frac{1}{2} \log(1 + x^2) + C$$

$$= \frac{1}{2} \left[(1 + x^2) \log(1 + x^2) - x^2\right] + C$$
29.
Under pure competition, $p_d = p_s$

$$\Rightarrow \frac{x}{x+1} - 2 = \frac{x+3}{2}$$

$$\Rightarrow x^2 + 8x - 9 = 0$$

$$\Rightarrow x = -9, 1$$

$$\therefore x = 1$$
When $x_0 = 1 \Rightarrow p_0 = 2$

$$\therefore \text{ Produce surplus } = 2 - \int_0^1 \frac{x+3}{2} dx = 2 - \left[\frac{x^2}{4} + \frac{3x}{2}\right] = \frac{1}{4}$$
1.5

OR
$$p = 274 - x^2$$

$$\Rightarrow R = px = 274x - x^3$$

$$\frac{dx}{dx} = 274 - 3x^2$$

$$\frac{dx}{dx} = 274 - 3x^2$$
Given MR = 4 + 3x
In profit monopolist market,
MR = $\frac{dR}{dx} \Rightarrow 4 + 3x = 274 - 3x^2$

$$\Rightarrow x^2 + x - 90 = 0$$

	$\Rightarrow x = -10, 9$ $\therefore x = 9$	
al Met	$\begin{array}{c} \therefore x - y \\ \text{When } x_0 = 9 \Rightarrow p_0 = 193 \end{array}$	
	$\therefore \text{ Consumer surplus} = \int_0^9 (274 - x^2) dx - 193 \times 9$	asala
	$= [274x - \frac{x^3}{3}]$	1.5
al. Wet	$= [2/4x - \frac{1}{3}]$ 0 = 486	S/Ala
30.	= 480 Purchase = ₹ 40,00,000	
30.	Down payment = x	
al. Met	Balance = $40,00,000 - x$	
	$i = \frac{9}{1200} = 0.0075$, n = 25 x 12 = 300	1
al.Net	E = ₹ 30,000	asala
	$\Rightarrow 30000 = \frac{(4000000 - x) \times 0.0075}{1 - (1.0075)^{-300}}$	
Met	$1 - (1.0075)^{-300}$	-olai-
21-1	$\Rightarrow 30000 = \frac{(4000000 - x) \times 0.0075}{1 - 0.1062}$	2
	$\Rightarrow x = 424800$	_
Nast	Down payment = ₹ 4,24,800	
IIII.	poddaśalal INC Burgo (Continue)	asala
31.	n = 10 x 2 = 20, S = 10,21,760, $i = \frac{5}{200}$ = 0.025, R = ?	
n det	$S = R \left[\frac{(1+i)^n - 1}{i} \right]$	1.5
	\Rightarrow 1021760 = R $\left[\frac{(1+0.025)^{20}-1}{0.025}\right]$	dour
	$\Rightarrow 1021760 = R \left[\frac{1.6386 - 1}{0.025} \right]$	
Net		\a_
21.11	$\Rightarrow R = \left[\frac{1021760 \times 0.025}{0.6386}\right]$	1.5
	\Rightarrow R = ₹ 40,000 Mr Mehra set aside an amount of ₹ 40,000 at the end of every six months	1.5
Nake	Will identify set aside all amount of \$40,000 at the end of every six months	
W.Mer	Positive and the state of the s	asala
	AMMAN CO.	
	Section – D	
i.Met	Each question carries 5-mark weightage	agala
32.	Probability of defective bucket = 0.03	
	n = 100	
Met	$m = np = 100 \times 0.03 = 3$	1
	Let X = number of defective buckets in a sample of 100	1
	P (X = r) = $\frac{m^r e^{-m}}{r!}$, $r = 0,1,2,3,$	
al:Met	(i) P (no defective bucket) = P(r = 0) = $\frac{3^0 e^{-3}}{0!}$ = 0.049	2
	(ii) P (at most one defective bucket) = P(r = 0, 1) $= \frac{3^{0}e^{-3}}{0!} + \frac{3^{1}e^{-3}}{1!}$	2
Met	$=\frac{1}{0!}+\frac{1}{1!}$	

	= 0.049 + 0.147 = 0.196	
	OR	
	X = scores of students, $\mu = 45$, $\sigma = 5$	asal
		1
	$\therefore Z = \frac{X - \mu}{\sigma} = \frac{X - 45}{5}$	
	(i) When $X = 45$, $Z = 0$	
	P(X > 45) = P(Z > 0) = 0.5	2
	ightarrow 50% students scored more than the mean score	2
	padajšalai Net padajšalai Net	
	(ii) When $X = 30$, $Z = -3$ and when $X = 50$, $Z = 1$	
	$P(30 < X < 50) = P(-3 < Z < 1) = P(-3 < Z \le 1)$	
	$= P(-3 < Z \le 0) + P(0 \le Z < 1)$	\a.
	$= P (0 \le Z < 3) + P (0 \le Z < 1)$	2
	= 0.4987 + 0.3413 = 0.84	
	\Rightarrow 84% students scored between 30 and 50 marks	
al Met	Languagia Net	<u>- 213</u>
33.	Let x be the number of guests for the booking	
	Clearly, $x > 100$ to avail discount	2
	$\therefore \text{ Profit, P} = [4800 - \frac{200}{10}(x - 100)] \ x = 6800x - 20x^2$	2
	dP 170	
	$\Rightarrow \frac{dP}{dx} = 6800 - 40 \ x \Rightarrow x = 170$	1
JI.NO.	$\operatorname{As} \frac{d^2 P}{dx^2} = -40 < 0, \forall x$	1
stat.	A booking for 170 guests will maximise the profit of the company	
	And, Profit = ₹ 5,78,000	1
	WWW.Paccesty.Pac	
	OR	
	P(x) = R(x) - C(x)	2
	$=5x-(100+0.025x^2)$	asat
	$\Rightarrow P'(x) = 5 - 0.05 x \Rightarrow x = 100$	1
	As $P''(x) = -0.05 < 0, \forall x$	1
al:Net	∴ Manufacturing 100 dolls will maximise the profit of the company	5891
	And, Profit = ₹ 1,50,000	1
	Let the number of tables and chairs be x and y respectively	_1/2
34.		
34.	(Max profit) $Z = 22x + 18y$	asa1
34.		asal
34.	(Max profit) $Z = 22x + 18y$	1.5
34.	(Max profit) $Z = 22x + 18y$ Subject to constraints:	1.5

	y ↑ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	WWW.P. 2000	WWW.			
al Net			on Alasal			
	A(0,20)		VWWW.Pa			
. Net		B(8, 12)	2			
	WWW.Padasaw		WWW.Pack			
Met	0	(16,0) C $y \ge 0$ $x + y \le 20$				
3(1-1	3x	$+2y \le 48$				
		OABCA is closed (bounded)				
al.Met	Corner po		N Assassasi			
	O (0,0)	0	W. Banasa			
	A (0,20)	360	4 -			
Nest	B (8,12)	392	1.5			
31.110	C (16,0)	352	pac asal			
25	Buying 8 tables and	12 chairs will maximise the pro	Ofit			
35.	г1 2 21					
SUMEL S	$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$		pada asal			
	$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \end{bmatrix}$		WWW.Pau			
	$\rightarrow \Lambda - 0 \rightarrow \Lambda^{-1}$ ovi	ctc	2			
al. Met	$\Rightarrow A = 9 \Rightarrow A^{-1} \text{ exi}$ And $A^{-1} = \frac{1}{9} \begin{bmatrix} -2 & 5 \\ -2 & -5 \\ 5 & 1 \end{bmatrix}$	5 –21	nada asal			
	And $A^{-1} = \frac{1}{2} \left -2 \right $	4 7	WWW.Pau			
	[*] l 5 1	_4]				
Met	AV D V 4-1r					
	$AX = B \Rightarrow X = A^{-1}E$	3 21	WWW.Padasa"			
	$\Rightarrow X = \frac{1}{2} \begin{vmatrix} -2 & 3 \\ -2 & -4 \end{vmatrix}$	$\begin{bmatrix} -2 \\ 7 \end{bmatrix} \begin{bmatrix} 65 \\ 105 \end{bmatrix} = \begin{bmatrix} 15 \\ 20 \end{bmatrix}$				
Nabt	$\Rightarrow X = \frac{1}{9} \begin{bmatrix} -2 & 5 \\ -2 & -4 \\ 5 & 1 \end{bmatrix}$	$\begin{bmatrix} -4 \end{bmatrix} \begin{bmatrix} 10 \\ 110 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix}$	1 000			
3171Aer			3			
	$\Rightarrow p_1 = 15, p_2 = 20$	$0, p_3 = 10$	AMMAN, _			
al. Wet			oadaasal			
		Saction F	HAMINI PAU			
		Section – E				
36.	CASE STUDY - I	dy carries 4-mark weightage				
50.		$\frac{2}{3}$ 2/5 th tank in $\frac{2}{3}$ \times 20 $\frac{2}{3}$ $\frac{2}{3}$	urc			
a)	Pipe C empties 1 tank in 20 h =	$\frac{7}{5}$ 2/3 til talik ill $\frac{1}{5}$ \times 20 = 8 no	1			
al Net	Part of tank filled in 1 hour = $\frac{1}{15} + \frac{1}{12} - \frac{1}{20} = \frac{1}{10}$ th					
b)	⇒ time taken to fill tank comp		1			
c)	At 5 am,	un Mat	2			
-,						

2

Let the tank be completely filled in 't' hours ⇒pipe A is opened for 't' hours pipe B is opened for 't-3' hours And, pipe C is opened for 't-4' hours

 \Rightarrow In one hour, part of tank filled by pipe A = $\frac{t}{15}$ th part of tank filled by pipe B = $\frac{t-3}{15}$ th and, part of tank emptied by pipe $C = \frac{t-4}{15}$ th

Therefore
$$\frac{t}{15} + \frac{t-3}{12} - \frac{t-4}{20} = 1$$

 $\Rightarrow t = 10.5$

Total time to fill the tank = 10 hours 30 minutes

OR

6 am, pipe C is opened to empty 1/2 filled tank

Time to empty = 10 hours

Time for cleaning = 1 hour

Part of tank filled by pipes A and B in 1 hour= $\frac{1}{15} + \frac{1}{12} = \frac{3}{20}$ th tank

⇒ time taken to fill the tank completely = $\frac{20}{3}$ hours

Total time taken in the process = $10 + 1 + \frac{20}{3} = 17$ hour 40 minutes

CASE STUDY - II 37.

a)

Year	Υ	X	X ²	XY
2015	35	-2	4	-70
2016	42	-1/	1	-42
2017	46	0	0	0
2018	41	1	1	41
2019	48	2	4	96
n_da8	212		10	25

$$a = \frac{\sum Y}{n} = \frac{212}{5} = 42.4$$
 and $b = \frac{\sum XY}{\sum X^2} = \frac{25}{10} = 2.5$

 $Y_C = 42.4 + 2.5X$

OR

0		
Year	Υ	3-year moving average
2015	35	-obdasala
2016	42	41
2017	46	43
2018	41	45
2019	48	www.Padasar

	P(X)	1	1	3	1	WWW.	
	VD(V)	9600	12 12000	60000	50000	4	
al.Net	XP(X)		12000	00000	30000	ds	sala!
	www.Pa	24	12	8	2	WWW.Pag	asar
	• E(V) - = 22	000					
5 1 m t	∴ E(X) = ₹ 33	,900					
ISMIL		alabiN	let	فامتنا	795517		