V.J

CHEMISTRY A COMPLETE GUIDE

BOOK BACK
 ONE MKRK SHORT ARSWYRS LONE ANSWER

ADDITIONAL QUESTIONS TOPIC WISE Q/A PUBLIC EXAM Q/R

+1

CHEMISTRY

A COMPLETE GUIDE

BOOK BACK

*PTA QUESTIONS
PUBLIC QUESTIONS
CREATIVE QUSTIONS
Prepared by
S.MANIVEL ., M.Sc.,B.Ed.

PG ASSISTANT IN CHEMISTRY
PH-9952431165, 9942910729

New Edition -2023

Published by
VJ Publications,
Valappady, salem
PH-9952431165, 9942910729

Book Auther : S.MANIVEL ., M.Sc.,B.Ed.

PG ASSISTANT IN CHEMISTRY

All Rights are reserved to $\boldsymbol{V} \boldsymbol{J}$ Publications : no part of this publication may be reproduced stored in a retrievel system of transmitted in any form or by any means, electronic,mechanical photo copy, recording or otherwise without the prior written permission of the publisher. Any breach will entil legal action and prosecution without further Notice.

Dear students!

* VJ $11^{\text {th }}$ std chemistry $1,2,3 \& 5$ marks questions has been thoroughly revised and updated as per the new syllabus.
* This book provides complete tutorial to students in such a way that they can confidently all questions in their examination.
* This booklet series is prepared effectively keeping in mind the scoring aspects of the students.
* We wish the student to score high marks using this $1,2,3 \& 5$ marks question of booklet.

CONTENT

S .No	LESSON	PAGE NO
1	Basic Concepts of Chemistry and Chemical Calculations	6
2	Quantum Mechanical Model of Atom	30
3	Periodic properties of elements	43
4	Hydrogen	73
5	Alkali and Alkaline Earth metals	89
6	Gaseous state	108
7	Thermodynamics	144
8	Physical and Chemical Equilibrium	166
9	Solutions	192
10	Chemical bonding	222
11	Fundamentals of Organic Chemistry	254
12	Basic concepts of organic reactions	295
13	Hydrocarbons	314
14	Haloalkanes and Haloarenes	348
15	Environmental Chemistry	371

என் ஆசிரியருக்கு நான் மாணவன்,
S.MANIVEL., M.Sc.,B.Ed.

PG ASSISTANT IN CHEMISTRY.
+1 CHEMISTRY PUBLIC EXAM BLUE PRINT

	MARCH 2019					JULY 2019					SEPTEMBER 2020					MAY 2022					JUNE -2022				
$\begin{aligned} & \mathbf{L} \\ & \mathbf{n} \end{aligned}$	$\begin{gathered} \mathbf{1} \\ \mathbf{M} \end{gathered}$	$\begin{aligned} & 2 \\ & \mathbf{M} \end{aligned}$	$\begin{gathered} \mathbf{3} \\ \mathbf{M} \end{gathered}$	5M	T	$\begin{gathered} \mathbf{1} \\ \mathbf{M} \end{gathered}$	$\begin{gathered} \mathbf{2} \\ \mathbf{M} \end{gathered}$	$\begin{gathered} \mathbf{3} \\ \mathbf{M} \end{gathered}$	5M	T	$\begin{gathered} \mathbf{1} \\ \mathbf{M} \end{gathered}$	$\begin{aligned} & 2 \\ & \mathbf{M} \end{aligned}$	$\begin{gathered} \mathbf{3} \\ \mathbf{M} \end{gathered}$	5M	T	$\begin{gathered} \mathbf{1} \\ \mathbf{M} \end{gathered}$	$\begin{aligned} & \mathbf{2} \\ & \mathbf{M} \end{aligned}$	$\begin{gathered} \mathbf{3} \\ \mathbf{M} \end{gathered}$	5M	T	$\begin{gathered} \mathbf{1} \\ \mathbf{M} \end{gathered}$	$\begin{gathered} \mathbf{2} \\ \mathbf{M} \end{gathered}$	$\left\|\begin{array}{l} \mathbf{3} \\ \mathbf{M} \end{array}\right\|$	5M	T
1	1		1	$\begin{aligned} & 1(2) \\ & 1(2) \end{aligned}$	8	1		1	1(2)	6	1	1		1(5)	8	1	1	1		6	1	1	1		6
2	1	1		1(3)	6	1	$\begin{aligned} & 1 \\ & \mathbf{C} \end{aligned}$		$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	8	1	$\left\|\begin{array}{l} 1 \\ C \end{array}\right\|$	1	1(2)	8	1	1		$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	8	1	1		$1(3)$ $1(2)$	8
3	1	1	1	1(3)	9	1		1	1(2)	6	1		1	1(3)	7	-		1	1(5)	8				$1(3)$ $1(2)$	5
4	1		1	1(2)	6	1	1		1(3)	6	1	1	1	1(3)	9	1	1			3	1	1			3
5	1		1	1(3)	7	1	1	1	1(2)	8	1			1(3)	4	2			$\begin{aligned} & 1(2) \\ & 1(3) \end{aligned}$	7	2		1	1(5)	10
6	1	1		1(2)	5	1	1	1	1(3)	9	1			$\begin{aligned} & 1(2) \\ & 1(2) \end{aligned}$	5	1		1		4	1		1		4
7	1	1		$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	9	1		1	1(2)	6	1	1	1	$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	11	1	2		1(5)	10	1	1 1		$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	10
8	1		1	1(2)	6	1	1		1(3)	6	1	1		1(2)	5	1	1	$\begin{aligned} & 1 \\ & \mathrm{C} \end{aligned}$		6	1	1	1	1(5)	11
9	1		1	1(3)	7	1		1	$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	9	1		1	1(2)	6	1	1	1	1(5)	11	1	1	1		6
10	1	1	1	1(2)	8	1	1	1	$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	8	1	1	1	1(3)	9	1		1	$\begin{aligned} & 1(3) \\ & 1(2) \\ & 1(1) \\ & 1(5) \\ & \hline \end{aligned}$	15	1		1	2(5)	14
11	1	$\begin{aligned} & \mathbf{1} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & 1 \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1(2) \\ & 1(3) \end{aligned}$	11	1	1		$\begin{aligned} & 1(2) \\ & 1(2) \end{aligned}$	10	1	1	$\begin{aligned} & 1 \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1(2) \\ & 1(5) \end{aligned}$	13	2		1	1(5)	10	2		1	1(5)	10
12	1			$\begin{aligned} & 1(3) \\ & 1(3) \end{aligned}$	7	1		$\stackrel{1}{\mathrm{C}}$	1(3)	7	-	1			2	1		1		4	1		1		4
13	1	1		$\begin{aligned} & 1(2) \\ & 1(3) \end{aligned}$	8	1	1	1	1(3)	9	1		1	$\begin{aligned} & 1(2) \\ & 1(3) \end{aligned}$	9	-	1	1	1(5)	10	1	1	1	1(5)	11
14	1		1	$\begin{aligned} & 1(2) \\ & 1(3) \end{aligned}$	9	1			$\begin{aligned} & 1(3) \\ & 1(2) \end{aligned}$	6	2	1		1(5)	9	1	1		1(5)	8	1	1		1(5)	8
15	1	1			3	1	1		1(2)	3	1		1	1(3)	7	-	-	-	-	-	-	-	-	-	-
	15	9	9	$\begin{aligned} & 50 \\ & \mathrm{M} \end{aligned}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	15	9	9	$\begin{aligned} & 50 \\ & \mathrm{M} \end{aligned}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	$\begin{array}{\|l\|l} 1 \\ 5 \end{array}$	9	9	$\begin{aligned} & 50 \\ & \mathrm{M} \end{aligned}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	9	9	$\begin{aligned} & 50 \\ & \mathrm{M} \end{aligned}$	$\begin{gathered} 11 \\ 0 \end{gathered}$	1	9	9	$\begin{aligned} & 50 \\ & \mathrm{M} \end{aligned}$	11 0

	Inorganic unit - 1, 2,3, 4		Physical unit - 6, 7, 8, 9, 10		$\begin{gathered} \text { Organic unit }-11,12,13 \\ , 14,15 \\ \hline \end{gathered}$	
Part (I) 1 M	5×1	5	5×1	5	5×1	5
Part (II) 2 M	3×2	6	3×2	6	3×2	6
$\begin{gathered} \hline \text { Part (III) } 3 \\ \text { M } \\ \hline \end{gathered}$	3×3	9	3×3	9	3×3	9
$\text { Part (IV) } 5$	3×5	15	3×5	15	4×5	20
Total marks	35		35		40	

Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com

Unit 1 Basic Concepts of Chemistry and Chemical Calculations

I. Choose the best answer.

1. 40 ml of methane is completely burnt using 80 ml of oxygen at room temperature the volume of gas left after cooling to room temperature is
a) $\mathbf{4 0} \mathbf{~ m l ~ C O} 2 \boldsymbol{2}$ gas
b) $40 \mathrm{ml} \mathrm{CO}_{2}$ gas and $80 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ gas
c) $60 \mathrm{ml} \mathrm{CO}_{2}$ gas and $60 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ gas
d) $120 \mathrm{ml} \mathrm{CO}_{2}$ gas
2. An element X has the following isotopic composition ${ }^{200} \mathrm{X}=90 \%,{ }^{\mathbf{1 9 9}} \mathrm{X}=8 \%$ and $\mathrm{X}=2 \%$. The weighted average atomic mass of the element X is closest to
a) 201 u
b) 202 u
c) 199 u
d) $\mathbf{2 0 0} \mathbf{u}$
3. Assertion : Two mole of glucose contains 12.044×10^{23} molecules of glucose

Reason :Total number of entities present in one mole of any substance is equal to 6.02×10^{22}
a) both assertion and reason are true and the reason is the correction explanation of assertion.
b) both assertion and reason are true but reason is not the correct explanation of assertion
c) assertion is true but reason is false.
d) Both assertion and reason are false.
4. Carbon forms two oxides, namely carbon monoxide and carbon dioxide. The equivalent mass of which element remains constant?
a) carbon
b) oxygen
c) both carbon and oxygen
d) neither carbon nor oxygen
5. The equivalent mass of a trivalent metal element is $9 \mathrm{~g} \mathrm{eq}^{-1}$ the molar mass of its anhydrous oxide is
a) 102 g
b) 27 g
c) 270 g
d) 78 g
6. The number of water molecules in a drop of water weighing 0.018 g is
a) 6.022×10^{26}
b) 6.022×10^{23}
c) $\mathbf{6 . 0 2 2 \times 1 0 ^ { 2 0 }}$
d) 9.9×10^{22}
7. 1 g of an impure sample of magnesium carbonate (containing no thermally decomposable impurities) on complete thermal decomposition gave 0.44 g of carbon dioxide gas. The percentage of impurity in the sample is
a) 0%
b) 4.4%
c) $\mathbf{1 6 \%}$
d) 8.4%
8. When 6.3 g of sodium bicarbonate is added to 30 g acetic acid solution, the residual solution is found to weigh 33 g . The number of moles of carbon dioxide released in the reaction is
a) 3
b) 0.75
c) 0.075
d) 0.3
9. When 22.4 liters of $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with 11.2 liters of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at 273 K at 1 atm the molecules of $\mathrm{HCl}(\mathrm{g})$, formed is equal to
a) 2 moles of $\mathrm{HCl}(\mathrm{g})$
b) 0.5 moles of $\mathrm{HCl}(\mathrm{g})$
c) 1.5 moles of $\mathrm{HCl}(\mathrm{g})$
d) $\mathbf{1}$ moles of $\mathbf{H C l}$ (g)
10. Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour?
a) $\mathrm{Cu}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{C}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{BaCl}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}} \rightarrow \mathrm{BaSO}_{4}+\mathbf{2 H C l}$
d) none of the above
11. Choose the disproportionation reaction among the following redox reactions.
a) $3 \mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})$
b) $\mathbf{P}_{4}(\mathrm{~s})+\mathbf{3} \mathbf{N a O H}+\mathbf{3} \mathbf{H}_{2} \mathrm{O} \rightarrow \mathbf{P H}_{3}(\mathrm{~g})+\mathbf{3} \mathrm{NaH}_{2} \mathbf{P O}_{2}(\mathrm{aq})$
c) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{I}_{2}$
d) $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Cr}(\mathrm{s})$
12. The equivalent mass of potassium permanganate in alkaline medium is $\mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}+3 \mathrm{e}^{-} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$
a) 31.6
b) 52.7
c) 79
d) None of these
13. Which one of the following represents 180 g of water?
a) 5 moles of water
b) 90 moles of water
c) $\frac{6.022 \times 10^{22}}{180}$ molecules of water
d) 6.022×10^{24} molecules of water
14. 7.5 g of a gas occupies a volume of 5.6 litres at $0^{\circ} \mathrm{C}$ and 1 atm pressure. The gas is (M-22)
a) NO
b) $\mathrm{N}_{2} \mathrm{O}$
c) CO
d) CO_{2}
15. Total number of electrons present in 1.7 g of ammonia is (June-2022)
a) 6.022×10^{23}
b) $\frac{6.022 \times 10^{22}}{1.7}$
c) $\frac{6.022 \times 10^{24}}{1.7}$
d) $\frac{6.022 \times 10^{23}}{1.7}$
16. The correct increasing order of the oxidation state of sulphur in the anions $\mathrm{SO}_{4}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$ is
a) $\mathrm{SO}_{3}{ }^{2-}<\mathrm{SO}_{4}{ }^{2-}<, \mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}$
b) $\mathrm{SO}_{4}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}$
c) $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}<\mathrm{SO}_{4}{ }^{2-}$
d) $\mathrm{S}_{2} \mathrm{O}_{6}{ }^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}<\mathrm{SO}_{4}{ }^{2-}<\mathrm{SO}_{3}{ }^{2-}$
17. The equivalent mass of ferrous oxalate is
a) $\frac{\text { molar mass of ferrous oxalate }}{1}$
b) $\frac{\text { molar mass of ferrous oxalate }}{2}$
c) $\frac{\text { molar mass of ferrous oxalate }}{3}$
d) none of these
18. If Avogadro number were changed from 6.022×10^{23} to 6.022×10^{20}, this would change
a) the ratio of chemical species to each other in a balanced equation
b) the ratio of elements to each other in a compound
c) the definition of mass in units of grams
d) the mass of one mole of carbon.
19. Two 22.4 liter containers A and B contains 8 g of CO_{2} and 8 g of SO_{2} respectively at 273 K and 1 atm pressure, then
a) Number of molecules in A and B are same
b) Number of molecules in B is more than that in A.
c) The ratio between the number of molecules in A to number of molecules in B is 2:1
d) Number of molecules in B is three times greater than the number of molecules in A.
20. What is the mass of precipitate formed when 50 ml of 8.5% solution of AgNO_{3} is mixed with 100 ml of 1.865% potassium chloride solution?
a) 3.59 g
b) 7 g
c) 14 g
d) 28 g
21. The mass of a gas that occupies a volume of 612.5 ml at room temperature and pressure $\left(25^{\circ} \mathrm{C}\right.$ and 1 atm pressure) is 1.1 g . The molar mass of the gas is
a) $66.25 \mathrm{~g} \mathrm{~mol}^{-1}$
b) $\mathbf{4 4} \mathrm{g} \mathrm{mol}^{-1}$
c) $24.5 \mathrm{~g} \mathrm{~mol}^{-1}$
d) $662.5 \mathrm{~g} \mathrm{~mol}^{-1}$
22. Which of the following contain same number of carbon atoms as in 6 g of carbon-12.
a) 7.5 g ethane
b) 8 g methane
c) both (a) and (b)
d) none of these
23. Which of the following compound(s) has/have percentage of carbon same as that in ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (Mar-19)
a) propene
b) ethyne
c) benzene
d) ethane
24. Which of the following is/are true with respect to carbon-12?
a) relative atomic mass is $\mathbf{1 2} \mathbf{u}$
b) oxidation number of carbon is +4 in all its compounds
c) 1 mole of carbon- 12 contain 6.022×10^{22} carbon atoms
d) all of these
25. Which one of the following is used as a standard for atomic mass.
a) ${ }_{6} \mathrm{C}^{12}$
b) ${ }_{7} \mathrm{C}^{12}$
c) ${ }_{6} \mathrm{C}^{13}$
d) ${ }_{6} \mathrm{C}^{14}$

MODEL AND YEAR QUESTIONS:

1. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{~F}_{2}$ is (June- 2019)
a) +4
b) -4
c) 0
d) +2
2. The relative molecular mass of ethanol is: (Sep-20)
a) 0.46 g
b) 4.6 g
c) 460 g
d) 46 g

BOOK BACK - 2 AND 3 MARKS

26. Define relative atomic mass

* The relative atomic mass is defined as the ratio of the average atomic mass factor to the unified atomic mass unit.
* Relative atomic mass $\left(\mathrm{A}_{\mathrm{r}}\right)=\frac{\text { Average mass of the atom }}{\text { Unified atomic mass }}$

27. What do you understand by the term mole? (JUNE -19)

* One mole is the amount of substance of a system, which contains as many elementary particles as there are atoms in 12 g of carbon -12 isotopes. The elementary particles can be molecules, atoms, ions, electrons or any other specified particles.
* 1 mole $=6.022 \times 10^{23}$ entities.

28. Define equivalent Mass (or) Define Gram equivalent mass (May-22)

* Equivalent mass of an element, compound or ion is the number of parts of mass of an element combines or displaces 1.008 g hydrogen or 8 g oxygen or 35.5 g chlorine.
* Gram equivalent mass $\left.=\frac{\text { molar mass }\left(\mathrm{g} \mathrm{mol}^{-1}\right)}{\text { Equivalence factor }(\text { eq mol }}{ }^{-1}\right)$

29. What do you understand by the term oxidation number?

* It is defined as the imaginary charge left on the atom when all other atoms of the compound have been removed in their usual oxidation states that are assigned according to set of rules.
* Oxidation number of $\mathrm{Na}=+1$

30. Distinguish between oxidation and reduction

S.no	Oxidation	Reduction
$\mathbf{1}$	Addition of oxygen	Removal of oxygen
$\mathbf{2}$	Removal of hydrogen	Addition of hydrogen
$\mathbf{3}$	Loss of electrons	Gain of electrons
$\mathbf{4}$	Oxidation number increases	Oxidation number decreases

31. Calculate the molar mass of the following compounds (i) urea $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right]$ (ii) acetone $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$ (iii) boric acid $\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]$ (iv) sulphuric acid $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$
(i) urea $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right]$

Molar mass of $\left[\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right]=\mathrm{C}+\mathrm{O}+2 \mathrm{~N}+4 \mathrm{H}$

$$
\begin{aligned}
& =12+16+(2 \times 14)+(4 \times 1) \\
& =12+16+28+4 \\
& =60 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(ii) acetane $\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]$

Molar mass of $\mathrm{CH}_{3} \mathrm{COCH}_{3}=3 \mathrm{C}+6 \mathrm{H}+\mathrm{O}$

$$
\begin{aligned}
& =(3 \times 12)+(6 \times 1)+16 \\
& =36+6+16 \\
& =58 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(iii) boric acid $\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]$

$$
\begin{aligned}
\text { Molar mass of } \mathrm{H}_{3} \mathrm{BO}_{3} & =3 \mathrm{H}+\mathrm{B}+3(\mathrm{O}) \\
& =(3 \times 1)+11+(3 \times 16) \\
& =3+11+48 \\
& =62 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

(iv) sulphuric acid $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$

Molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{H}+\mathrm{S}+4(\mathrm{O})$

$$
\begin{aligned}
& =(2 \times 1)+32+(4 \times 16) \\
& =2+32+64 \\
& =98 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

32. The density of carbon dioxide is equal to $1.965 \mathrm{kgm}^{-3}$ at 273 K and 1 atm pressure. Calculate the molar mass of CO_{2}.
Given : The density of CO_{2} at 273 K and 1 atm pressure $=1.965 \mathrm{kgm}^{-3}$
At 273 K and 1 atm pressure, 1 mole of CO_{2} occupies a volume of 22.4 L
Mass of 1 mole of $\mathrm{CO}_{2}=\frac{1.965 \mathrm{Kg}}{1 \mathrm{~m}^{3}} \times 22.4 \mathrm{~L}$

$$
=\frac{1.965 \times 10^{3} \mathrm{~g} \times 22.4 \times 10^{-3} \mathrm{~m}^{3}}{1 \mathrm{~m}^{3}}
$$

Molar mass of $\mathrm{CO}_{2}=44 \mathrm{gmol}^{-1}$
33. Which contains the greatest number of moles of oxygen atoms (i) $\mathbf{1} \mathbf{~ m o l}$ of ethanol
(ii) $\mathbf{1} \mathbf{~ m o l}$ of formic acid
(iii) $\mathbf{1 ~ m o l ~ o f ~} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

Compound	Given no. of moles	No. of oxygen atoms
Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$	$\mathbf{1}$	$1 \times 6.022 \times 10^{23}$
Formic acid (HCOOH)	$\mathbf{1}$	$2 \times 6.022 \times 10^{23}$
Water $\left(\mathrm{H}_{2} \mathrm{O}\right.$	$\mathbf{1}$	$1 \times 6.022 \times 10^{23}$

The Formic acid (HCOOH) contains the greatest number of moles of oxygen atoms.
34. Calculate the average atomic mass of naturally occurring magnesium using the following data

Isotope	Isotopic atomic mass	Abundance (\%)
Mg^{24}	23.99	78.99
Mg^{26}	24.99	10.00
Mg^{25}	25.98	11.01

$$
\begin{aligned}
\text { Average atomic mass } & =\frac{(78.99 \times 23.99)+(10 \times 24.99)+(11.01 \times 25.98)}{100}=\frac{2430.9}{100} \\
& =24.31 \mathrm{u} .
\end{aligned}
$$

35. Mass of one atom of an element is 6.645×10^{-23}. How many moles of element are there in $\mathbf{0}$. 320 kg ?
Given: Mass of one atom $=6.645 \times 10^{-23} \mathrm{~g}$
\therefore Mass of 1 mole of atom $=6.645 \times 10^{-23} \mathrm{~g} \times 6.022 \times 10^{23}$

$$
=40 \mathrm{~g}
$$

\therefore Number of moles of element in 0.320 kg

$$
\begin{aligned}
\text { Number of moles } & =\frac{\text { mass }}{\text { atomic mass }} \\
& =\frac{1 \text { mole }}{40 \mathrm{~g}} \times 0.320 \mathrm{~kg} \\
& =\frac{1 \text { mole } \times 320 \mathrm{~g}}{40 \mathrm{~g}} \\
& =8 \mathrm{~mol}
\end{aligned}
$$

36. What is the difference between molecular mass and molar mass ? Calculate the molecular mass and molar mass for carbon monoxide?

S.no	Molecular mass	Molar mass
1	The sum of atomic masses of the elements present in a molecule.	The mass of one mole of a substance.
2	Its unit is u or amu	Its unit is $\mathrm{g} \mathrm{mol}^{-1}$
3	$\begin{aligned} & \text { Molecular mass of CO: } \\ & =(1 \times \text { mass of } \mathrm{C})+(1 \times \text { Mass of } \mathrm{O}) \\ & =1 \times 12.01 \mathrm{amu}+1 \times 16 \mathrm{amu} \\ & =28.01 \mathrm{amu} \end{aligned}$	$\begin{aligned} & \text { Molar mass of CO: } \\ & =1 \times 12.01+1 \times 16 \\ & =28.01 \mathrm{~g} \mathrm{~mol}^{-1} \end{aligned}$

37. What is the empirical formula of the following ?

Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com
(i) Fructose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ found in honey
(ii) Caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ a substance found in tea and coffee.

Compound	Molecular Formula	Empirical Formula
Fructose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$
Caffeine	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$

38. How many moles of ethane is required to produce 44 g of $\mathrm{CO}_{2}(\mathrm{~g})$ after combustion.

Balanced equation for the combustion of ethane
$\mathrm{C}_{2} \mathrm{H}_{6}+31 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
To produce 4 moles of $\mathrm{CO}_{2}, 2$ moles of ethane is required
To produce 1 mole (44 g) of CO_{2} required number of moles of ethane

$$
\begin{aligned}
& =\frac{2 \text { mol ethane }}{4 \text { mol CO}_{2}} \times 1 \mathrm{~mol} \mathrm{CO}_{2} \\
& =1 / 2 \text { mole of ethane } \\
& =0.5 \text { mole of ethane }
\end{aligned}
$$

39. Hydrogen peroxide is an oxidising agent. It oxidises ferrous ion to ferric ion and reduced itself to water. Write a balanced equation.

Step 1: $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
Step $2: \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$

BOOK BACK - 5 MARKS
40. In a reaction $x+y+z_{2} \rightarrow \mathrm{xyz}_{2}$ identify the Limiting reagent if any, in the following reaction mixtures (a) $\mathbf{2 0 0}$ atoms of $\mathbf{x}+\mathbf{2 0 0}$ atoms of $\mathbf{y}+\mathbf{5 0}$ molecules of \mathbf{z}_{2}
(b) $\mathbf{1} \mathbf{~ m o l}$ of $x+1 \mathbf{~ m o l}$ of $y+3 \mathbf{~ m o l}$ of z_{2}
(c) $\mathbf{5 0}$ atoms of $\mathbf{x}+\mathbf{2 5}$ atoms of $\mathbf{y}+\mathbf{5 0}$ molecules of $\mathbf{z}_{\mathbf{2}}$
(d) $\mathbf{2 . 5} \mathbf{~ m o l ~ o f ~} \mathbf{x}+\mathbf{5} \mathbf{~ m o l}$ of $\mathbf{y}+5 \mathbf{~ m o l}$ of z_{2}

Reaction: $x+y+z_{2} \rightarrow x y z_{2}$

Question	Number of moles of reactants allowed to react			Number of moles of reactants consumed during reaction			Limiting reagent
	x	y	z_{2}	x	y	Z_{2}	
a	200 atoms	200 atoms	50 atoms	50 atoms	50 atoms	50 atoms	Z_{2}
b	1 mol	1 mol	3 mol	1 mol	1 mol	1 mol	x an y
c	50 atom	25 atom	50 molecules	25 atom	25 atom	$\begin{gathered} 25 \\ \text { molecules } \end{gathered}$	y
d	2.5 mol	5 mol	5 mol	2.5 mol	2.5 mol	2.5 mol	x

41. The reaction between aluminium and ferric oxide can generate temperatures up to 3273 K and is used in welding metals. (Atomic mass of $\mathrm{Al}=27 \mathrm{u}$ Atomic mass of $O=16 u)$ $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe} ;$ If, in this process, 324 g of aluminium is allowed to react with 1.12 kg of ferric oxide. (i) Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed. (ii) How much of the excess reagent is left at the end of the reaction?
Given: $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$

	Reactants		Products	
	Al	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathbf{A l}_{2} \mathrm{O}_{3}$	Fe
Amount of reactant allowed to react	324 g	1.12 kg	-	-
Number of moles allowed to react	$\begin{aligned} & \frac{324}{27} \\ & =12 \mathrm{~mol} \end{aligned}$	$\frac{1.12 \times 10^{3}}{160}=7 \mathrm{~mol}$	-	-
Stoichiometric co-efficient	2	1	1	2
Number of moles consumed during reaction	12 mol	6 mol	-	-
Number of moles of reactant unreacted and number of moles of product formed	-	1 mol	$\begin{gathered} 6 \\ \mathrm{~mol} \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{~mol} \end{gathered}$

Molecular mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
& =2(\mathrm{Al})+3(\mathrm{O})=[2 \times 27]+[3 \times 16] \\
& =102 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

Molar mass os $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed
$=$ Number of moles x molecular mass
$=6 \mathrm{molx} 102 \mathrm{~g} \mathrm{~mol}^{-1}=612 \mathrm{~g}$
$=\mathrm{Fe}_{2} \mathrm{O}_{3}$
$=2(\mathrm{Fe})+3(\mathrm{O})$
$=[2 \times 56]+[3 \times 16]=160 \mathrm{~g} \mathrm{~mol}^{-1}$
Amount of excess reagent left at the end of the reaction $=1 \mathrm{~mol}^{\mathrm{m} 160 \mathrm{~g} \mathrm{~mol}^{-1}}$

$$
=160 \mathrm{~g}
$$

42. Calculate the empirical and molecular formula of a compound containing $\mathbf{7 6 . 6 \%}$ carbon, $\mathbf{6 . 3 8}$ \% hydrogen and rest oxygen its vapour density is 47. (Sep-20, June-22)

Element	Percentage	Atomic mass	Relative number of atoms	Simple ratio	Whole no
C	76.6	12	$\frac{76.6}{12}=6.38$	$\frac{6.38}{1.06}=6$	6
H	6.38	1	$\frac{6.38}{1}=6.38$	$\frac{6.38}{1.06}=6$	6
O	17.02	16	$\frac{17.02}{16}=1.06$	$\frac{1.06}{1.06}=1$	1

Empirical formula

$$
=\quad \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}
$$

$$
\begin{aligned}
n= & \frac{\text { molecular mass }}{\text { calculated empirical formula mass }} \\
& =\frac{2 x \text { vapour density }}{94}=\frac{2 x 47}{94}=1
\end{aligned}
$$

Molecular Formula $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right) \times 1=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$
43. A Compound o analysis gave $\mathrm{Na}=\mathbf{1 4 . 3 1} \% \mathrm{~S}=\mathbf{9 . 9 7 \%} \mathrm{H}=\mathbf{6 . 2 2 \%}$ and $\mathrm{O}=\mathbf{6 9 . 5 \%}$ calculate the molecular formula of the compound if all the hydrogen in the compound is present in combination with oxygen as water of crystallization. (Molecular mass of the compound is 322).

Element	Percentage	Atomic mass	Relative number of atoms	Simple ratio	Whole no
Na	14.31	23	$\frac{14.31}{23}=0.62$	$\frac{0.62}{0.31}=2$	2
S	9.97	32	$\frac{9.97}{32}=0.31$	$\frac{0.31}{0.31}=1$	1
H	6.22	1	$\frac{6.22}{1}=6.22$	$\frac{6.22}{0.31}=20$	20
O	69.5	16	$\frac{69.5}{16}=4.34$	$\frac{4.34}{0.31}=14$	14

Empirical formula $=\mathrm{Na}_{2} \mathrm{~S} \mathrm{H}_{20} \mathrm{O}_{14}$

Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com

Empirical formula mass $=2(\mathrm{Na})+\mathrm{S}+20(\mathrm{H})+14(\mathrm{O})$

$$
\begin{aligned}
& =[2 \times 23]+32+[20 \times 1]+[14 \times 16] \\
& =46+32+20+224=322
\end{aligned}
$$

$$
n=\frac{\text { molecular mass }}{\text { calculated empirical formula mass }}=\frac{322}{322}=1
$$

$$
\text { Molecular formula }=\mathrm{Na}_{2} \mathrm{~S} \mathrm{H}_{20} \mathrm{O}_{14}
$$

Since all the hydrogen in the compound present as water

$$
\text { Molecular formula }=\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}
$$

44. Balance the following equations by oxidation number method
i) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{\mathbf{2}}+\mathrm{H}_{\mathbf{2}} \mathrm{O}$

Step 1: $\mathbf{K}_{\mathbf{2}} \mathrm{Cr}_{2} \mathbf{O}_{\mathbf{7}}+\mathbf{6 K I}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
Step $2: \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathbf{S O}_{4}\right)_{3}+\mathbf{3} \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
Step $3: \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{KI}+\mathbf{7 H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}} \rightarrow \mathbf{4} \mathrm{K}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{I}_{2}+\mathbf{7 \mathbf { H } _ { 2 }} \mathbf{O}$
ii) $\mathrm{KMnO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}$

Step 1: $\mathbf{2} \mathbf{K M n O}_{\mathbf{4}}+\mathbf{3 N a}_{2} \mathbf{S O}_{\mathbf{3}} \rightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}$
Step 2: $2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow \mathbf{2} \mathbf{M n O}_{\mathbf{2}}+\mathbf{3} \mathbf{N a}_{2} \mathbf{S O}_{\mathbf{4}}+\mathrm{KOH}$
Step 3: $2 \mathrm{KMnO}_{4}+3 \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathbf{H}_{2} \mathbf{O} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathbf{2 K O H}$
iii) $\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Step 1: $\mathrm{Cu}+\mathbf{2 H N O}_{\mathbf{3}} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Step 2: $\mathbf{C u}+2 \mathrm{HNO}_{3}+\mathbf{2 H N O}_{\mathbf{3}} \rightarrow \mathbf{C u}\left(\mathrm{NO}_{3}\right)_{2}+\mathbf{2} \mathbf{N O}_{\mathbf{2}}+\mathrm{H}_{2} \mathrm{O}$
Step 3: $\mathrm{Cu}+4 \mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
iv) $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Step 1: $\mathbf{2} \mathbf{K M n O}_{\mathbf{4}}+\mathbf{5 H}_{\mathbf{2}} \mathbf{C}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Step $2: 2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathbf{2} \mathbf{M n S O}_{4}+\mathbf{1 0 \mathbf { C O } _ { 2 }}+\mathrm{H}_{2} \mathrm{O}$
Step 3: $\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathbf{3 H}_{2} \mathbf{S O}_{\mathbf{4}} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+10 \mathrm{CO}_{2}+\mathbf{8} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
45. Balance the following equations by ion electron method.
a) $\mathrm{KMnO}_{\mathbf{4}}+\mathrm{SnCl}_{\mathbf{2}}+\mathbf{H C l} \rightarrow \mathbf{M n C l}_{\mathbf{2}}+\mathrm{SnCl}_{\mathbf{4}}+\mathbf{H}_{\mathbf{2}} \mathrm{O}+\mathbf{K C l}$

Half reaction are

$$
\begin{align*}
& \quad \begin{array}{l}
+7 \\
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+} \\
\text { and } \quad \mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}
\end{array} \tag{1}
\end{align*}
$$

(1) $\Rightarrow \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{-}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
(2) $\Rightarrow \quad \mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{e}^{-}$

b) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{CO}_{2}($ acid medium)

$$
\begin{align*}
& \stackrel{+3}{\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \longrightarrow \stackrel{+4}{\mathrm{CO}_{2}}} \tag{1}\\
& +{ }_{+6}^{+6} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \longrightarrow \mathrm{Cr}^{3+} \tag{2}
\end{align*}
$$

$$
\text { (1) } \Rightarrow \quad \begin{gather*}
\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-} \tag{3}\\
 \tag{4}\\
\\
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{gather*}
$$

$$
\begin{array}{r}
(3) \times 3 \Rightarrow \begin{array}{r}
3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \\
\\
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow 6 \mathrm{CO}_{2} \pm 6 \mathrm{e}^{-} \\
\longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}^{2} \mathrm{O}
\end{array}
\end{array}
$$

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{CO}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

c) $\mathrm{Na}_{2} \mathbf{S}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}+\mathrm{I}_{\mathbf{2}} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{\mathbf{6}}+\mathbf{N a I}$ (acid medium)

$$
\text { half reaction } \Rightarrow \begin{gather*}
\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-} \tag{1}\\
\mathrm{I}_{2} \longrightarrow \mathrm{I}^{-} \tag{2}
\end{gather*}
$$

(1) $\Rightarrow \quad 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 e^{-}$
(2) \Rightarrow
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-}$
$(3)+(4) \Rightarrow$

$$
\begin{equation*}
2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-} \tag{4}
\end{equation*}
$$

d) $\mathrm{Zn}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{Zn}^{2+}+\mathrm{NO}$

Half reactions are

 $\stackrel{\circ}{\mathrm{Z}} \mathrm{n} \longrightarrow \mathrm{Zn}^{2+}$ $\stackrel{+5}{\mathrm{NO}_{3}^{-}} \longrightarrow \stackrel{+2}{\mathrm{~N}} \mathrm{O}$(1) $\Rightarrow \mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$ (2)
(2) $\Rightarrow \mathrm{NO}_{3}^{-}+3 \mathrm{e}^{-}+4 \mathrm{H}^{+} \longrightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\times 3 \Rightarrow 3 \mathrm{Zn} \longrightarrow 3 \mathrm{Zn}^{2+}+6 \mathrm{e}^{+}$
(4) $\times 2 \Rightarrow 2 \mathrm{NO}_{3}^{-}+6 \mathrm{e}^{-}+8 \mathrm{H}^{+} \longrightarrow 2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{equation*}
3 \mathrm{Zn}+2 \mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Zn}^{2+}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O} \tag{6}
\end{equation*}
$$

Evaluate Yourself

1. By applying the knowledge of chemical classification, classify each of the following into elements, compounds or mixtures. (i) Sugar (ii) Sea water (iii) Distilled water
(iv) CO_{2}
(v) Copper wire (vi) Table salt (vii) Silver plate (viii) Naphthalene balls

1	Element	Copper wire, Silver plate	
2	Compound	Sugar, distilled water, carbon dioxide, Table salt, Naphthalene balls	
3	Mixture	Sea water	

2. Calculate the molar mass of the following.
(i) Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$
(ii) Potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$
(iii) Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$
(iv) Sucrose $\left(\mathbf{C}_{12} \mathbf{H}_{22} \mathrm{O}_{11}\right)$
(i) molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=2(\mathrm{C})+6(\mathrm{H})+\mathrm{O}$

$$
\begin{aligned}
& =(2 \times 12)+(5 \times 1)+(1 \times 16)+(1 \times 1) \\
& =46 \mathrm{~g}
\end{aligned}
$$

(ii) molar mass of $\mathrm{KMnO}_{4}=\mathrm{K}+\mathrm{Mn}+4(\mathrm{O})$

$$
\begin{aligned}
& =(1 \times 39)+(1 \times 55)+(4 \times 16) \\
& =158 \mathrm{~g}
\end{aligned}
$$

(iii) molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=2(\mathrm{~K})+2(\mathrm{Cr})+7$ (O)

$$
\begin{aligned}
& =(2 \times 39)+(2 \times 52)+(7 \times 16) \\
& =294 \mathrm{~g}
\end{aligned}
$$

(iv) molar mass of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=12(\mathrm{C})+22(\mathrm{H})+11(\mathrm{O})$

$$
\begin{aligned}
& =(12 \times 12)+(22 \times 1)+(11 \times 16) \\
& =342 \mathrm{~g}
\end{aligned}
$$

3. a) Calculate the number of moles present in $\mathbf{9} \mathbf{g}$ of ethane.

Molar mass of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}=(2 \times 12)+(6 \times 1)$

$$
=30 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$$
\begin{aligned}
\mathrm{n} & =\frac{\text { mass }}{\text { molar mass }} \\
& =\frac{9 \mathrm{~g}}{30 \mathrm{~g} \mathrm{~mol}} \\
& =0.3 \mathrm{~mole}^{-1}
\end{aligned}
$$

b) Calculate the number of molecules of oxygen gas that occupies a volume of $224 \mathbf{~ m l}$ at 273
K and 3 atm pressure.
At 273 K and 1 atm pressure 1 mole of a gas occupies a volume of 22.4 L
Therefore,
Number of moles of oxygen, that occupies a volume of 224 ml at 273 K and 3 atm pressure

$$
=\frac{(1 \mathrm{~mole})}{273 \mathrm{~K} \times 1 \mathrm{~atm} \times 22.4 \mathrm{~L}} \times 0.224 \mathrm{~L} \times 273 \mathrm{~K} \mathrm{x} 3 \mathrm{~atm}
$$

$$
=0.03 \mathrm{~mole}
$$

1 mole of oxygen contains 6.022×10^{23} molecules
0.03 mole of oxygen contains $=6.022 \times 10^{23} \times 0.03$
$=1.807 \times 10^{22}$ molecules of oxygen
4. a) 0.456 g of a metal gives 0.606 g of its chloride. Calculate the equivalent mass of the metal.

Mass of the metal $=0.456 \mathrm{~g}$
Mass of the metal chloride $=0.606 \mathrm{~g}$
0.456 g of the metal combines with 0.15 g of chlorine.

Mass of the metal that combines with 35.5 g of chlorine $=\frac{0.456}{0.15} \times 35.5$

$$
=107.92 \mathrm{~g} \mathrm{eq}^{-1}
$$

a) Calculate the equivalent mass of potassium dichromate. The reduction half-reaction in acid medium is, $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{\mathbf{2 -}}+\mathbf{1 4} \mathrm{H}^{+}+\mathbf{6} \mathrm{e}^{-} \rightarrow \mathbf{2} \mathbf{C r}^{\mathbf{3 +}}+\mathbf{7} \mathrm{H}_{\mathbf{2}} \mathrm{O}$
Equivalent mass of a oxidising agent $=\frac{\text { molar mass }}{\text { number of moles of electrons gained by }}$
one mole of the reducing agent
$=\frac{292.2 \mathrm{~g} \mathrm{~mol}^{-1}}{6 \mathrm{eq} \mathrm{mol}^{-1}}$
$=48.7 \mathrm{~g} \mathrm{eq}^{-1}$
5. A Compound on analysis gave the following percentage composition $\mathrm{C}=\mathbf{5 4 . 5 5 \%}, \mathrm{H}=\mathbf{9 . 0 9 \%}$, $\mathrm{O}=\mathbf{3 6 . 3 6 \%}$. Determine the empirical formula of the compound.

Elements	Percentage composition	Atomic mass	Relative no.of.atoms $=$ percentage Atomic mass	Simple ratio
C	54.55%	12	$\frac{54.55}{12}=4.55$	$\frac{4.55}{2.27}=2$
H	9.09%	1	$\frac{9.09}{1}=9.09$	$\frac{9.09}{2.27}=4$
O	36.36%	16	$\frac{36.36}{16}=2.27$	$\frac{2.27}{2.27}=1$
Empirical formula $\left(\mathbf{C}_{2} \mathbf{H}_{4} \mathbf{O}\right)$				

6. Experimental analysis of a compound containing the elements x, y, z on analysis gave the following data. $\mathrm{x}=32 \%, \mathrm{y}=24 \%, \mathrm{z}=\mathbf{4 4} \%$. The relative number of atoms of x, y and z are 2 , 1 and 0.5 , respectively. (Molecular mass of the compound is 400 g) Find out.
i) The atomic masses of the element $\mathbf{x}, \mathbf{y}, \mathbf{z}$.
ii) Empirical formula of the compound
iii) Molecular formula of the compound.

Elements	Percentage composition	Relative no.of.atoms $=$ $\frac{\text { percentage }}{\text { Atomic mass }}$	Atomic mass $=$ percentage	Simple ratio
X	32%	2	16	4
Y	24%	1	24	2
Z	44%	0.5	88	1
Empirical formula ($\left.\mathbf{X}_{4} \mathbf{Y}_{\mathbf{2}} \mathbf{Z}\right)$				

Calculated empirical formula mass $=(16 \times 4)+(24 \times 2)+88$

$$
\begin{aligned}
& =64+48+88=200 \\
\mathrm{n}= & \frac{\text { molar mass }}{\text { calculated empirical formula mass }} \\
& =\frac{400}{200}=2
\end{aligned}
$$

Molecular formula $\left(\mathbf{X}_{\mathbf{4}} \mathbf{Y}_{\mathbf{2}} \mathbf{Z}\right)_{\mathbf{2}}=\mathbf{X}_{\mathbf{8}} \mathbf{Y}_{\mathbf{4}} \mathbf{Z}_{\mathbf{2}}$
7. The balanced equation for a reaction is given below
$2 x+3 y \rightarrow 41+m:$ When 8 moles of x react with 15 moles of y, then
(i) Which is the limiting reagent? (ii) Calculate the amount of products formed.
(iii) Calculate the amount of excess reactant left at the end of the reaction.

Content	Reactant		products	
	x	y	1	m
Stoichiometric coefficient	2	3	4	1
No. of moles allowed to react	8	15	-	-
No. of moles of reactant reacted and product formed	8	12	16	4
No. of moles of un-reacted reactants and the product formed	-	3	16	4

Limiting reagent
Product formed
: 16 moles of $l \& 4$ moles of m
Amount of excess reactant : 3 moles of y
8. Balance the following equation using oxidation number method

$$
\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}
$$

$3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$
$3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{6} \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathbf{9} \mathrm{H}_{2} \mathrm{SO}_{4}+\mathbf{2 8} \mathrm{NO}$

* Difference is 8 hydrogen atoms \& 4 oxygen atoms
* Multiply $\mathrm{H}_{2} \mathrm{O}$ molecule on the reactant side by '4'.Balanced equation is,
$3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{H}_{3} \mathrm{AsO}_{4}+9 \mathrm{H}_{2} \mathrm{SO}_{4}+28 \mathrm{NO}$

ADDITIONAL QUESTIONS:

1. Define relative molecular mass

* Relative molecular mass is defined as the ratio of the mass of a molecule to the unified atomic mass unit. The relative molecular mass of any compound can be calculated by adding the relative atomic masses of its constituent atoms.

2. What is Molar Mass?
. Molar mass is defined as the mass of one mole of a substance. The molar mass of a compound is equal to the sum of the relative atomic masses of its constituents expressed in $\mathrm{g} \mathrm{mol}^{-1}$.

* Examples: Molar mass of hydrogen atom $=1.008 \mathrm{~g} \mathrm{~mol}^{-1}$

3. Calculate relative molecular mass of glucose ($\mathrm{C}_{6} \mathbf{H}_{\mathbf{1 2}} \mathrm{O}_{6}$)

* Relative molecular mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=(6 \times 12)+(12 \times 1.008)+(6 \times 16)$

$$
=72+12.096+96
$$

$$
=180.096 \text { u }
$$

4. Define Molar volume

* The volume occupied by one mole of any substance in the gaseous state at a given temperature and pressure is called molar volume.
* 273 K and 1 atm pressure (STP) - 22.4 L

5. Define : Basicity. Find the basicity of ortho-phosphoric acid. (Sep-20)

* The number of moles of ionisable H^{+}ions present in 1 mole of the acid

$$
E=\frac{\text { Molar mass of the acid }}{\text { Basicity of the acid }}
$$

- Basicity of $\mathrm{H}_{3} \mathrm{PO}_{4}=3$

6. Define : Acidity

* The number of moles of ionisable OH^{-}ion present in 1 mole of the base

$$
E=\frac{\text { Molar mass of the acid }}{\text { Acidity of the base }}
$$

* Acidity of $\mathrm{KOH}=1$

7. How will you find out the equivalent mass of an acid? Give example

$$
\begin{gathered}
E=\frac{\text { Molar mass of the acid }}{\text { Basicity of the acid (or) }} \\
\text { equivalent Factor }
\end{gathered}
$$

Basicity $=$ no.of moles of ionisable H^{+}ions present in 1 mole of the acid
Example : Gram equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}=49 \mathrm{~g} \mathrm{eq}^{-1}$
8. How will you find out the equivalent mass of an base? Give example

$$
E=\frac{\text { Molar mass of the acid }}{\text { Acidity of the base (or) }} \begin{gathered}
\text { equivalent Factor }
\end{gathered}
$$

Acidity $=$ no.of moles of ionisable OH^{-}ions present in 1 mole of the base
Example : Gram equivalent of $\mathrm{KOH}=56 \mathrm{~g} \mathrm{eq}^{-1}$
9. How will you find out the equivalent mass of an oxidizing agent?

$$
E=\frac{\text { Molar mass of the Oxiding agent }}{\text { no of moles of electron gained }} \begin{gathered}
\text { by one mole of the oxiding agent }
\end{gathered}
$$

10. How will you find out the equivalent mass of an reducing agent?

$$
E=\frac{\text { Molar mass of the reducing agent }}{\text { no of moles of electron gained }}
$$

11. Define - Whole number (n)

$$
\text { Whole number }(\mathrm{n})=\frac{\text { molar mass of the compound }}{\text { calculated empirical formula mass }}
$$

12. What is the empirical formula of the following?
(i) Benzene (ii) Tartaric acid (iii) Lactic acid (iv) Hydrogen peroxide (v) Acetic acid

S .no	Compound	Molecular Formula	Empirical Formula
1	Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	CH
2	Tartaric acid	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}$
3	Lactic acid	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	$\mathrm{CH}_{2} \mathrm{O}$
4	Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO
5	Acetic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$\mathrm{CH}_{2} \mathrm{O}$

13. What is Empirical formula?

* The formula written with the simplest ratio of the number of different atoms present in one molecule of the compound as subscript to the atomic symbol.
* Empirical formula of acetic acid is $\mathrm{CH}_{2} \mathrm{O}$

14. Differentiate \mathbf{b} / \mathbf{w} empirical formula and molecular formula.

S .no	Empirical formula	Molecular formula
1	Empirical formula of a compound is the formula written with the simplest ratio of the number of different atoms present in one molecule of the compound as subscript to the atomic symbol.	Molecular formula of a compound is the formula written with the actual number of different atoms present in one molecule as a subscript to the atomic symbol.
2	Empirical formula of acetic acid is $\mathrm{CH}_{2} \mathrm{O}$	molecular formula of acetic acid is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

15. What do you understand by stoichiometry calculations? (or) Define Stoichiometry

* Stoichiometry is the quantitative relationship between reactants and products in a balanced chemical equation in moles. The quantity of reactants and products can be expressed in moles or in terms of mass unit or as volume.

16. What is meant by limiting agent? (June-22)

* When a reaction is carried out using non-stoichiometric quantities of the reactants, the product yield will be determined by the reactant that is completely consumed. It limits the further reaction from taking place and is called as the limiting reagent.

17. What is excess agent? (or) What is meant by excess agent?

* The reactant other than the limiting reagents which are in excess are called the excess reagents.

18. What is the electronic concept of oxidation and reduction reactions?

* Oxidation reactions : It is defined as a reaction in which one or more electrons is lost, by atom, ion or molecule.
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}$(loss of electron-oxidation).
* Reduction reactions : It is defined as a reaction in which one or more electrons is gained by an atom, ion or molecule.
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$ (gain of electron-reduction)

19. Define redox reaction. Give an example

* The reaction involving loss of electron is oxidation and gain of electron is reduction. Both these reaction take place simultaneously and are called as redox reaction.
* Example : $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

20. Write note on Combination reaction

* Redox reactions in which two substances combine to form a single compound are called combination reaction.
* Example : $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

21. Write note on decomposition reaction

* Redox reactions in which a compound breaks down into two or more components are called decomposition reactions. These reactions are opposite to combination reactions.
* $2 \mathrm{KClO}_{3} \xrightarrow{\Delta} 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

22. Write note on displacement

* Redox reactions in which an ion (or an atom) in a compound is replaced by an ion (or atom) of another element are called displacement reactions. They are further classified into (i) metal displacement reactions (ii) non-metal displacement reactions.
* Metal displacement reactions:

$$
\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq})
$$

* Non-metal displacement

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

23. What are disproportionate reactions (or) What are Auto redox reaction? Give an example (JUNE -19)

* In some redox reactions, the same compound can undergo both oxidation and reduction. In such reactions, the oxidation state of one and the same element is both increased and decreased. These reactions are called disproportionation reactions.
* $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

24. Predict the spontaneity of the reaction when a copper strip placed in zinc sulphate solution. Justify your answer.

* Place a metallic copper strip in zinc sulphate solution. If copper replaces zinc from zinc sulphate solution, Cu^{2+} ions would be released into the solution and the colour of the solution would change to blue. But no such change is observed.
* Therefore, we conclude that among zinc and copper, zinc has more tendency to release electrons and copper to accept the electrons.

25. Predict the type of Following reactions:
a) $\mathbf{2} \mathrm{KClO}_{3} \rightarrow \mathbf{2 ~ K C l}+\mathbf{3} \mathrm{O}_{2}$
b) $\mathrm{C}+\mathrm{O}_{\mathbf{2}} \rightarrow \mathrm{CO}_{2}$
c) $\mathbf{H}_{2} \mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{\mathbf{2}}$

\mathbf{a}	$\mathbf{2} \mathbf{K C l O}_{\mathbf{3}} \rightarrow \mathbf{2} \mathbf{~ K C l}+\mathbf{3} \mathbf{O}_{\mathbf{2}}$	Decombination reaction
\mathbf{b}	$\mathbf{C}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{C O}$	Combination reaction
\mathbf{c}	$\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{O}_{\mathbf{2}}$	Disproportionate reactions

26. Arrange the following based on their reactivity - Justify. $\mathbf{Z n S O}_{4}, \mathrm{AgNO}_{3}$ and $\mathbf{C u S O}_{4}$ (or) Arrange the order of following metals by electron releasing tendency. Copper, silver, zinc. (or) write the descending order of electron releasing tendencies of the $\mathbf{Z n}, \mathrm{Cu}$ and Ag metals. Arrange the metals $\mathbf{Z n}, \mathbf{C u}$ and Ag in the descending order of their electron releasing tendency.

* The correct order is $\mathrm{ZnSO}_{4}>\mathrm{CuSO}_{4}>\mathrm{AgNO}_{3} \quad$ (or) $\mathrm{Zinc}>$ Copper $>$ Silver

5 MARKS

1. Explain determination of Empirical Formula from Elemental Analysis Data.

* Step 1: Since the composition is expressed in percentage, we can consider the total mass of the compound as 100 g and the percentage values of individual elements as mass in grams.
* Step 2: Divide the mass of each element by its atomic mass. This gives the relative number of moles of various elements in the compound.
* Step 3: Divide the value of relative number of moles obtained in the step 2 by the smallest number of them to get the simplest ratio.
* Step 4: (only if necessary) in case the simplest ratios obtained in the step 3 are not whole numbers then they may be converted into whole number by multiplying by a suitable smallest number.

2. What is oxidation number? State the rules to find the oxidation number.

* It is defined as the imaginary charge left on the atom when all other atoms of the compound have been removed in their usual oxidation states that are assigned according to set of rules. A term that is often used interchangeably with oxidation number is oxidation state
* The oxidation state of a free element (i.e. in its uncombined state) is zero.

Example : each atom in $\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{Na}, \mathrm{S}_{8}$ have the oxidation number of zero.

* For a monatomic ion, the oxidation state is equal to the net charge on the ion.

Example : The oxidation number of sodium in Na^{+}is +1 .
The oxidation number of chlorine in Cl^{-}is -1 .

* The algebric sum of oxidation states of all atoms in a molecule is equal to zero, while in ions, it is equal to the net charge on the ion.
* Hydrogen has an oxidation number of +1 in all its compounds except in metal hydrides where it has - 1 value.

Example: Oxidation number of hydrogen in hydrogen chloride (HCl) is +1 . Oxidation number of hydrogen in sodium hydride (NaH) is -1 .

* Fluorine has an oxidation state of -1 in all its compounds.
* The oxidation state of oxygen in most compounds is -2 . Exceptions are peroxides, super oxides and compounds with fluorine. Example : Oxidation number of oxygen in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is -2 .
* Alkali metals have an oxidation state of +1 and alkaline earth metals have an oxidation state of + 2 in all their compounds.

Problems related to Mole concept:

1. How many moles of \mathbf{H}_{2} is required to produce 10 moles of NH_{3} ?

The balanced stoichiometric equation for the formation of ammonia is

$$
\begin{aligned}
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) & \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
2 \text { moles of } \mathrm{NH}_{3} & =3 \text { moles of } \mathrm{H}_{2} \\
2 \times 10 \text { moles of } \mathrm{NH}_{3} & =3 \text { moles of } \mathrm{H}_{2} \times 10 \text { moles of } \mathrm{NH}_{3}
\end{aligned}
$$

\therefore to produce 10 moles of ammonia $=\frac{3 \text { moles of } \mathrm{H}_{2}}{2 \text { moles of } \mathrm{NH}_{3}} \times 10$ moles of NH_{3}

$$
=15 \text { moles of hydrogen are required. }
$$

2. Calculate the amount of $\mathbf{H}_{\mathbf{2}} \mathrm{O}$ produced by combustion of $\mathbf{3 2} \mathbf{g ~ C H}_{4}$.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

As per the stoichiometric equation, Combustion of 1 mole $(16 \mathrm{~g}) \mathrm{CH}_{4}$ produces 2 moles $(2 \times 18=$ 36 g) of water.
Molar mass of $\mathrm{CH}_{4}=12+(4 \times 1)=16 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass of $\mathrm{H}_{2} \mathrm{O}=(2 \times 1)+16=18 \mathrm{~g} \mathrm{~mol}^{-1}$
Combustion of $32 \mathrm{~g} \mathrm{CH}_{4}$ produces $=\frac{36 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{16 \mathrm{~g} \mathrm{CH}_{4}} \times 32 \mathrm{~g} \mathrm{CH}_{4}$

$$
=72 \mathrm{~g} \text { of water }
$$

3. How much volume of carbon dioxide is produced when 50 g of solid calcium carbonate is heated under standard conditions?

The balanced chemical equation is, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
As per the stoichiometric equation, 1 mole $(100 \mathrm{~g}) \mathrm{CaCO}_{3}$ on heating produces 1 mole CO_{2}
Molar mass of $\mathrm{CaCO}_{3}=40+12+(3 \times 16)=100 \mathrm{~g} \mathrm{~mol}^{-1}$
At STP, 1 mole of CO_{2} occupies a volume of 22.7 litres
\therefore At STP, 50 g of CaCO_{3} on heating produces $=\frac{22.7{\text { litres of } \mathrm{CO}_{2}}_{100 \mathrm{~g} \mathrm{CaCO}_{3}} \times 50 \mathrm{~g} \mathrm{CaCO}_{3},{ }^{2} \mathrm{Ca}^{2}}{}$

$$
=11.35 \text { litres of } \mathrm{CO}_{2}
$$

4. How much volume of chlorine is required to form 11.2 L of HCl at 273 K and 1 atm . pressure?

The balanced equation for the formation of HCl is $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
As per the stoichiometric equation, under given conditions,
To produce 2 moles of $\mathrm{HCl}, 1$ mole of chlorine gas is required
To produce 44.8 litres of $\mathrm{HCl}, 22.4$ litres of chlorine gas are required.
\therefore To produce 11.2 litres of $\mathrm{HCl}=\frac{22.4 \text { litres of } \mathrm{Cl}_{2}}{44.8 \mathrm{~L} \text { of } \mathrm{HCl}} \times 11.2 \mathrm{~L}$ of HCl
$=5.6$ litres of chlorine are required.
5. Calculate the percentage composition of the elements present in magnesium carbonate. How many kilogram of CO_{2} can be obtained by heating 1 kg of 90% pure magnesium carbonate?

The balanced chemical equation is $\mathrm{MgCO}_{3} \xrightarrow{\Delta} \mathrm{MgO}+\mathrm{CO}_{2}$
Molar mass of MgCO_{3} is $84 \mathrm{~g} \mathrm{~mol}^{-1}$.
$84 \mathrm{~g} \mathrm{MgCO}_{3}$ contain 24 g of Magnesium.

$$
\begin{aligned}
& \therefore 100 \mathrm{~g}_{\text {of } \mathrm{MgCO}_{3} \text { contain }=} \frac{24 \mathrm{~g} \mathrm{Mg}}{84 \mathrm{~g} \mathrm{MgCO}} \times 100 \mathrm{~g} \mathrm{MgCO}_{3} \\
&=28.57 \mathrm{~g} \mathrm{Mg} .
\end{aligned}
$$

i.e. percentage of magnesium $=28.57 \%$.

$$
\begin{aligned}
& (24)+(12)+(3 \times 16)=84 \mathrm{~g} \mathrm{~mol}^{-1} \\
& \begin{aligned}
\therefore 100 \mathrm{~g} \mathrm{MgCO}_{3} \text { contain }= & \frac{12 g \mathrm{~g} \mathrm{C}}{84 g \mathrm{MgCo}_{3}} \times 100 \mathrm{~g} \mathrm{MgCO}_{3} \\
& =14.29 \mathrm{~g} \text { of carbon. }
\end{aligned}
\end{aligned}
$$

\therefore Percentage of carbon $=14.29 \%$.
$84 \mathrm{~g} \mathrm{MgCO}_{3}$ contain 48 g of oxygen

$$
\begin{gathered}
\therefore 100 \mathrm{~g} \mathrm{MgCO}_{3} \text { contains }=\frac{48 \mathrm{~g} \mathrm{o}}{84 \mathrm{~g} \mathrm{MgCO}} \times 100 \mathrm{~g} \mathrm{MgCO}_{3} \\
=57.14 \mathrm{~g} \text { of oxygen. }
\end{gathered}
$$

\therefore Percentage of oxygen $=57.14 \%$.
As per the stoichiometric equation, 84 g of 100% pure MgCO_{3} on heating gives 44 g of CO_{2}.
$\therefore 1000 \mathrm{~g}$ of 90% pure MgCO_{3} gives $=\frac{44 \mathrm{~g} \mathrm{o}}{84 \mathrm{~g} \mathrm{MgCO}} \times 90 \% \times 1000 \mathrm{~g}$

$$
\begin{aligned}
& =471.43 \mathrm{~g} \text { of } \mathrm{CO}_{2} \\
& =0.471 \mathrm{~kg} \text { of } \mathrm{CO}_{2}
\end{aligned}
$$

Problems related to Equivalent Mass:

1. Calculate the equivalent mass of $\mathbf{H}_{2} \mathrm{SO}_{4}$ (Mar-19)
$\mathrm{H}_{2} \mathrm{SO}_{4}$ basicity $\quad=2 \mathrm{eq} \mathrm{mol}^{-1}$
Molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+(1 \times 32)+(4 \times 16)$

$$
\begin{aligned}
& =98 \mathrm{~g} \mathrm{~mol}^{-1} \\
E & =\frac{\text { Molar mass of the acid }}{\text { basicity of the acid }}
\end{aligned}
$$

Gram equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{98}{2}=49 \mathrm{~g} \mathrm{eq}^{-1}$
2. Calculate the equivalent mass of KOH .

KOH basicity $\quad=1 \mathrm{eq} \mathrm{mol}^{-1}$
Molar mass of $\mathrm{KOH}=(1 \times 39)+(1 \times 16)+(1 \times 1)$

$$
\begin{aligned}
& =56 \mathrm{~g} \mathrm{~mol}^{-1} \\
E= & \frac{\text { Molar mass of the base }}{\text { Acidity of the base }}
\end{aligned}
$$

Gram equivalent of $\mathrm{KOH}=\frac{56}{2}=56 \mathrm{~g} \mathrm{eq}^{-1}$
3. Calculate the equivalent mass of Mn in KMnO_{4} (in acid medium). (or) calculate the equivalent mass of potassium permanganate. The reduction Half reaction is acid medium is $\mathbf{M n O}_{4}{ }^{-}+\mathbf{8 H} \mathbf{H}^{+}+$ $\mathbf{5} \mathrm{e}^{-} \rightarrow \mathbf{M n}^{\mathbf{2 +}}+\mathbf{4} \mathbf{H}_{\mathbf{2}} \mathbf{O}$.
KMnO_{4} is an oxidizing agent,
Molar mass of $\mathrm{KMnO}_{4}=(1 \times 39)+(1 \times 55)+(4 \times 16)$

$$
=158 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{n}=5 \mathrm{eq} \mathrm{mol}^{-1}$

$$
E=\frac{\text { Molar mass of the oxiding agent }}{\text { no of moles of electron gained }} \begin{aligned}
& \text { by one mole of the oxiding agent }
\end{aligned}
$$

Equivalent mass of $\mathrm{KMnO}_{4}=\frac{158}{5}=31.6 \mathrm{~g} \mathrm{eq}^{-1}$

Problems related to Molecular and Empirical formula:

1. An acid found in tamarinds on analysis shows following percentage composition: $\mathbf{3 2 \%}$ Carbon; 4\% Hydrogen; 64\% Oxygen. Find the empirical formula of the compound.

Element	$\%$	Molar mass	Relative no.of moles	Simplest ratio	Simplest ratio (in whole number)
C	32	12	$\frac{32}{12}=2.66$	$\frac{2.66}{2.66}=1$	2
H	4	1	$\frac{4}{1}=4$	$\frac{4}{2.66}=1.5$	3
O	64	16	$\frac{64}{16}=4$	$\frac{4}{2.66}=1.5$	4

The empirical formula is $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{3}$
2. An organic compound present in vinegar has 40 \% carbon, 6.6 \% hydrogen and 53.4 \% oxygen. Find its Empirical formula.

Element	$\%$	Atomic mass	Relative no.of moles	Simplest ratio	Simplest ratio (in whole number)
C	40	12	$\frac{40}{12}=3.3$	$\frac{3.3}{3.3}=1$	1
H	6.6	1	$\frac{6.6}{1}=6.6$	$\frac{6.6}{3.3}=2$	2
O	53.4	16	$\frac{53.4}{16}=3.3$	$\frac{3.3}{3.3}=1$	1

The empirical formula is $\mathrm{CH}_{2} \mathrm{O}$
3. A compound having the empirical formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ has the vapour density 47. Find its Molecular formula. (Mar-19)

$$
\begin{aligned}
& \text { Empirical formula }=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O} \\
& \qquad \begin{aligned}
n & =\frac{\text { molecular mass }}{\text { calculated empirical formula mass }} \\
& =\frac{2 x \text { vapour density }}{94} \\
& =\frac{2 \times 47}{94}=1
\end{aligned} \\
& \text { Molecular Formula }\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right) \times 1=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}
\end{aligned}
$$

Problems related to Oxidation state:

1. Calculate oxidation number of oxygen in $\mathrm{H}_{2} \mathrm{O}_{2}$. (Mar-19)

S.No	Oxidation number of the element	Compound	Calculation
1	O	$\mathrm{H}_{2} \mathrm{O}_{2}$	$2(+1)+2 \mathrm{x}=0$ $2 \mathrm{x}=-2$ $x=-1$

2. Calculate the oxidation number of underlined elements. a) $\mathbf{C O}_{\mathbf{2}}$
b) $\mathbf{H}_{2} \mathbf{S O}_{4}$ (May-22)

S.No	Oxidation number of the element	Compound	Calculation
1	C	CO_{2}	$\mathrm{x}+2(-2)=0$ $\mathrm{x}=+4$
2	S	$\mathrm{H}_{2} \mathrm{SO} 4$	$2(+1)+\mathrm{x}+4(-2)=0$ $2+x-8=0$ $x=+6$

3. Find the oxidation state of underlined element:
a) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
b) $\mathrm{CH}_{2} \mathrm{~F}_{2}$
c) $\underline{S O}_{2}$
d) MnO_{4}^{-}
e) $\underline{\mathrm{OF}}_{2}$
f) KO_{2}
g) $\mathrm{Na}_{2} \underline{\mathbf{S}}_{2} \mathrm{O}_{3}$
h) KClO_{3}
i) HNO_{3}
j) $\mathrm{Cr}_{2} \mathrm{O}_{3}$

S.No	Oxidation number of the element	compound	Calculation
1	Cr	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$	$\begin{aligned} & 2 x+7(-2)=-2 \\ & 2 x-14=-2 \\ & x=+6 \end{aligned}$
2	C	$\mathrm{CH}_{2} \mathrm{~F}_{2}$	$\begin{aligned} & \mathrm{x}+2(+1)+2(-1)=0 \\ & \mathrm{x}=0 \end{aligned}$
3	S	SO_{2}	$\begin{aligned} & \mathrm{x}+2(-2)=0 \\ & \mathrm{x}=+4 \end{aligned}$
4	Mn	$\mathrm{MnO}_{4}{ }^{-}$	$\begin{aligned} & x+4(-2)=-1 \\ & x=-1+8 \\ & x=+7 \end{aligned}$
5	O	OF_{2}	$\begin{aligned} & x+2(-1)=0 \\ & x=+2 \end{aligned}$
6	O	KO_{2}	$\begin{aligned} & +1+2 x=0 \\ & 2 x=-1 \\ & x=-1 / 2 \end{aligned}$

Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com

7	S	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	$2(+1)+2 \mathrm{x}+3(-2)=0$ $2 \mathrm{x}+2-6=0$ $2 \mathrm{x}=+4$ $\mathrm{x}=+2$
8	Cl	KClO_{3}	$(+1)+\mathrm{x}+3(-2)=0$ $\mathrm{x}+1-6=0$ $\mathrm{x}=+5$
9	N	HNO_{3}	$+1+\mathrm{x}+3(-2)=0$ $\mathrm{x}+1-6=0$ $\mathrm{x}=+5$
10	Cr	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$2 \mathrm{x}+3(-2)=0$ $2 \mathrm{x}-6=0$ $2 \mathrm{x}=6$ $\mathrm{x}=3$

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

