COMMON FIRST REVISION TEST - 2023

Standard XII

Reg.No.:

MATHEMATICS

Time: 3.00 hrs.

Part - I

Marks: 90

I. Choose the correct answer:

20 x 1 = 20

1. $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is

2. If $|z-2+i| \le 2$, then the greatest value of |z| is

- a) $\sqrt{3} 2$
- b) $\sqrt{3} + 2$
- c) $\sqrt{5} 2$
- d) $\sqrt{5} + 2$

3. If AT AT is symmetric, then A2 = ?

- a) A-1
- b) (ATP
- c) AT
- d) (A-1)2

4. $\cos^{-1} \left(\sqrt{3} \right)$ - The principal value

- c) $5\pi/6$

5. If α, β and γ are the zero's of $x^3 + px^2 + qx + r$ then $\sum_{\alpha=1}^{\infty}$ is

- a) $-\frac{q}{r}$ b) $-\frac{p}{r}$ c) $\frac{q}{r}$

6. If $(1 + i) (1 + 2i) (1 + 3i) \dots (1 + ni) = x + iy$ then the value of 2.5.10... (1 + ni) = x + iyn²) is a) 1 b) i c) $x^2 + y^2$

- d) 1 + n²

7. The radius of the circle $3x^2 + by^2 + 4bx - 6by + b^2 = 0$ is

- a) 1

- d). $\sqrt{11}$

8. The general equation of a circle with centre (-3,-4) and radius 3 units is

- a) $x^2 + y^2 6x + 8y + 16 = 0$
- b) $x^2 + y^2 6x 8y + 16 = 0$
- c) $x^2 + y^2 + 6x 8y + 16 = 0$
- (d) $x^2 + y^2 + 6x + 8y + 16 = 0$

9. If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$, then the value of \vec{a} , \vec{b} , \vec{c}

- a) | a | | b | | c | b) 1/3 | a | | b | | c | c) 1

10. The value of $\int_{0}^{1} x(1-x)^{99} dx$ is

- b) $\frac{1}{11000}$

11. The minimum value of the function |3x - x| + 9 is

- a) 0

12. The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$ z=2 and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is

- a) 7/6
- C) T/2

13. If $f(x) = \frac{x}{x+1}$ then its differential is

$$\frac{1}{x+1}dx$$

c)
$$\frac{-1}{x+1}$$
 dx

$$\frac{-1}{(x+1)^2}dx$$

14. The value of
$$\int_0^\infty e^{-3x} x^2 dx$$
 is

15. The solution of
$$\frac{dy}{dx} + P(x)y = 0$$
 is

a)
$$y = ce^{\int Pdx}$$
 b) $y = ce^{\int Pdx}$ c) $x = ce^{\int Pdy}$

d)
$$x = ce^{\int Pdy}$$

16. Angle between
$$y^2 = x$$
 and $x^2 = y$ at the orgin is

a)
$$tan^{-1}(3/4)$$
 b) $tan^{-1}(4/3)$

17. The solution of the differential equation
$$\frac{dy}{dx} = 2xy$$
 is

a)
$$y = ce^{x^2}$$

b)
$$y = 2x^2 + c$$

a)
$$y = ce^{x^2}$$
 b) $y = 2x^2 + c$ c) $x = ce^{-x^2}$

$$d) x = x^2 + c$$

18. If
$$P(X = 0) = 1 - P(X = 1)$$
 if $E(X) = 3 \text{ var}(X)$, then $P(X = 0)$ is

a)
$$\frac{2}{3}$$

a)
$$\frac{2}{3}$$
 b) $\frac{2}{5}$ c) $\frac{1}{5}$

19. The operation * defined by a * b = ab/7 is not a binary operation on

20. The value of the limit
$$\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$$
 is

- a) 0
- b) 1

Part - II

II. Answer any 7 questions. (Q.No.30 is compulsory)

 $7 \times 2 = 14$

21. If
$$adj A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, find A⁻¹.

- 22. Find a polynomial equation of minimum degree with rational co-efficients, having $2-\sqrt{3}$ as a root.
- 23. Simplify $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3$ into rectangular form.
- 24. Find the principal value of $tan^{-1}(\sqrt{3})$
- 25. Obtain the equation of the circle for which (3,4) and (2,-7) are the ends of a diameter.
- 26. If \vec{a} , \vec{b} , \vec{c} are the three vectors, prove that $|\vec{a} + \vec{c}$, $|\vec{a} + \vec{b}$, $|\vec{a} + \vec{b} + \vec{c}| = |\vec{a}$, $|\vec{b}$, $|\vec{c}|$

XII Maths

27. Find df for $f(x) = x^2 + 3x$ and evaluate it for x = 2 and dx = 0.1

xcosxdx 28. Evaluate:

29. Write the Maclaurin series expansion of the following function :ex

30. Show that ~(p \ q) = ~p \ ~q

III. Answer any 7 questions. (Q.No.40 is compulsory)

7 x 3 = 21

31. Solve the following system of linear equation using Matrix inversion method: 5x + 2y = 3, 3x + 2y = 5

32. If z_1 , z_2 and z_3 are three complex numbers such that $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|z_1 + z_2 + z_3| = 1$, show that $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 6$ 33. Show that the equation $x^9 - 5x^5 + 4x^4 + 2x^2 + 1 = 0$ has atleast 6 imaginary solutions.

34. Prove that $tan(sin^{-1}x) = \frac{x}{\sqrt{1-x^2}}, -1 < x < 1$

35. The equation $y = \frac{1}{32}x^2$ models cross sections of parabolic mirrors that are used for solar energy, there is heating tube located at the focus of each parabola: How high is this tube located above the vertex of the parabola?

36. Evaluate: $x \to 1$ $\left(\frac{x^2 - 3x + 2}{x^2 - 4x + 3}\right)$

37. Use the linear approximation to find approximate value of (123)23

38. Let $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ be any three boolean

matrices of the same type, find (i) A v B ii) A A B

39. Find the mean and variance of a random variable X, whose probability density

function is $f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$

40. Prove that $|\vec{a} \times \vec{b}$, $|\vec{b} \times \vec{c}$, $|\vec{c} \times \vec{a}| = |\vec{a}$, $|\vec{b}$, $|\vec{c}|$

Part - IV

IV. Answer all the questions.

 $7 \times 5 = 35$

Solve the following systems of linear equations by Cramer's rule:

$$\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 = 0, \quad \frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0, \quad \frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$$
(OR)

Prove by vector method that $sin(\alpha + \beta) = sin\alpha cos\beta + cos\alpha sin\beta$

- 42. a) If z = x + iy is a complex number such that $Im = \left(\frac{2z+1}{iz+1}\right) = 0$, show that the locus of z is $2x^2 + 2y^2 + x 2y = 0$ (OR)
 - b) Prove that $tan^-ix + tan^-iy + tan^-iz = tan^{-1} \left[\frac{x + y + z xyz}{1 xy yz zx} \right]$
- 43 a) If 2 + i and $3 \sqrt{2}$ are roots of equation $x^6 13x^5 + 62x^4 126x^3 + 65x^2 + 127x 140 = 0$, find all roots.

b) Find the vertex, focus, equation of directrix and length of the latus rectum of the following and draw the graph $y^2 - 4y - 8x + 12 = 0$

- 44. a) A bridge has a parabolic arch that is 10 m high in the centre and 30 m wide at the bottom. Find the height of the arch 6 m from the centre, on either sides.
 - b) Show that the angle between the curves $y = x^2$ and $x = y^2$ at (0,0) and (1,1) is $\frac{\pi}{2}$ and $\tan^{-1}(\frac{3}{4})$
- 45. a) Find the local extrema of the function $f(x) = 4x^6 6x^4$
 - b) Find the parametric vector, non parametric vector and cartesian form of the equations of the plane passing through the three non-collinear points (3,6,-2) (-1,-2,6) and (6,4,-2)
- Prove that $g(x,y) = x \log(\frac{y}{x})$ is homogeneous, what is the degree? Verify Euler's theorem for g.
 - (OR)

 The growth of population is proportional to the number present. If the population of a colony doubles in 50 years, in how many years will the population become triple?
- 47. a) Find the area of the region bounded between the parables $y^2 = 4x$ and $x^2 = 4y$ (OR)
 - b) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R \{0\} \right\}$ and let * be the matrix multiplication. Determine whether M closed under *. If so, examine the commutative, associate, identity and inverse properties for the operation * on M.

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.con