CENTUM ACHIEVERS' ACADEMY 56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.NO.7667761819 TIME: 2 ½ Hrs XII STD(MATHS) **FULL PORTION - 1 MARKS: 90** PART-I

Choose the correct answer from the given four alternatives:

 $(20 \times 1 = 20)$

1. If
$$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
, then $A =$

- $(1)\begin{bmatrix}1 & -2\\1 & 4\end{bmatrix} \qquad (2)\begin{bmatrix}1 & 2\\-1 & 4\end{bmatrix} \qquad (3)\begin{bmatrix}4 & 2\\-1 & 1\end{bmatrix}$
- $(4)\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$

2. If
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

- $(1)\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix} \qquad (2)\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix} \qquad (3)\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \qquad (4)\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$

- 3. If z is a non zero complex number, such that $2iz^2 = \bar{z}$ then |z| is
 - $(1)^{\frac{1}{2}}$ (2) 1
- (3) 2
- (4) 3
- 4. The product of all four values of $\left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$ is
 - (1) -2
- (2) -1

- (4)2
- 5. The number of real numbers in $[0,2\pi]$ satisfying $\sin^4 x 2\sin^2 x + 1$ is
 - (1) 2
- (3) 1
- 6. The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is
 - (1)[1,2]
- (2)[-1,1]
- (3) [0,1]
- (4)[-1,0]
- 7. $\sin(\tan^{-1} x), |x| < 1$ is equal to $(1) \frac{x}{\sqrt{1-x^2}} \qquad (2) \frac{1}{\sqrt{1-x^2}} \qquad (3) \frac{1}{\sqrt{1+x^2}}$

- 8. The radius of the circle $3x^2 + by^2 + 4bx 6by + b^2 = 0$ is
 - (1) 1
- (2)3
- $(3)\sqrt{10}$
- 9. The volume of the parallelepiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{i} + \hat{j} + \pi \hat{k}$ is
 - $(1)^{\frac{\pi}{2}}$
- $(2)^{\frac{\pi}{2}}$
- $(3) \pi$
- 10. If the planes $\vec{r} \cdot (2\hat{\imath} \lambda \hat{\jmath} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{\imath} + \hat{\jmath} \mu \hat{k}) = 5$ are parallel, then the value of λ and μ are
- $(1)\frac{1}{2},-2$ $(2)-\frac{1}{2},2$ $(3)-\frac{1}{2},-2$ $(4)\frac{1}{2},2$
- 11. The minimum value of the function |3 x| + 9 is
 - (1)0
- (2)3
- (4)9

12.	12. The abscissa of the point on the curve $f(x) = \sqrt{8-2x}$ at which the slope of the tangent is -0.25 ?							
	(1) -8	(2) -4		(3) -2		(4) 0		
13.	3. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?							
	$(1)\frac{1}{31} \qquad (2)\frac{1}{5}$		(3) 5		(4) 31			
14. If $w(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$ is								
	(1) xy + yz + zx		(2) x(y+z)		(3) y(z+x)		(4) 0	
15.	15. The value of $\int_0^1 x(1-x)^{99} dx$ is							
	$(1)\frac{1}{11000}$		$(2)\frac{1}{10100}$		$(3)\frac{1}{10010}$	4	$(4)\frac{1}{10001}$	
16.	16. The value of $\int_0^a \left(\sqrt{a^2 - x^2}\right)^3 dx$ is							
	$(1)\frac{\pi a^3}{16}$	$(2)\frac{3\pi a}{16}$	<u>4</u>	$(3)\frac{3\pi a}{8}$	2	$(4)\frac{3\pi a}{8}$	4	
17. The integrating factor of the differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ is x , then $P(x)$								
	(1) <i>x</i>	$(2)\frac{x^2}{2}$	A	$(3)\frac{1}{x}$		$(4)\frac{1}{x^2}$		
18.	18. The number of arbitrary constants in the particular solution of a differential equation of third order is							
	(1) 3	(2) 2		(3) 1	1	(4) 0		
19.	19. A random variable X has binomial distribution with $n=25$ and $p=0.8$ then standard deviation of X is							
	(1) 6	(2) 4	(3) 3		(4) 2			
20. The proposition $p \land (\neg p \lor q)$ is								
	(1) a tautology ((2) a contradiction			
	(3) logically equivalent to $p \land q$ (4) logically equivalent to $p \lor q$							
PART-II								
(i)	Answer any S	SEVEN o	questions.				$(7\times2=14)$	
(ii)	Qn.No.30 is co	ompuls	ory				1/6/1	
21. Simplify $\sum_{n=1}^{10} i^{n+50}$ 22. Show that, if p , q , r are rational, the roots of the equation $x^2 - 2px + p^2 - q^2 + 2qr - r^2 = 0$ are rational.								
23. Find the domain of $f(x) = \sin^{-1}\left(\frac{x^2+1}{2x}\right)$								
24. A circle of area 9π square units has two of its diameters along the lines $x + y = 5$ and $x - y = 1$. Find the equation of the circle.								
25. A particle is acted upon by the forces $3\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$ and $2\hat{\imath} + \hat{\jmath} - \hat{k}$ is displaced from the point $(1,3,-1)$ to the point $(4,-1,\lambda)$. If the work done by the forces is 16 units, find the value of λ .								
26. Find the asymptotes of $f(x) = \frac{x^2 + 6x - 4}{3x - 6}$								
	27. Evaluate $\lim_{(x,y)\to(0,0)} \cos\left(\frac{e^x \sin y}{y}\right)$, if the limit exists.							

- 28. Find an approximate value of $\int_{1}^{1.5} x dx$ by applying the left-end rule with the partition $\{1.1, 1.2, 1.3, 1.4, 1.5\}$
- 29. Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
- 30. Suppose two coins are tossed once. If X denotes the number of tails, (i) write down the sample space (ii) find the inverse image of 1 (iii) the values of the random variable and number of elements in its inverse images.

PART-III

(i) Answer any SEVEN questions. $(7 \times 3 = 21)$

(ii) Qn.No.40 is compulsory

31. If adj
$$(A) = \begin{bmatrix} 2 & -4 & 2 \\ -3 & 12 & -7 \\ -2 & 0 & 2 \end{bmatrix}$$
, find A .

- 32. If $\frac{z+3}{z-5i} = \frac{1+4i}{2}$, find the complex number z in the rectangular form
- 33. Find the value of $\cos^{-1} \left(\cos \left(\frac{4\pi}{3} \right) \right) + \cos^{-1} \left(\cos \left(\frac{5\pi}{4} \right) \right)$
- 34. Find the equation of the circle described on the chord 3x + y + 5 = 0 of the circle $x^2 + y^2 = 16$ as diameter.
- 35. If $v(x, y) = \log\left(\frac{x^2 + y^2}{x + y}\right)$, prove that $x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} = 1$
- 36. Find the volume of a right-circular cone of base radius *r* and height *h*.
- 37. Solve the differential equations $\frac{dy}{dx} = e^{x+y} + x^3 e^y$
- 38. If $X \sim B(n, p)$ such that 4P(X = 4) = P(X = 2) and n = 6. Find the distribution, mean and standard deviation of *X*.
- 39. Prove $p \to (q \to r) \equiv (p \land q) \to r$ without using truth table.
- 40. Find the angle between $y = x^2$ and $y = (x 3)^2$.

PART-IV

Answer the following questions.

 $(7 \times 5 = 35)$

41. a) If $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find the products AB and BA and hence solve the system

of equations
$$x - y + z = 4$$
, $x - 2y - 2z = 9$, $2x + y + 3z = 1$. **(OR)**
b) Evaluate $\sin \left[\sin^{-1} \left(\frac{3}{5} \right) + \sec^{-1} \left(\frac{5}{4} \right) \right]$
a) Find all cube roots of $\sqrt{3} + i$. **(OR)**

- 42. a) Find all cube roots of $\sqrt{3} + i$. **(OR)**
 - b) A particle is acted upon by the forces $3\hat{i} 2\hat{j} + 2\hat{k}$ and $2\hat{i} + \hat{j} \hat{k}$ is displaced from the point (1,3,-1) to the point $(4, -1, \lambda)$. If the work done by the forces is 16 units, find the value of λ .
- 43. a) By using Gaussian elimination method, balance the chemical reaction equation:

$$C_5H_8 + O_2 \rightarrow CO_2 + H_2O$$
. (OR)

b) Solve the equation : (2x-3)(6x-1)(3x-2)(x-2)-5=0.

- 44. a) A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16 m, and the height at the edge of the road must be sufficient for a truck 4m high to clear if the highest point of the opening is to be 5m approximately . How wide must the opening be? **(OR)**
 - b) Solve $(1 + x^3) \frac{dy}{dx} + 6x^2y = 1 + x^2$
- 45. a) Evaluate $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$ (**OR**)
 - b) If we blow air into a balloon of spherical shape at a rate of 1000 cm³ per second, at what rate the radius of the baloon changes when the radius is 7 cm? Also compute the rate at which the surface area changes.
- 46. a) The mean and standard deviation of a binomial variate \boldsymbol{X} are respectively 6 and 2 .

Find (i) the probability mass function (ii) P(X = 3) (iii) $P(X \ge 2)$.(OR)

- b) If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$.
- 47. a) The curve $y = (x 2)^2 + 1$ has a minimum point at P. A point Q on the curve is such that the slope of PQ is 2 . Find the area bounded by the curve and the chord PQ.(**OR**)
 - b) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation $+_5$ on \mathbb{Z}_5 using table corresponding to addition modulo 5.

Facademic excellence

SARATH KUMAR.S P.G.ASSISTANT, COIMBATORE-6.