

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

Common First Model Exam 2022 – 23 – Kanyakumari District CLASS - XII **MATHEMATICS**

Time Allowed: 3 Hrs Maximum Marks: 90

PART - I

I. Answer ALL questions.

20x1 = 20

1) If A is a 3×3 non-singular matrix such that $AA^T = A^T A$ and $B = A^{-1}A^T$, then $BB^T =$

(2) B

2) If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then adj(adj A) is

$$(1) \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
(2) & 6 & -6 & 8 \\
4 & -6 & 8 \\
0 & -2 & 2
\end{array}$$

3) The principal argument of the complex number $\frac{\left(1+i\sqrt{3}\right)^2}{4i\left(1-i\sqrt{3}\right)}$ is

- (2) $\frac{\pi}{6}$

4) If α, β , and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{\alpha}$ is

- $(2) \frac{p}{}$

 $(4) - \frac{q}{r}$

5) $\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) =$

(1) $\frac{\pi}{2}$

(3) $\frac{\pi}{4}$

6) $\sin(\tan^{-1} x)$, |x| < 1 is equal to

- (1) $\frac{X}{\sqrt{1-x^2}}$
- (2) $\frac{1}{\sqrt{1-v^2}}$
- (3) $\frac{1}{\sqrt{1+v^2}}$
- (4) $\frac{x}{\sqrt{1+x^2}}$

7) If x + y = k is a normal to the parabola $y^2 = 12x$, then the value of k is

(1) 3

(2) -1

(3) 1

(4) 9

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

- 8) The radius of the circle $3x^2 + by^2 + 4bx 6by + b^2 = 0$ is
 - (1) 1

(3) $\sqrt{10}$

- 9) The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$, z = 2 and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is
 - (1) $\frac{\pi}{6}$

(3) $\frac{\pi}{3}$

- (4) $\frac{\pi}{2}$
- 10) If the planes $\vec{r} \cdot (2\hat{i} \lambda\hat{j} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{i} + \hat{j} \mu\hat{k}) = 5$ are parallel, then the value of λ and μ are
 - $(1) \frac{1}{2}, -2$
- $(2) -\frac{1}{2}, 2$

- $(3) -\frac{1}{2}, -2$
- $(4) \frac{1}{2}, 2$
- 11) The maximum value of the function x^2e^{-2x} , x > 0 is
 - $(1)^{\frac{1}{-}}$

- $(2) \frac{1}{2a}$
- (3) $\frac{1}{a^2}$
- $(4) \frac{4}{a^4}$
- 12) The point of inflection of the curve $y = (x-1)^3$ is
 - (1) (0,0)
- (2)(0,1)
- (3)(1,0)
- (4)(1,1)

- 13) If $f(x, y) = e^{xy}$, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to
 - (1) xye^{xy}
- (2) $(1+xy)e^{xy}$
- (3) $(1+y)e^{xy}$
- (4) $(1+x)e^{xy}$

- 14) If f(x, y, z) = xy + yz + zx, then $f_x f_z$ is equal to
 - (1) z-x
- (2) y z
- (3) x z
- (4) y x

- 15) The value of $\int_0^\infty e^{-3x} x^2 dx$ is

 - (1) $\frac{7}{27}$ (2) $\frac{5}{27}$

- $(3) \frac{4}{27}$
- $(4) \frac{2}{27}$
- 16) If $\int_0^x f(t) dt = x + \int_x^1 t f(t) dt$, then the value of f(1) is
 - $(1) \frac{1}{2}$

(2) 2

- (3) 1
- $(4) \frac{3}{4}$

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

17)	The number of arbitrary	constants in	the par	rticular	solution	of a c	differential	equation	of third
	order is								

(1) 3

(2) 2

(3) 1

(4) 0

18)P is the amount of certain substance left in after time t. If the rate of evaporation of the substance is proportional to the amount remaining, then

(1) $P = Ce^{kt}$

 $(2) \quad P = Ce^{-kt}$

(3) P = Ckt

(4) Pt = C

19) A random variable *X* has binomial distribution with n = 25 and p = 0.8 then standard deviation of *X* is

(1) 6

(2)4

(3) 3

(4) 2

20) If a compound statement involves 3 simple statements, then the number of rows in the truth table is

(1) 9

(2) 8

(3) 6

(4)

PART – II

II. Answer any SEVEN questions. Question 30 is compulsory

7x2 = 14

21) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$ by reducing it to a row-echelon form.

22) Prove that a straight line and parabola cannot intersect at more than two points.

23) Find the square root of 6-8i.

24) If $\cot^{-1}\left(\frac{1}{7}\right) = \theta$, find the value of $\cos\theta$.

25) The probability density function of *X* is given by $f(x) = \begin{cases} k x e^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$.

Find the value of k.

26) Find the centre and radius of the circle $3x^2 + (a+1)y^2 + 6x - 9y + a + 4 = 0$.

27) Compute the value of c' satisfied by the Rolle's theorem for the function

$$f(x) = x^2(1-x)^2, x \in [0,1].$$

28) Determine the order and degree (if exists) of the following differential equation:

$$\left(\frac{d^4y}{dx^4}\right)^3 + 4\left(\frac{dy}{dx}\right)^7 + 6y = 5\cos 3x$$

29) Verify De-Morgans Theorems using Truth Table.

ANNE'S ACADEMY

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

30) Find the acute angle between the planes $\vec{r} \cdot (2\hat{i} + 2\hat{j} + 2\hat{k}) = 11$ and 4x - 2y + 2z = 15

PART - III

III. Answer any SEVEN questions. Question 40 is compulsory

7x3 = 21

- 31) Find the inverse of $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ by Gauss-Jordan method.
- 32) If the roots of $x^3 + px^2 + qx + r = 0$ are in H.P., prove that $9pqr = 27r^2 + 2q^3$. Assume $p, q, r \neq 0$
- 33) Solve $\tan^{-1} \left(\frac{1-x}{1+x} \right) = \frac{1}{2} \tan^{-1} x$ for x > 0.
- 34) Show that the equation $z^3 + 2\overline{z} = 0$ has five solutions.
- 35) Find the equations of tangent and normal to the ellipse $x^2 + 4y^2 = 32$ when $\theta = \frac{\pi}{4}$.
- 36) The cumulative distribution function of a discrete random variable is given by

$$F(x) = \begin{cases} 0 & -\infty < x < -1 \\ 0.15 & -1 \le x < 0 \\ 0.35 & 0 \le x < 1 \\ 0.60 & 1 \le x < 2 \\ 0.85 & 2 \le x < 3 \\ 1 & 3 \le x < \infty \end{cases}$$

Find the probability mass function.

- 37) If D is the midpoint of the side BC of a triangle ABC, show by vector method that $|\overline{AB}|^2 + |\overline{AC}|^2 = 2(|\overline{AD}|^2 + |\overline{BD}|^2)$.
- 38) Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile with a circular base whose height and diameter of base are always equal. How fast is the height of the
- 39) Write down the (i) conditional statement (ii) converse statement (iii) inverse statement, and (iv) contrapositive statement for the two statements p and q given below.

p: The number of primes is infinite. q: Ooty is in Kerala.

40) Evaluate: $\lim_{x\to\infty} (1+2x)^{\frac{1}{2\log x}}$

Ph: 948 99 00 886

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

PART - IV

IV. Answer ALL questions.

7x5 = 35

41) a) Determine the values of λ for which the following system of equations $(3\lambda - 8)x + 3y + 3z = 0$, $3x + (3\lambda - 8)y + 3z = 0$, $3x + 3y + (3\lambda - 8)z = 0$ has a non-trivial solution.

OR

- b) Find the parametric form of vector equation, and Cartesian equations of the plane containing the line $\vec{r} = (\hat{i} \hat{j} + 3\hat{k}) + t(2\hat{i} \hat{j} + 4\hat{k})$ and perpendicular to plane $\vec{r} \cdot (\hat{i} + 2\hat{j} + \hat{k}) = 8$.
- 42) a) The probability density function of X is given by $f(x) = \begin{cases} ke^{-\frac{x}{3}} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$
 - Find (i) the value of k (ii) the distribution function (iii) P(X < 3)
 - (iv) $P(5 \le X)$ (v) $P(X \le 4)$.

OR

- b) Find, by integration, the area of the region bounded by the lines 5x 2y = 15, x + y + 4 = 0 and the x-axis.
- 43) a) Identify the type of conic and find centre, foci, vertices, and directrices of the following:

$$\frac{(x+3)^2}{225} - \frac{(y-4)^2}{64} = 1$$

OR

- b) Let $U(x, y) = e^x \sin y$, where $x = st^2$, $y = s^2t$, $s, t \in \mathbb{R}$. Find $\frac{\partial U}{\partial s}, \frac{\partial U}{\partial t}$ and evaluate them at s = t = 1.
- 44) a) If a_1 , a_2 , a_3 , ... a_n is an arithmetic progression with common difference d, prove that $\tan^{-1}\left(\frac{d}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{d}{1+a_2a_3}\right) + ... + \tan^{-1}\left(\frac{d}{1+a_1a_2}\right) = \frac{a_n a_1}{1+a_1a_2}$.

OR

b) Solve the following Linear differential equations:

$$\left(y - e^{\sin^{-1}x}\right) \frac{dx}{dy} + \sqrt{1 - x^2} = 0$$

45) a) Solve the equation $z^3 + 8i = 0$, where $z \in \mathbb{C}$.

Ph: 948 99 00 886

ANNE'S ACADELLY

ANNE'S ACADEMY

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

OR

b) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication. Determine whether M is closed under * . If so, examine the commutative and associative properties satisfied by * on M . If so, examine the existence of identity, existence of inverse properties for the operation * on M .

46) a) Solve the following equation: $x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$.

OR

- b) Prove that the ellipse $x^2 + 4y^2 = 8$ and the hyperbola $x^2 2y^2 = 4$ intersect orthogonally.
- 47) a) On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4*m* when it is 6*m* away from the point of projection. Finally it reaches the ground 12*m* away from the starting point. Find the angle of projection.

OR

b)Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, show that $[\vec{a}, \vec{b}, \vec{c}]^2 = \frac{1}{4} |\vec{a}|^2 |\vec{b}|^2$.

St. Anne's Academy

Holy Cross College Road, I Floor - Jafro Dental Clinic, Punnai Nagar, Nagercoil - 4

Ph: 948 99 00 886
