


poon thotta pathai hindu mission hospital opposite - villupuram 1m, 2m, 5m, 8 Marks

Important Question with Solution

Life is a Good Circle, You Choose the Best Radius,

10<sup>th</sup>

ALL SUBJECT
QUESTION BANK

PRICE

TAMIL-RS. 100

ENGLISH -Rs. 100

MATHS -150

SCIENCE -RS.120

SOCIAL SCIENCE-RS. 120

ONLY MATHS

**TUITION** 

STANDARD - of TO 12th

CONTACT

9629216361

Rs.150

# ONE MARK QUESTIONS BOOKBACK

## UNIT.I

## **RELATIONS AND FUNCTIONS**

| (A) 1                                           | (B) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) 3                                      | (D) 6                                                          |                                                                                                                                   |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 2. $A = \{a, b, p\}, B = (A) 8$                 | $\{2,3\}, C = \{p,q,r,s\}$ (B) 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | then $n[(A \cup C) \times E$               | B] is (D) 16                                                   |                                                                                                                                   |
| 3. If $A = \{1, 2\}$ , $B = $ statement is true | $\{1, 2, 3, 4\}, C = \{5, A\}, C $ | $= (B \times D)$                           | 8) then state whi<br>(B) $(B \times D)$ (C) $(D \times A)$ (C) | $= (A \times C)$                                                                                                                  |
| 4. If there are 1024 a B is (A) 3               | relations from a set A (B) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = {1, 2, 3, 4, 5} to a so<br>(C) 4         | et $B$ , then the nu                                           | mber of elements in (D) 8                                                                                                         |
| 5. The range of the re<br>(A) {2, 3, 5, 7}      | elation $R = \{(x, x^2) \mid x$<br>(B) $\{2, 3, 5, 7, 11\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is a prime number le <b>(C)</b> {4, 9, 25, |                                                                | (D) {1, 4, 9, 25, 49, 121                                                                                                         |
| 6. If the ordered pair<br>(A) (2, -2)           | s $(a + 2, 4)$ and $(5, 26)$<br>(B) $(5, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (a+b) are equal then $(C)(2,3)$            | (a, b) is <b>(D) (3</b>                                        | , –2)                                                                                                                             |
| 3 5                                             | d $n(B) = n$ then the to<br>(A) $m^n$ (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                                                | at can be defined from $A$ $(D) 2^{mn}$                                                                                           |
| 8. If {(a,8), (6,b)} r (A) (8, 6)               | epresents an identity fo<br>(B) (8, 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | unction, then the valu<br>(C) (6, 8)       | e of a and b are<br>(D) (6,                                    |                                                                                                                                   |
| is a                                            | and $B = \{4, 8, 9, 10\}$ . (A) Many-one function (C) One-to-one fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B) Id                                     | given by $f = \{($ entity function to function                 | 1, 4), (2, 8), (3,9), (4,10)}                                                                                                     |
| 10. If $f(x) = 2x^2$ an                         | d $g(x) = \frac{1}{3x}$ , then $f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g is                                       |                                                                |                                                                                                                                   |
| (A) $\frac{3}{2x^2}$                            | (B) $\frac{2}{3x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (C) $\frac{2}{9x^2}$                       | (D) $\frac{1}{6x^2}$                                           | <del>-</del> |
| 11. If $f: A \to B$ is a <b>(A)</b> 7           | bijective function and i<br>(B) 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f(n(B) = 7,  then  n(A) (C) 1              | A) is equal to<br>(D) 14                                       |                                                                                                                                   |
| $g = \{(0,2), (1,0)\}$                          | two functions given by $(0)$ , $(2, 4)$ , $(-4, 2)$ , $(7, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )} then the range of                       | $f \circ g$ is                                                 |                                                                                                                                   |
|                                                 | B) {-4, 1, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                                                |                                                                                                                                   |
| 13. Let $f(x) = \sqrt{1 - x^2}$                 | then (A) $f($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | f(xy) = f(x).f(y)<br>$f(xy) \le f(x).f(y)$ |                                                                |                                                                                                                                   |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                                | en the values of $\alpha$ and $\beta$<br>2) (D) (1, 2)                                                                            |

| 15. $f(x) = (x + 1)^3 - (A) $ linear                                                                       | $(x-1)^3$ repres                          | sents a function which (C) recipro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | D) quadratic         |             |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|-------------|
|                                                                                                            | 117.11                                    | NUMBERS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                      |             |
| 1. Euclid's division lem $r$ such that $a = bq$ (A) $1 < r < b$                                            | ma states that for                        | r positive integers $a$ and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          | nique integers q a   | nd          |
| 2. Using Euclid's division remainders are                                                                  | on lemma, if the c<br>(A) 0, 1, 8         | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eger is divided by (C) 0, 1, 3                           |                      |             |
| 3. If the HCF of 65 and (A) 4                                                                              | l 117 is expressi<br>( <b>B) 2</b>        | ble in the form of $65n$ (C) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n - 117, then the (D) 3                                  | value of <i>m</i> is |             |
| 4. The sum of the expo                                                                                     | nents of the prim<br>(B) 2                | e factors in the prime f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | actorization of 172<br>(D) 4                             | 29 is                |             |
| 5. The least number the (A) 2025                                                                           | at is divisible by a<br>(B) 5220          | all the numbers from 1<br>(C) 5025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to 10 (both inclusi<br>(D) 25                            |                      |             |
| 6. 7 <sup>4k</sup> =(1                                                                                     | mod 100)                                  | (A) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 2                                                    | (C) 3                | (D) 4       |
| 7. Given $F_1 = 1$ , $F_2 = (A) 3$                                                                         | 3 and $F_n = F_{n-1}$ (B) 5               | $F_{n-1} + F_{n-2}$ then $F_5$ is (C) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) 11                                                   |                      |             |
| 8. The first term of an a following will be a t                                                            |                                           | and the second s |                                                          |                      | ne<br>13531 |
| 9. If 6 times of 6 <sup>th</sup> ter<br>(A) 0                                                              | m of an A.P. is eq<br>(B) 6               | ual to 7 times the 7 <sup>th</sup> (C) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | term, then the 13 (D) 13                                 | th term of the A.P.  | is          |
| 10. An A.P. consists of 3<br>(A) 16 m                                                                      | 31 terms. If its 3 (B) 62 m               | 16 <sup>th</sup> term is <i>m</i> , then the (C) 31 <i>m</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the sum of all the ten<br>(D) $\frac{31}{2}$ m           |                      | District    |
| 11. In an A.P., the first to taken for their sum                                                           | to be equal to 12                         | 0?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | ns of the A.P. must  | be          |
| (A) 6                                                                                                      | (B) 7                                     | (C) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D) 9                                                    |                      |             |
| 12. If $A = 2^{65}$ and $B$<br>(A) $B$ is $2^{64}$ mor<br>(C) $B$ is larger that                           | e than A                                  | (B) A and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the following is tru  B are equal  larger than B         |                      |             |
| 13. The next term of th (A) $\frac{1}{24}$                                                                 | e sequence $\frac{3}{16}$ , $\frac{1}{8}$ | $\frac{1}{12}$ , $\frac{1}{18}$ , is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) $\frac{1}{81}$                                       |                      |             |
|                                                                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01                                                       |                      |             |
| <ul><li>14. If the sequence t<sub>1</sub>,</li><li>(A) a Geometric Pr</li><li>(C) neither an A.P</li></ul> | ogression                                 | (B) an Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $t_6, t_{12}, t_{18},$ is ithmetic Progressiant sequence | ession               |             |
| 15. The value of (1 <sup>3</sup> + (A) 14400                                                               |                                           | 5 <sup>3</sup> ) - (1+2+3+<br>(C) 14286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | 520                  |             |
| 144 10                                                                                                     | /.                                        | 40 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                        | PC:                  | ده ده       |

## UNIT.III

## **ALGEBRA**

- 1. A system of three linear equations in three variables is inconsistent if their planes
  - (A) intersect only at a point

(B) intersect in a line

(C) coincides with each other

- (D) do not intersect
- 2. The solution of the system x + y 3z = -6, -7y + 7z = 7, 3z = 9 is
  - (A) x = 1, y = 2, z = 3

(B) x = -1, y = 2, z = 3

(C) x = -1, y = -2, z = 3

- (D) x = 1, y = -2, z = 3
- 3. If (x-6) is the HCF of  $x^2-2x-24$  and  $x^2-kx-6$  then the value of k is
  - (A)3

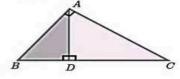
4. 
$$\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$$
 is **(A)**  $\frac{9y}{7}$  (B)  $\frac{9y^3}{(21y-21)}$  (C)  $\frac{21y^2-42y+21}{3y^3}$  (D)  $\frac{7(y^2-2y+1)}{y^2}$ 

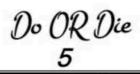
- 5.  $y^2 + \frac{1}{y^2}$  is not equal to (A)  $\frac{y^4 + 1}{y^2}$  (B)  $\left[ y + \frac{1}{y} \right]^2$  (C)  $\left[ y \frac{1}{y} \right]^2 + 2$  (D)  $\left[ y + \frac{1}{y} \right]^2 2$

- 6.  $\frac{x}{x^2 25} \frac{8}{x^2 + 6x + 5}$  gives (A)  $\frac{x^2 7x + 40}{(x 5)(x + 5)}$  (B)  $\frac{x^2 + 7x + 40}{(x 5)(x + 5)(x 5)}$  (C)  $\frac{x^2 7x + 40}{(x^2 25)(x + 1)}$  (D)  $\frac{x^2 + 10}{(x^2 25)(x + 1)}$
- 7. The square root of  $\frac{256 \times 8 y^4 z^{10}}{25 \times 6 y^6 z^6}$  is equal to
  - (A)  $\frac{16}{5} \left| \frac{x^2 z^4}{v^2} \right|$
- (B)  $16 \left| \frac{y^2}{x^2 z^4} \right|$  (C)  $\frac{16}{5} \left| \frac{y}{x z^2} \right|$
- (D)  $\frac{16}{5} \left| \frac{xz^2}{y} \right|$
- 8. Which of the following should be added to make  $x^4 + 64$  a perfect square
  - (A)  $4x^2$
- **(B)**  $16x^2$
- (C)  $8x^2$  (D)  $-8x^2$
- 9. The solution of  $(2x-1)^2 = 9$  is equal to
  - (A) 1
- (B)2
- (C) -1,2 (D) None of these
- 10. The values of a and b if  $4x^4 24x^3 + 76x^2 + ax + b$  is a perfect square are
  - (A) 100, 120
- (B) 10, 12
- (C) -120,100
- (D) 12, 10
- 11. If the roots of the equation  $q^2x^2 + p^2x + r^2 = 0$  are the squares of the roots of the equation  $qx^2 + px + r = 0$ , then q, p, r are in \_\_\_
  - (A) A. P
- (C) Both A. P and G. P
- (D) none of these

- 12. Graph of a linear polynomial is a
  - (A) straight line
- (B) circle
- (C) parabola
- (D) hyperbola
- 13. The number of points of intersection of the quadratic polynomial  $x^2 + 4x + 4$  with the X axis is
  - (A) 0

- (B) 1
- (C) 0 or 1
- 14. For the given matrix  $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{bmatrix}$  the order of the matrix  $A^T$  is
  - $(A) 2 \times 3$
- (B) 3  $\times$  2
- (C) 3  $\times$  4
- (D) 4×3
- 15. If A is a  $2 \times 3$  matrix and B is a  $3 \times 4$  matrix, how many columns does AB have


To achieve your target plan well'


|                                                                   | ww.Fadasalal.Net - No                                                                                                                                     | .1 Educational websi                                                        | te in Tamiinadu                                        |                                                                          |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|
| 16. If number of column (A) diagonal mate (C) square matri        |                                                                                                                                                           | ual in a matrix then it is  (B) rectangula  (D) identity matrix             | r matrix                                               |                                                                          |
| 17. Transpose of a co                                             | lumn matrix is<br>(B) diagonal matr                                                                                                                       | ix (C) column                                                               | matrix (D                                              | ) row matrix                                                             |
|                                                                   | if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 9 & 5 \end{pmatrix}$ $(B) \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$ |                                                                             | $(D)\begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$      |                                                                          |
|                                                                   | wing can be calculated fr                                                                                                                                 |                                                                             | (2) (7)                                                | $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix},$ |
| (i) A <sup>2</sup> (A) (i) and (ii) on                            | (ii) $B^2$<br>ly (B) (ii) and (iii)                                                                                                                       | (iii) <i>AB</i> (iv) only <b>(C) (ii) ar</b>                                | nd (iv) only                                           | (D) all of these                                                         |
| 20. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ | $, B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix} $ and $C$                                                                                   | $= \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$ . Which of t              | the following state                                    | ments are correct?                                                       |
| $(i) AB + C = \begin{pmatrix} 5\\5 \end{pmatrix}$                 | $ \begin{pmatrix} 5 \\ 5 \end{pmatrix} \qquad \text{(ii) } BC = \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix} $                                              | $\begin{pmatrix} 1 \\ -3 \\ 10 \end{pmatrix} \qquad \text{(iii) } BA + C =$ | $\begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$ (iv) (A | $AB)C = \begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$                |
| (A) (i) and (ii)                                                  | only (B) (ii) and                                                                                                                                         | (iii) only (C) (iii)                                                        | and (iv) only                                          | (D) all of these                                                         |
|                                                                   | UNIT.IV                                                                                                                                                   | GEOMETR'                                                                    | Y                                                      |                                                                          |
| 1. If in triangles ABC                                            | and EDF, $\frac{AB}{DE} = \frac{BC}{FD}$ , the                                                                                                            | en they will be similar, w                                                  | vhen                                                   |                                                                          |
|                                                                   | (B) $\angle A = \angle D$                                                                                                                                 |                                                                             |                                                        | $A = \angle F$                                                           |
| 2. In $\triangle LMN$ , $\angle L = 6$ (A) $40^{\circ}$           | 0°, $\angle M = 50^{\circ}$ . If $\Delta LMN$ <b>(B) 70°</b>                                                                                              | $V \sim \Delta PQR$ then the value (C) 30°                                  | e of $\angle R$ is (D) 110°                            |                                                                          |
| 3. If Δ <i>ABC</i> is an iso (A) 2.5 <i>cm</i>                    | sceles triangle with ∠C = (B) 5 cm                                                                                                                        | = 90° and $AC = 5 cm$ , the (C) 10 cm                                       | hen $AB$ is <b>(D)</b> $5\sqrt{2}$ $cm$                |                                                                          |
| of $\Delta PQR$ to the a                                          |                                                                                                                                                           |                                                                             |                                                        | \$ 0                                                                     |
| (A) 25 : 4                                                        | (B) 25:7                                                                                                                                                  | (C) 25:11 (D)                                                               | 25:13 P                                                | T                                                                        |
|                                                                   | two similar triangles $\Delta A$ en the length of $AB$ is                                                                                                 |                                                                             | m and 24 cm respo                                      | ectively.                                                                |
| (A) $6\frac{2}{3} cm$                                             | (B) $\frac{10\sqrt{6}}{3}$ cm                                                                                                                             | (C) $66\frac{2}{3}$ cm                                                      | (D) 15 cm                                              |                                                                          |
| 6. If in $\triangle ABC$ , DE    B                                | C. $AB = 3.6 \ cm, \ AC = 2$                                                                                                                              | .4 cm and $AD = 2.1 cm$                                                     | then the length o                                      | f AE is                                                                  |
| (A) 1.4 cm                                                        | (B) 1.8 cm                                                                                                                                                | (C) 1.2 cm                                                                  | (D) 1.05 cm                                            |                                                                          |
|                                                                   | he bisector of $\angle BAC$ . If A) 6 cm (B) 4                                                                                                            |                                                                             | and $DC = 3 cm$ . (D) 8 cm                             |                                                                          |

8. In the adjacent figure  $\angle BAC = 90^{\circ}$  and  $AD \perp BC$  then
(A)  $BD \cdot CD = BC^2$ (B)  $AB \cdot AC = BC^2$ 



(D)  $AB \cdot AC = AD^2$ 





|                                             | heights 6 $m$ and 11 $n$<br>t is the distance betw          |                                              | on a plane groun                    | d. If the distance between             | n their feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) 13 m                                    | (B) 14 m                                                    | (C) 15 m                                     | (D) 1                               | 12.8 m                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10. In the given fi $QA = 8 cm$ .           | gure, $PR = 26 \text{ cm}$ , $Q$<br>Find $\angle PQR$       | $QR = 24 \ cm, \ \angle P$                   | $AQ = 90^{\circ}, PA = 6$           | cm and                                 | A 890°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (A) 80°                                     | (B) 85°                                                     | (C) 75°                                      | (D) 90°                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11. A tangent is pe<br>(A) centre           | erpendicular to the ra<br>(B) point (                       | ndius at the                                 | (C) infinity                        | R (D) chord                            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12. How many tan<br>(A) one                 | ngents can be drawn t                                       | to the circle fron<br>(C) infi               |                                     | ?<br>O) zero                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13. The two tange                           |                                                             | points $P$ to a ci                           | rcle with centre at                 | O are $PA$ and $PB$ . If $\angle$      | $APB = 70^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (A) 100°                                    | (B) 110°                                                    | (C) 120°                                     | (D) 130°                            | <b>≥</b> P                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                                           | and <i>CQ</i> are tangents hing the circle at <i>R</i> . It |                                              |                                     | n the length o                         | R $R$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (A) 6 cm                                    | (B) 5 cm                                                    | (C) 8 cm                                     | (D) 4 cm                            | Zq                                     | P I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15. In figure if <i>P</i> . <b>(A) 120°</b> | R is tangent to the ci (B) 100°                             | rcle at <i>P</i> and <i>O</i> is<br>(C) 110° | s the centre of the (D) 90°         | circle, then $\angle POQ$ is           | Total Control of the |
|                                             | UNIT.V                                                      | COORD                                        | INATE GEO                           | METRY                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             | CKILLEV                                                     | CCCIND                                       | IIVATE GEG                          | METITI                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. The area of tr<br>(A) 0 sq.units         | iangle formed by the                                        | points (-5, 0) ,<br>sq.units                 | (0, -5) and (5, 0)<br>(C) 5 sq.unit |                                        | these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| wall to be the                              | near a wall, such that<br>Y axis. The path tr<br>(B) $y =$  | avelled by the m                             | an is                               | wall is 10 units. Consider (D) $y = 0$ | er the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             | ine given by the equa                                       |                                              |                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) parallel t                              |                                                             | (E                                           | B) parallel to Y D) passing through |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. If (5,7), (3, p) (A) 3                   | and (6, 6) are co                                           |                                              | value of $p$ is                     | (D) 12                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                                                             |                                              |                                     | X and the second                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) (5, 3)                                  | ntersection of $3x - (B)$ (2, 4)                            |                                              | y = 8 is (3, 5)                     | (D) (4, 4)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6. The slope of t                           | he line joining (12, 3                                      | ), $(4,a)$ is $\frac{1}{8}$ .                | The value of 'a' i                  | S                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) 1                                       | (B) 4                                                       |                                              | c) - 5                              | (D) 2                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7. The slope of t (A) -1                    | he line which is perp<br>( <b>B) 1</b>                      |                                              | joining the points $\frac{1}{3}$    | (0,0) and (-8,8) is<br>(D) -8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (h) 1                                       | (5) .                                                       | C                                            | ., 3                                | (D) 0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8. If slope of the                          | line $PQ$ is $\frac{1}{\sqrt{3}}$ then t                    | the slope of the p                           | perpendicular bise                  | ctor of PQ is                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) $\sqrt{3}$                              | <b>(B)</b> −√3                                              | 3 (0                                         | $\frac{1}{\sqrt{3}}$                | (D) 0                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A Little                                    | Progress                                                    | each d                                       | ay adds                             | up to our R                            | esult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 9. If A is a point on the then the equation of                                   | Y axis whose ordinate is<br>the line AB is                                | s 8 and <i>B</i> is a point on                   | the X axis wh                                                    | ose abscissae is 5                       |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|------------------------------------------|
| (A) 8x + 5y = 40                                                                 | (B) $8x - 5y$                                                             | v = 40 (C)                                       | x = 8                                                            | (D) $y = 5$                              |
| 10. The equation of a lin (A) $7x - 3y + 4 =$                                    | the passing through the or 0 (B) $3x - 7y$                                |                                                  |                                                                  | -3y + 4 = 0 is<br>(D) $7x - 3y = 0$      |
| (A) $l_1$ and $l_2$ are                                                          | 5 (ii) $l_2$ : $4y = 32$ ving statement is true?                          | (B) $l_1$ and                                    | $c = 7$ (iv) $l_4$ :<br>$l_4$ are parallel<br>$l_3$ are parallel | 4x + 3y = 2                              |
| (A) The slope is (                                                               | equation $8y = 4x + 21$ .<br><b>0.5</b> and the <i>y</i> intercept is     | t is 2.6 (B) The slop                            | e is 5 and the                                                   | y intercept is 1.6<br>y intercept is 2.6 |
| 13. When proving that (A) Two sides are (C) Opposite sides                       |                                                                           |                                                  | and two no                                                       | on-parallel sides.                       |
| 14. When proving that (A) The slopes of t (C) The lengths of                     |                                                                           |                                                  | of two pair                                                      | of opposite sides                        |
| 15. (2, 1) is the point o<br>(A) $x - y - 3 = 0$ ;<br>(C) $3x + y = 3$ ; $x = 0$ |                                                                           | (B) $x + y = 3$ ; $3x$<br>(D) $x + 3y - 3 = 0$ ; |                                                                  | )                                        |
| _                                                                                |                                                                           | TRIGONOMET                                       | RY                                                               |                                          |
| 1. The value of $sin^2\theta$                                                    | $+\frac{1}{1+tan^2\theta}$ is equal to                                    |                                                  |                                                                  |                                          |
| (A) $tan^2\theta$                                                                | (B) 1                                                                     | (C) $\cot^2\theta$                               | (D) 0                                                            |                                          |
| 2. $tan\theta cosec^2\theta - tan$<br>(A) $sec\theta$                            | is equal to (B) $\cot^2 \theta$                                           | (C) sinθ                                         | (D) cott                                                         | 9                                        |
| 3. If (sinα + cosecα) (A) 9                                                      | (B) 7                                                                     | $x + tan^2\alpha + cot^2\alpha$ , the (C) 5      | n the value of<br>(D) 3                                          | k is equal to                            |
| 4 If $sin\theta + cos\theta = a$                                                 | and $sec\theta + cosec\theta = b$                                         | then the value of $h(a^2)$                       | - 1) is equal                                                    | to                                       |
| (A) 2a                                                                           | (B) 3a                                                                    | (C) 0                                            | (D) 2ab                                                          |                                          |
| 5. If $5x = \sec\theta$ and $\frac{5}{x}$                                        | $= tan\theta$ , then $x^2 - \frac{1}{x^2}$ i                              | s equal to                                       |                                                                  |                                          |
| (A) 25                                                                           | (B) $\frac{1}{25}$                                                        | (C) 5                                            | (D) 1                                                            |                                          |
| 6. If $sin\theta = cos\theta$ , then                                             | $1 2 tan^2\theta + sin^2\theta - 1 i$                                     | s equal to                                       |                                                                  |                                          |
| (A) $\frac{-3}{2}$                                                               | <b>(B)</b> $\frac{3}{2}$                                                  | (C) $\frac{2}{3}$                                | (D) $\frac{-2}{3}$                                               |                                          |
| 7. If $x = atan\theta$ and <b>(A)</b> $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$    | $y = bsec\theta \text{ then}$ (B) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ | (C) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$      | (D                                                               | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$  |
| 8. $(1 + \tan \theta + \sec \theta)$<br>(A) 0                                    | $(1 + \cot\theta - \csc\theta)$ is e<br>(B) 1                             | qual to (C) 2                                    | (D) -1                                                           |                                          |
| 8 370.                                                                           | $= p$ and $b \cot \theta + a \cos \theta$                                 | $ec \theta = q \text{ then } p^2 - q^2$          | 12 (12 )                                                         |                                          |

| 10. If the ratio of the the sun has me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne height of a tower<br>easure                                    | and the length of i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | its shadow is $\sqrt{3}$                   | : 1, then the an                           | gle of elevation of      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------|
| (A) 45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) 30°                                                           | (C) 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) 6                                      | 0°                                         |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | le subtends an angl<br>he first, the depress                      | sion of the foot of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                            |                          |
| is equal to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (A) $\sqrt{3} b$                                                  | (B) $\frac{b}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) $\frac{b}{2}$                          | (D) $\frac{b}{\sqrt{3}}$                   | 3                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m high. Its shadow en $x$ is equal to                             | is x metres shorte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r when the sun's a                         | altitude is 45° th                         | nan when it has          |
| (A) $41.92 m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) 43.9                                                          | $92 m \qquad (C) 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43 m                                       | (D) 45.6 m                                 |                          |
| building are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | epression of the top<br>30° and 60° respe-<br>buildings (in metre | ectively. The heigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 그게 많아버렸다 연극 하이라고 하는 아파스를 하는 경기를 다시하는 때 없다. | [19] - (1.1] 이미지는 인터넷 시간 및 다른아니다(시간 1.5%)  |                          |
| (A) 20, $10\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20, 10                                     | <b>(D)</b> 30, $10\sqrt{3}$                |                          |
| that of the otl<br>elevations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | are standing 'x' me<br>her. If from the mi<br>their tops to be co | iddle point of the lomplementary, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ine joining their f<br>en the height of t  | feet an observer                           | finds the angular        |
| (A) $\sqrt{2} x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(\mathbf{B})\frac{x}{2\sqrt{2}}$                                 | (c) <del>;</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{x}{\sqrt{2}}$                       | (D) $2x$                                   |                          |
| its reflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | levation of a cloud in the lake is 45°.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                            | of depression of         |
| (A) $\frac{h(1+tan)}{1-tan\beta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) $\frac{h(1-1)}{1+t}$                                          | $\frac{\tan\beta}{\tan\beta}$ (C) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $h \tan(45^{\circ} - \beta)$               | (D) no                                     | ne of these              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UNIT                                                              | .VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MENSURA                                    | TION                                       |                          |
| 1. The curved sur (A) $60\pi \ cm^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | face area of a right (Β) 68π                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ight 15 $cm$ and ba ) $120\pi cm^2$        |                                            | cm is<br><b>6π cm²</b>   |
| 2. If two solid hen surface area of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nispheres of same b<br>this new solid is                          | ase radius $r$ units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | are joined togeth                          | er along their ba                          | ses, then curved         |
| (A) $4\pi r^2$ sq. u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nits (B) $6\pi r^2$                                               | sq. units (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) $3\pi r^2$ sq. units                     | (D) 8π                                     | r <sup>2</sup> sq. units |
| 3. The height of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | right circular cone                                               | whose radius is 5 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m and slant heigh                          | nt is 13 cm will b                         | e                        |
| (A) 12 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (B) 10 cr                                                         | n (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 13 cm                                    | (D) 5 c                                    | m                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the base of a right c<br>the cylinder thus ob                     | Mark the first of the second s |                                            | and the second of the second of the second | nen the ratio of         |
| (A) 1:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (B) 1 : 4                                                         | <b>4</b> (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )1:6                                       | (D) 1:                                     | 8                        |
| 5. The total surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce area of a cylinder                                             | whose radius is $\frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of its height is                           |                                            |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hits (B) $24\pi h$                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | (D) $\frac{56\pi}{9}$                      | $\frac{h^2}{}$ sq. units |
| The state of the second of the state of the | nder, the sum of the<br>a, the volume of the                      | material in it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                            |                          |
| (A) $5600\pi \ cm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 112                                                           | $0\pi \ cm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (C) $56\pi \ cm^3$                         | (D) 3                                      | $3600\pi \ cm^{3}$       |
| 7. If the radius of (A) made 6 tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the base of a cone is<br>nes (B) m                                | s tripled and the he<br>ade 18 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eight is doubled th<br>(C) made 1          |                                            | (D) unchanged            |
| 8. The total surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ce area of a hemi-sp                                              | here is how much                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | times the square                           | of its radius.                             |                          |
| (A) π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B) 4π                                                            | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | (D) 2π                                     |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                            |                          |

| 9. A solid sphere of ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dius x cm is melt                            | ed and cast into a                  | shape of a solid                   | l cone of same ra              | dius. The height                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------|------------------------------------|--------------------------------|------------------------------------------|
| (A) $3x cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B) <i>x cm</i>                              | (C) 4                               | x cm                               | (D) 2x cm                      |                                          |
| 10. A frustum of a right volume of the frus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              | f height 16cm wi                    | th radii of its end                | ds as 8cm and 2                | 0cm. Then, the                           |
| (A) $3328 \pi \ cm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) $3228 \pi$                               | $cm^3$ (C) 32                       | $240~\pi~cm^3$                     | (D) $3340 \pi cm^{2}$          | 3                                        |
| 11. A shuttle cock used (A) a cylinder and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                     | pe of the combir<br>hemisphere and |                                |                                          |
| (C) a sphere and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                     |                                    | one and a he                   | emisphere                                |
| 12. A spherical ball of $r_1: r_2$ is (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | nelted to make 8<br>(B) 1 : 2       |                                    | ills each of radiu<br>) 4 : 1  | is $r_2$ units. Then (D) 1:4             |
| 13. The volume (in cn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3) of the greatest                           | sphere that can b                   | e cut off from a                   | cylindrical log of             | wood of base                             |
| The second secon | height 5 cm is                               |                                     |                                    |                                | (D) $\frac{20}{3}\pi$                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ght of the frustum                           | is $h_2$ units and ra               |                                    | ller base is $\it r_{ m 2}$ un | its. If                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $r_2: r_1$ is                                | 3 3                                 |                                    |                                | (D) 3:1                                  |
| 15. The ratio of the vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olumes of a cylinde<br>A) 1 : 2 : 3          | r, a cone and a sp<br>(B) 2 : 1 : 3 |                                    |                                | eter and same <b>D)</b> 3 : 1 : 2        |
| UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F.VIII                                       | STATIST                             | ICS AND                            | PROBABI                        | LITY                                     |
| Which of the follow     (A) Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ring is not a measu<br>(B) Standard d        |                                     | (C) Arithme                        | etic mean                      | (D) Variance                             |
| 2. The range of the da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ta 8, 8, 8, 8, 8,                            | 8 is                                |                                    |                                |                                          |
| (A) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (B) 1                                        | (C) 8                               |                                    | (D) 3                          |                                          |
| 3. The sum of all devi<br>(A) Always positiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                     | (C) zero                           | (D) nor                        | n-zero integer                           |
| 4. The mean of 100 of observations is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | and their standa                    | rd deviation is<br>(C) 1600        |                                | quares of all<br>) 30000                 |
| 5. Variance of first 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | natural numbers                              | is (A) 32.25                        | (B) 44.25                          | (C) 33.25                      | (D) 30                                   |
| 6. The standard devia<br>(A) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ition of a data is 3.<br>(B) 15              | If each value is r<br>(C) 5         |                                    | then the new var<br><b>225</b> | riance is                                |
| 7. If the standard dev (A) $3p + 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | iation of $x, y, z$ is <b>(B)</b> $3p$       | p then the stand (C) $p + 5$        |                                    | 3x + 5, $3y + 59p + 15$        | 3z + 5 is                                |
| 8. If the mean and coe (A) 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | efficient of variation (B) 3                 | n of a data are 4<br>(C) 4.5        |                                    | n the standard d               | eviation is                              |
| 9. Which of the follow (A) $P(A) > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ving is incorrect? (B) $0 \le P(A)$          | <b>1</b> ) ≤ 1                      | (C) $P(\emptyset) = 0$             | (D) P(                         | $A) + P(\bar{A}) = 1$                    |
| 10. The probability of marbles is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a red marble selection (A) $\frac{q}{p+q+r}$ | 22                                  | om a jar contain (C) $\frac{1}{p}$ |                                | te and $r$ green  D) $\frac{p+r}{p+q+r}$ |
| 11. A page is selected a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | at random from a b                           | ook. The proba                      | bility that the di                 | git at units place             | of the page                              |
| number chosen is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | less than 7 is                               | (A) $\frac{3}{10}$                  | <b>(B)</b> $\frac{7}{10}$          | (C) $\frac{3}{9}$              | (D) $\frac{7}{9}$                        |

| 12. The probability of value of $x$ is       | getting a job for a perso                        | on is $\frac{x}{3}$ . If the proba | ability of not getting t | the job is $\frac{2}{3}$ then the (D) 1.5 |
|----------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------|-------------------------------------------|
| 13. Kamalam went to                          | play a lucky draw contempt $\frac{1}{9}$ , t     | est. 135 tickets of the            | ne lucky draw were s     |                                           |
| (A) 5                                        | (B) 10                                           | (C) 15                             |                          | 20                                        |
| 14. If a letter is chosen letter chosen prec | edes $x$ (A) $\frac{12}{13}$                     |                                    | 00                       |                                           |
| at random. What                              | 0 notes of Rs.2000, 15 is the probability that t | he note is either a R              | s.500 note or Rs.200     |                                           |
| $(A) \frac{1}{5}$                            | (B) $\frac{3}{10}$                               | (C) $\frac{2}{3}$                  | (D) $\frac{4}{5}$        |                                           |
| 10-                                          | ALL S                                            | UBJE                               | CT                       |                                           |
| (                                            | UEST                                             | ION                                | BANK                     |                                           |
|                                              | $\boldsymbol{P}_{\boldsymbol{\lambda}}$          | RICE                               |                          |                                           |
| 3                                            | ΓΑΜΙΙ                                            | -Rs                                | . <i>100</i>             |                                           |
| $\boldsymbol{E}$                             | NGLIS                                            | H-R                                | S. 100                   |                                           |
|                                              | MAT                                              | HS -I                              | 50                       |                                           |
| S                                            | CIENC                                            | CE-R                               | S. 120                   |                                           |
| SOCI                                         | AL SCI                                           | ENCI                               | E-Rs.                    | 120                                       |
| Failing                                      | to Plan                                          | r is Pl                            | anning                   | to Fail'                                  |
|                                              |                                                  | 10                                 |                          |                                           |



## GEOMETRY & GRAPH QUESTION BANK-2022

## **GEOMETRY – Constructions**

#### I. SIMILAR TRIANGLES :- (Big to Small)

- 1. Construct a triangle similar to a given triangle PQR with its sides equal to  $\frac{3}{5}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{3}{5} < 1$ )
- 2. Construct a triangle similar to a given triangle PQR with its sides equal to  $\frac{2}{3}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{2}{3}$ )
- 3. Construct a triangle similar to a given triangle LMN with its sides equal to  $\frac{4}{5}$  of the corresponding sides of the triangle LMN (scale factor  $\frac{4}{5}$ )

#### II. SIMILAR TRIANGLES :- (Small to Big)

- 4. Construct a triangle similar to a given triangle PQR with its sides equal to  $\frac{7}{4}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{7}{4} > 1$ )
- 5. Construct a triangle similar to a given triangle ABC with its sides equal to  $\frac{6}{5}$  of the corresponding sides of the triangle ABC (scale factor  $\frac{6}{5}$ )
- 6. Construct a triangle similar to a given triangle PQR with its sides equal to  $\frac{7}{3}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{7}{3}$ )

#### III. TRIANGLES: - (When MEDIAN is given)

- 7. Construct a  $\triangle PQR$  in which PQ = 8 cm,  $\angle R = 60^{\circ}$  and the **median** RG from R to PQ is 5.8 cm. Find the length of the **altitude** from R to PQ.
- 8. Construct a  $\triangle PQR$  in which QR = 5 cm,  $\angle P = 40^{\circ}$  and the **median** PG from P to QR is 4.4 cm. Find the length of the **altitude** from P to QR.
- 9. Construct a  $\triangle PQR$  in which the base PQ = 4.5 cm,  $\angle R = 35^{\circ}$  and the **median** from R to PQ is 6 cm.

'Life is like riding a bicycle to keep your balance , you must keep moving

#### IV. TRIANGLES: (When ALTITUDE is given)

- 10. Construct a triangle  $\triangle PQR$  such that QR = 5 cm,  $\angle P = 30^{\circ}$  and the **altitude** from P to QR is of length 4.2 cm.
- 11. Construct a  $\triangle PQR$  such that  $QR = 6.5 \, cm$ ,  $\angle P = 60^{\circ}$  and the **altitude** from P to QR is of length 4.5 cm.
- 12. Construct a triangle  $\triangle ABC$  such that  $AB = 5.5 \, cm$ ,  $\angle C = 25^{\circ}$  and the **altitude** from C to AB is 4 cm.

#### V. TRIANGLES: - (When the point of ANGLE BISECTOR is given)

- 13. Draw a triangle ABC of base BC = 8 cm,  $\angle A = 60^{\circ}$  and the **bisector** of  $\angle A$  meets BC at D such that BD = 6 cm.
- 14. Draw a triangle ABC of base BC = 5.6 cm,  $\angle A = 40^{\circ}$  and the **bisector** of  $\angle A$  meets BC at D such that CD = 4 cm.
- 15. Draw  $\Delta PQR$  such that PQ = 6.8 cm, vertical angle 50° and the **bisector** of the vertical angle meets the base at D where PD = 5.2 cm.

#### VI. TANGENTS TO A CIRCLE: (Using the Centre)

- 16. Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.
- 17. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P?

#### VII. TANGENTS TO A CIRCLE: (Using Alternate Segment Theorem)

- 18. Draw a circle of radius 4 cm. At a point L on it draw a tangent to the circle using the alternate-segment theorem.
- 19. Draw a circle of radius 4.5 cm. Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.

#### VIII. TANGENTS TO A CIRCLE: (Pair of Tangents or Two Tangents)

- 20. Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. **Draw the two tangents** PA and PB to the circle and measure their lengths.
- 21. **Draw the two tangents** from a point which is 10 cm away from the centre of a circle of radius 5 cm. Also, measure the lengths of the tangents.
- 22. **Draw the two tangents** from a point which is 5 cm away from the centre of a circle of diameter 6 cm. Also, measure the lengths of the tangents.
- 23. Take a point which is 11 cm away from the centre of a circle of radius 4 cm and **draw** the two tangents to the circle from the point.
- 24. **Draw a tangent** to the circle from the point P having radius 3.6 cm, and centre at O point P is at a distance 7.2 cm from the centre.

## GRAPH

#### I. GRAPH of VARIATION :- (Direct Variation)

1. Varshika drew 6 circles with different sizes. Draw a graph for the relationship betweem the diameter and circumference of each circle (approximately) as shown in the table and use it to find the circumference of a circle when its diameter is 6 cm.

| Diameter      | (x) cm | 1   | 2   | 3   | 4    | 5    |
|---------------|--------|-----|-----|-----|------|------|
| Circumference | (y) cm | 3.1 | 6.2 | 9.3 | 12.4 | 15.5 |

- 2. A bus is travelling at a uniform speed of  $50 \, km/hr$ . Draw the distance-time graph and hence find (i) the constant of variation
  - (ii) how far will it travel in 90 minutes
  - (iii) the time required to cover a distance of 300 km from the graph.
- A garment shop announces a flat 50% discount on every purchase of items for their customers. Draw the graph for the relation between the Marked Price and the Discount. Hence find (i) the marked price when a customer gets a discount of Rs.3250 (from Graph) (ii) the discount when the marked price is Rs.2500
- 4. Graph the following linear function  $y = \frac{1}{2}x$ . Identify the constant of variation and verify it with the graph. Also, (i) find y when x = 9 (ii) find x when y = 7.5
- 5. A two wheeler parking zone near bus stand charges as below:

| Time (in hours) (x) | 4  | 8   | 12  | 24  |
|---------------------|----|-----|-----|-----|
| Amount Rs. $(y)$    | 60 | 120 | 180 | 360 |

Check if the amount charged are in direct variation or in inverse variation to the parking time. Graph the data. Also, (i) find the amount to be paid when parking time is 6 hrs; (ii) find the parking duration when the amount paid is Rs.150.

## II. GRAPH of VARIATION :- (Inverse Variation)

6. A company initially started with 40 workers to complete the work by 150 days. Later, it decided to fasten up the work increasing the number of workers as shown below:

| Number of workers | (x) | 40  | 50  | 60  | 75 |
|-------------------|-----|-----|-----|-----|----|
| Number of days    | (y) | 150 | 120 | 100 | 80 |

- (i) Graph the above data and identify the type of variation.
- (ii) From the graph, find the number of days required to complete the work if the company decided to opt for 120 workers?
- (iii) If the work has to be completed by 200 days, how many workers are required?
- 7. Nishanth is the winner in a Marathan race of 12 km distance. He ran at the uniform speed of 12 km/hr and reached the destination in 1 hour. He was followed by Aradhana, Jeyanth, Sathya and Swetha with their respective speed of 6 km/hr, 4 km/hr, 3 km/hr and 2 km/kr. And, they have covered the distance in 2 hrs, 3 hrs, 4 hrs and 6 hrs respectively. Draw the speed-time graph and use it to find the time taken to Kaushik with his speed of 2.4 km/hr.

- 8. Draw the graph of xy = 24, x, y > 0. Using the graph find, (i) y when x = 3 and (ii) find x when y = 6.
- 9. The following table shows the data about the number of pipes and the time taken to fill the same tank

| No. of pipes        | (x) | 2  | 3  | 6  | 9  |
|---------------------|-----|----|----|----|----|
| Time taken (in min) | (y) | 45 | 30 | 15 | 10 |

Draw the graph for the above data and hence

- (i) Find the time taken to fill the tank when five pipes are used
- (ii) Find the number of pipes when the time is 9 minutes
- 10. A school announces that for a certain competitions, the cash price will be distributed for all the participants equally as shown below

| No. of participants $(x)$ | 2   | 4  | 6  | 8  | 10 |
|---------------------------|-----|----|----|----|----|
| Amount for each           |     |    |    |    |    |
| participant in Rs. $(y)$  | 180 | 90 | 60 | 45 | 36 |

- (i) Find the constant of variation.
- (ii) Graph the above data. Hence, find how much will each participant get if the number of participants are 12.

#### III. NATURE of the SOLUTIONS :- (Graphically)

Discuss the nature of solutions of the following quadratic equations

11. 
$$x^2 + x - 12 = 0$$

12. 
$$x^2 - 8x + 16 = 0$$

13. 
$$x^2 + 2x + 5 = 0$$

Graph the following quadratic equations and state its nature of solutions:

14. 
$$x^2 - 9x + 20 = 0$$

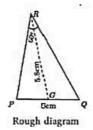
15. 
$$x^2 - 4x + 4 = 0$$

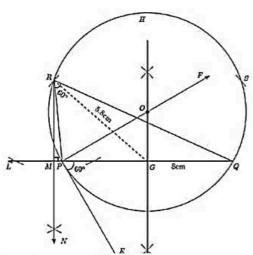
16. 
$$x^2 + x + 7 = 0$$

17. 
$$x^2 - 9 = 0$$

18. 
$$x^2 - 6x + 9 = 0$$

19. 
$$(2x-3)(x+2)=0$$


### IV. Solving QUADRATIC EQUATIONS: - (Through intersection of lines)


- 20. Draw the graph of  $y = 2x^2$  and hence solve  $2x^2 x 6 = 0$ .
- 21. Draw the graph of  $y = x^2 4$  and hence solve  $x^2 x 12 = 0$ .
- 22. Draw the graph of  $y = x^2 + 4x + 3$  and hence find the roots of  $x^2 + x + 1 = 0$ .
- 23. Draw the graph of  $y = x^2 + x 2$  and hence solve  $x^2 + x 2 = 0$ .
- 24. Draw the graph of  $y = x^2 4x + 3$  and use it to solve  $x^2 6x + 9 = 0$ .
- 25. Draw the graph of  $y = x^2 + x$  and hence solve  $x^2 + 1 = 0$ .
- 26. Draw the graph of  $y = x^2 + 3x + 2$  and use it to solve  $x^2 + 2x + 1 = 0$ .
- 27. Draw the graph of  $y = x^2 + 3x 4$  and hence use it to solve  $x^2 + 3x 4 = 0$ .
- 28. Draw the graph of  $y = x^2 5x 6$  and hence solve  $x^2 5x 14 = 0$ .
- 29. Draw the graph of  $y = 2x^2 3x 5$  and hence use it to solve  $2x^2 4x 6 = 0$
- 30. Draw the graph of y = (x-1)(x+3) and hence use it to solve  $x^2 x 6 = 0$

#### **GEOMETRY**

Construct a ΔPQR in which PQ = 8 cm, ∠R = 60<sup>0</sup> and the median RG from R to PQ is 5.8 cm. Find the length of the altitude from R to PQ.

Solution:





#### Construction

Step 1: Draw a line segment PQ = 8cm.

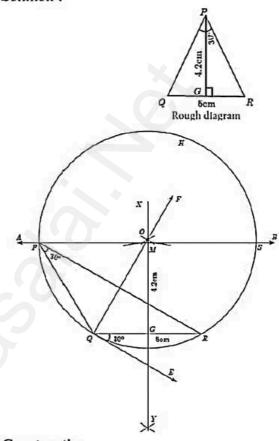
Step 2 : At P, draw PE such that  $\angle QPE = 60^{\circ}$ .

Step 3 : At P, draw PF such that  $\angle$ EPF = 90°.

Step 4: Draw the perpendicular bisector to PQ, which intersects PF at O and PQ at G.

Step 5: With O as centre and OP as radius draw a circle.

Step 6: From G mark arcs of radius 5.8 cm on the circle. Mark them as R and S.


Step 7 : Join PR and RQ. Then  $\Delta PQR$  is the required triangle .

Step 8 : From R draw a line RN perpendicular to LQ. LQ meets RN at M

Step 9: The length of the altitude is RM = 3.5 cm.

2. Construct a triangle  $\triangle PQR$  such that QR = 5 cm,  $\angle P = 30^0$  and the altitude from P to QR is of length 4.2 cm.

#### Solution :



#### Construction

Step 1 : Draw a line segment QR = 5cm.

Step 2 : At Q, draw QE such that  $\angle RQE = 30^{\circ}$ .

Step 3 : At Q, draw QF such that  $\angle EQF = 90^{\circ}$ .

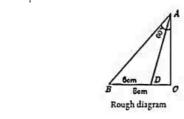
Step 4: Draw the perpendicular bisector XY to

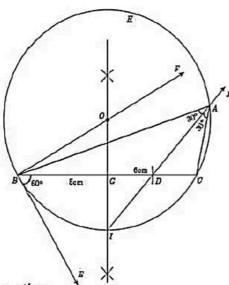
QR, which intersects QF at O and QR at G.

Step 5: With O as centre and OQ as radius draw a circle.

Step 6: From G mark an arc in the line XY at M, such that GM = 4.2 cm.

Step 7: Draw AB through M which is parallel to OR.


Step 8: AB meets the circle at P and S.


Step 9 : Join QP and RP. Then ΔPQR is the required triangle.

15

3. Draw a triangle ABC of base BC = 8 cm,  $\angle A = 60^{\circ}$  and the bisector of  $\angle A$  meets BC at D such that BD = 6 cm.

Solution:





Construction

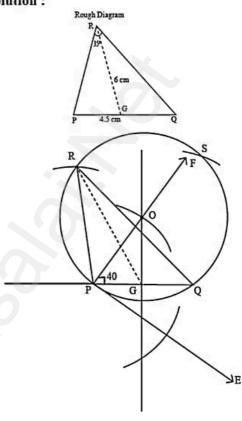
Step 1: Draw a line segment BC = 8cm.

Step 2 : At B, draw BE such that  $\angle CBE = 60^{\circ}$ .

Step 3 : At B, draw BF such that  $\angle EBF = 90^{\circ}$ .

Step 4: Draw the perpendicular bisector to BC, which intersects BF at O and BC at G.

Step 5: With O as centre and OB as radius draw a circle.


Step 6: From B mark an arcs of 6 cm on BC at D.

Step 7: The perpendicular bisector intersects the circle at I. Join ID.

Step 8 : ID produced meets the circle at A. Now join AB and AC. Then  $\triangle$ ABC is the required triangle.

4. Construct a  $\triangle PQR$  which the base PQ = 4.5 cm,  $\angle R = 35^0$  and the median from R to PQ is 6 cm.

Solution:



#### Construction

Step 1 : Draw a line segment PQ = 4.5cm.

Step 2 : At P, draw PE such that  $\angle QPE = 35^{\circ}$ .

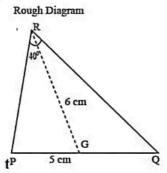
Step 3 : At P, draw PF such that  $\angle$ EPF = 90°.

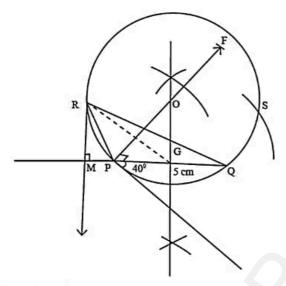
Step 4: Draw the perpendicular bisector to PQ, meets PF at O and PQ at G.

Step 5: With O as centre and OP as radius draw a circle.

Step 6: From G mark arcs of 6 cm on the circle at RAS

Step 7 : Join PR, RQ. Then  $\Delta PQR$  is the required  $\Delta$ .


Step 8: Join RG, which is the median.


16

10™ MATHS

 Construct a ΔPQR in which PQ = 5 cm, ∠P = 40° and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.

#### Solution:





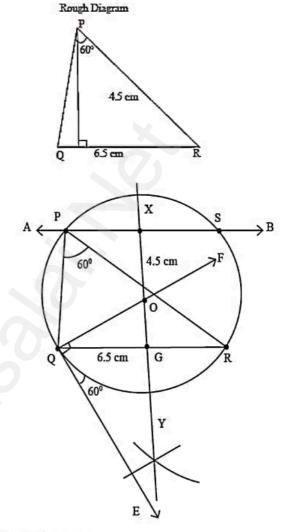
#### Construction

Step 1: Draw a line segment PQ = 5 cm.

Step 2 : At P, draw PE such that  $\angle QPE = 40^{\circ}$ .

Step 3 : At P, draw PF such that  $\angle$ EPF = 90°.

Step 4: Draw the perpendicular bisector to PQ, meets PF at O and PQ at G.


Step 5: With O as centre and OP as radius draw a circle.

Step 6: From G mark arcs of 4.4 cm on the circle radius 4.4m.

Step 7 : Join PR, RQ. Then  $\Delta$ PQR is the required  $\Delta$ .

Step 8: Length of altitude is RM = 3 cm

6. Construct a  $\triangle PQR$  such that QR = 6.5 cm,  $\angle P = 60^{\circ}$  and the altitude from P to QR is of length 4.5 cm.



#### Construction

Step 1 : Draw a line segment QR = 6.5 cm.

Step 2 : At Q, draw QE such that  $\angle RQE = 60^{\circ}$ .

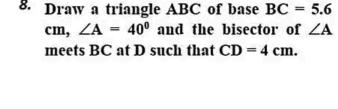
Step 3 : At Q, draw QF such that  $\angle$ EQF = 90°.

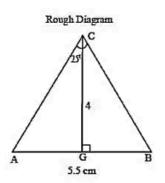
Step 4: Draw the perpendicular bisector XY to QR intersects QF at O & QR at G.

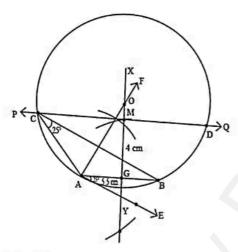
Step 5: With O as centre and OQ as radius draw a circle.

Step 6: XY intersects QR at G. On XY, from G, mark arc M such that GM = 4.5 cm.

Step 7: Draw AB, through M which is parallel to QR.


Step 8: AB meets the circle at P and S.


Step 9 : Join QP, RP. Then  $\Delta$ PQR is the required  $\Delta$ .


17

10" MATHS SUN TUITION CENTER- 9629216361

Construct a △ABC such that AB = 5.5 cm, ∠C = 25° and the altitude from C to AB is 4 cm.







#### Construction

Step 1 : Draw a line segment AB = 5.5 cm.

Step 2 : At A, draw AE such that  $\angle BAE = 25^{\circ}$ .

Step 3 : At A, draw AF such that  $\angle EAF = 90^{\circ}$ .

Step 4: Draw the perpendicular bisector XY to AB intersects AF at O & AB at G.

Step 5: With O as centre and OA as radius draw a circle.

Step 6: XY intersects AB at G. On XY, from G, mark arc M such that GM = 4 cm.

Step 7: Draw PQ, through M parallel to AB meets the circle at C and D.

Step 8 : Join AC, BC. Then  $\triangle$ ABC is the required  $\triangle$ .



#### Construction

Step 1 : Draw a line segment BC = 5.6 cm.

Step 2 : At B, draw BE such that  $\angle$ CBE =  $40^{\circ}$ .

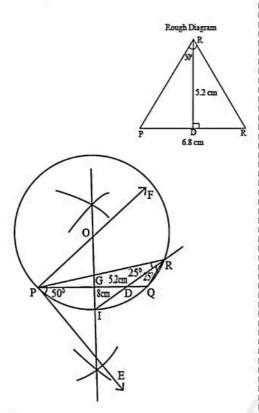
Step 3 : At B, draw BF such that  $\angle CBF = 90^{\circ}$ .

Step 4 : Draw the perpendicular bisector to BC meets BF at O & BC at G.

Step 5: With O as centre and OB as radius draw a circle.

Step 6: From B, mark an arc of 4 cm on BC at D.

Step 7: The  $\perp r$  bisector meets the circle at I & Join ID.


Step 8: ID produced meets the circle at A. Join AB & AC.

Step 9: Then  $\triangle$ ABC is the required triangle.

18

10™ MATHS SUN TUITION CENTER- 9629216361

Draw ΔPQR such that PQ = 6.8 cm, vertical angle is 50° and the bisector of the vertical angle meets the base at D where PD = 5.2 cm.



#### Construction

Step 1 : Draw a line segment PQ = 6.8 cm.

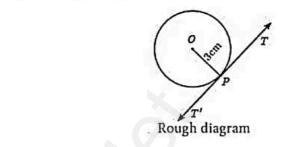
Step 2 : At P, draw PE such that  $\angle QPE = 50^{\circ}$ .

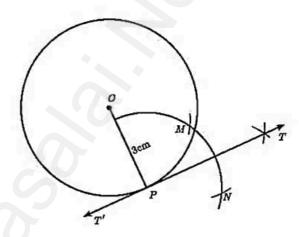
Step 3 : At P, draw PF such that  $\angle QPF = 90^{\circ}$ .

Step 4: Draw the perpendicular bisector to PQ meets PF at O and PQ at G.

Step 5: With O as centre and OP as radius draw a circle.

Step 6: From P mark an arc of 5.2 cm on PQ at D


Step 7: The perpendicular bisector meets the circle at R. Join PR and QR.


Step 8: Then  $\triangle PQR$  is the required triangle.

10. Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.

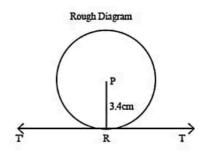
#### Solution:

Given, radius r = 3 cm

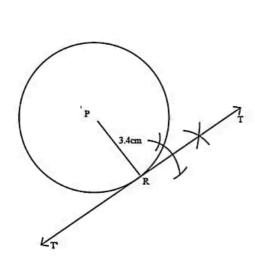




#### Construction


Step 1: Draw a circle with centre at O of radius 3 cm.

Step 2: Take a point P on the circle. Join OP.


Step 3: Draw perpendicular line TT' to OP which passes through P.

Step 4: TT' is the required tangent.

11. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P?



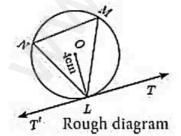
19

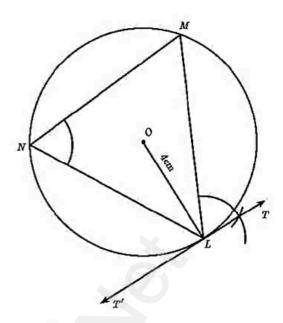


#### Construction

Step 1: Draw a circle with centre at P of radius 3.4 cm.

Step 2: Take a point R on the circle and Join PR.


Step 3: Draw perpendicular line TT' to PR which passes through R.


Step 4: TT' is the required tangent.

12 Draw a circle of radius 4 cm. At a point L on it draw a tangent to the circle using the alternate segment.

#### Solution:

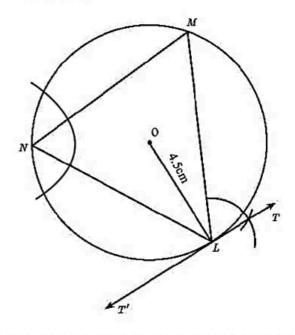
Given, radius=4 cm





#### Construction

Step 1: With O as the centre, draw a circle of radius 4 cm.


Step 2: Take a point L on the circle. Through L draw any chord LM.

Step 3: Take a point M distinct from L and N on the circle, so that L, M and N are in anti-clockwise direction. Join LN and NM.

Step 4: Through L draw a tangent TT' such that  $\angle$ TLM =  $\angle$ MNL.

Step 5: TT' is the required tangent.

Draw a circle of radius 4.5 cm. Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.



20

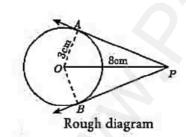
10™ MATHS SUN TUITION CENTER- 9629216361

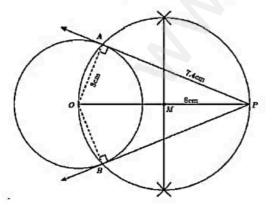
#### Construction

Step 1: With O as the centre, draw a circle of radius 4 cm.

Step 2: Take a point L on the circle. Through L draw any chord LM.

Step 3: Take a point M distinct from L and N on the circle, so that L, M and N are in anti-clockwise direction. Join LN and NM.


Step 4 : Through L draw a tangent TT' such that  $\angle$ TLM =  $\angle$ MNL.


Step 5: TT' is the required tangent.

14. Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

Solution :

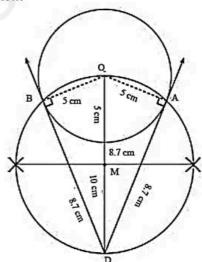
Given, diameter (d) = 6 cm, we find radius  $(r) = \frac{6}{2} = 3$  cm.





Step 1: With centre at O, draw a circle of radius 3 cm.

Step 2: Draw a line OP of length 8 cm.


Step 3: Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4: With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.

Step5: Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are PA = PB = 7.4 cm.

15. Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm. Also, measure the lengths of the tangents.

Solution:

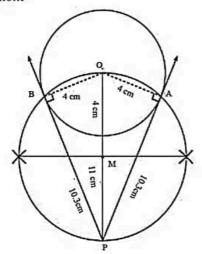


#### Construction

Step 1: With centre at O, draw a circle of radius 5 cm.

Step 2 : Draw a line OP = 10 cm.

Step 3: Draw a perpendicular bisector of OP, which cuts OP at M.


Step 4: With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.

Step5: Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are PA = PB = 8.7 cm.

21

16. Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.

Solution:



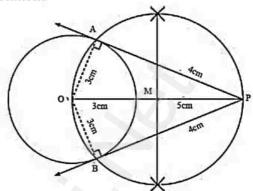
#### Construction

Step 1: With centre at O, draw a circle of radius 4 cm.

Step 2 : Draw a line OP = 11 cm.

Step 3: Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4: With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.


Step 5: Join AP and BP. They are the required tangents AP = BP = 10.3 cm.

Verification : In the right angle triangle  $\triangle OAP$ ,

$$AP = \sqrt{OP^2 - OA^2}$$
$$= \sqrt{121 - 16} = \sqrt{105} = 10.3 \text{ cm}$$

17. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm. Also, measure the lengths of the tangents.

Solution:



#### Construction

Step 1: With centre at O, draw a circle of radius 3 cm. with centre at O.

Step 2: Draw a line OP = 5 cm.

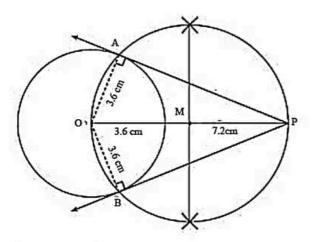
Step 3: Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4: With M as centre and OM as radius, draw a circle which cuts previous circle at A and B.

Step 5 : Join AP and BP. They are the required tangents AP = BP = 4 cm.

Verification:

$$AP = \sqrt{OP^2 - OA^2}$$
$$= \sqrt{5^2 - 3^2}$$
$$= \sqrt{25 - 9}$$
$$= \sqrt{16} = 4 \text{ cm}$$


Public Exam

Revision Going On.....

9629216361

\_\_2

18. Draw a tangent to the circle from the point P having radius 3.6 cm, and centre at O. Point P is at a distance 7.2 cm from the centre.



#### Construction

Step 1: Draw a circle of radius 3.6 cm. with centre at O.

Step 2: Draw a line OP = 7.2 cm.

Step 3: Draw a perpendicular bisector of OP, which cuts it M.

Step 4: With M as centre and OM as radius, draw a circle which cuts previous circle at A and B.

Step 5: Join AP and BP. They are the required tangents AP = BP = 0.3 cm.

Verification:

$$AP = \sqrt{OP^2 - OA^2}$$

$$= \sqrt{(7.2)^2 - (3.6)^2}$$

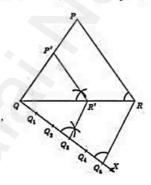
$$= \sqrt{51.84 - 12.96}$$

$$= \sqrt{38.88} = 6.3 \text{ (approx)}$$

Public Exam Revision Going On.... contact 9629216361

#### **Construction of similar triangles**

#### Example 4.10


Construct a triangle similar, to a given triangle PQR with its sides equal to  $\frac{3}{5}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{3}{5}$ <1)

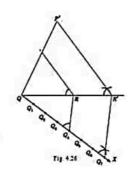
#### Solution :

Given a triangle PQR we are required to construct another triangle whose sides are  $\frac{3}{5}$  of the corresponding sides of the triangle PQR.

#### Steps of construction

1. Construct a ΔPQR with any measurement.

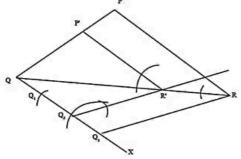



- 2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P.
- 3. Locate 5 (the greater of 3 and 5 in  $\frac{3}{5}$ ) points.

$$Q_1$$
,  $Q_2$ ,  $Q_3$ ,  $Q_4$ , and  $Q_5$  on QX so that  $QQ_1 = Q_1Q_2 = Q_2Q_3 = Q_3Q_4 = Q_4Q_5$ 

- 4. Join  $Q_5R$  and draw a line through  $Q_3$  (the third point, 3 being smaller of 3 and 5 in  $\frac{3}{5}$ ) parallel to  $Q_5R$  to intersect QR at R'.
- Draw line through R' parallel to the line RP to intersect QP at P'. Then, ΔP'QR' is the required triangle each of whose sides is three-fifths of the corresponding sides of ΔPQR.
- **20.** Construct a triangle similar to a given triangle PQR with its sides equal to  $\frac{7}{4}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{7}{4}$ >1)

23

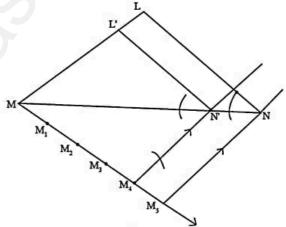

#### Solution:



Given a triangle PQR, we are required to construct another triangle whose sides are  $\frac{7}{4}$  of the corresponding sides of the triangle PQR.

#### Steps of construction

- 1. Construct a ΔPQR with any measurement.
- Draw a ray QX making an acute angle with QR on the side opposite to vertex P.
- 3. Locate 7 (the greater of 4 and 7 in  $\frac{7}{4}$ ) points.  $Q_1$ ,  $Q_2$ ,  $Q_3$ ,  $Q_4$ ,  $Q_5$ ,  $Q_6$  and  $Q_7$  on QX so that  $QQ_1 = Q_1Q_2 = Q_2Q_3 = Q_3Q_4 = Q_4Q_5 = Q_5Q_6 =$
- Join Q<sub>4</sub> (the 4th point, 4 being smaller of 4 and 7 in <sup>7</sup>/<sub>4</sub>) to R and draw a line through Q<sub>7</sub> parallel to Q<sub>4</sub>R, intersecting the extended line segment QR at R'.
- Draw a line through R' parallel to RP intersecting the extended line segment QP at P' Then ΔP'QR' is the required triangle each of whose sides is seven-fourths of the corresponding sides of ΔPQR.
- 21. Construct a triangle similar to a given triangle PQR with its sides equal to  $\frac{2}{3}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{2}{3}$ ).




#### Steps of construction

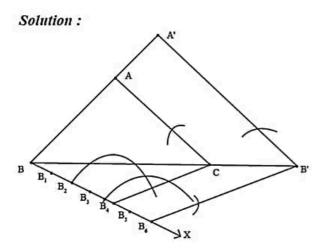
- Construct a ΔPQR with any measurement.
- Draw a ray QX making an acute angle with QR on the side opposite to vertex P.
- Locate 3 points (greater of 2 and 3 in <sup>2</sup>/<sub>3</sub>) points.
   Q<sub>1</sub>, Q<sub>2</sub>, Q<sub>3</sub> on QX so that

 $Q_1$ ,  $Q_2$ ,  $Q_3$  on QX so that  $QQ_1 = Q_1Q_2 = Q_2Q_3$ 

- Join Q<sub>3</sub>R and draw a line through Q<sub>2</sub>
   (3 being smaller of 2 and 3 in <sup>2</sup>/<sub>3</sub>) parallel to Q<sub>3</sub>R to intersect QR at R'.
- 5. Draw line through R' parallel to the line RP intersecting the QP at P'. Then,  $\Delta$ P'QR' is the required  $\Delta$ .
- 22. Construct a triangle similar to a given triangle LMN with its sides equal to  $\frac{4}{5}$  Solution:



- 1. Construct a ΔLMN with any measurement.
- Draw a ray MX making an acute angle with MN on the side opposite to vertex L.
- 3. Locate 5 points (greater of 4 and 5 in  $\frac{4}{5}$ ) points.


 $M_1, M_2, M_3, M_4 & M_5 \text{ so that } MM_1 = M_1M_2 = M_2M_3 = M_3M_4 = M_4M_5,$ 

- 4. Join  $M_5$  to N and draw a line through  $M_4$  (4 being smaller of 4 and 5 in  $\frac{4}{5}$ ) parallel to  $M_5$ N to intersect MN at N'.
- Draw line through N' parallel to the line LN intersecting line segment ML to L'.

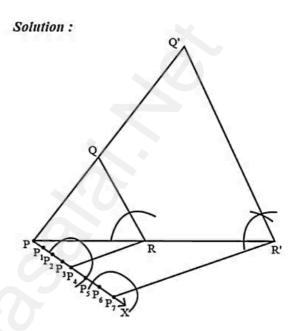
Then, L'M'N' is the required  $\Delta$ .

10™ MATHS

23. Construct a triangle similar to a given triangle ABC with its sides equal to  $\frac{6}{5}$  of the corresponding sides of the triangle ABC (scale factor  $\frac{6}{5}$ ).



#### Steps of construction


- 1. Construct a ΔABC with any measurement.
- 2. Draw a ray BX making an acute angle with BC on the side opposite to vertex A.
- 3. Locate 6 points (greater of 6 and 5 in  $\frac{6}{5}$ ) points.

$$B_1, B_2, \dots B_6$$
 on BX so that  $BB_1 = B_1B_2$   
=  $B_2B_3 = B_3B_4 = B_3B_4 = B_4B_5 = B_5B_6$ 

- Join B<sub>4</sub> (4 being smaller of 4 and 6 in 6/4) to C and draw a line through B<sub>6</sub> parallel to B<sub>4</sub>C to intersecting the extended line segment BC at C'.
- Draw line through C' parallel to CA intersect the extended line segment BA to A'.

Then,  $\Delta A'B'C'$  is the required  $\Delta$ .

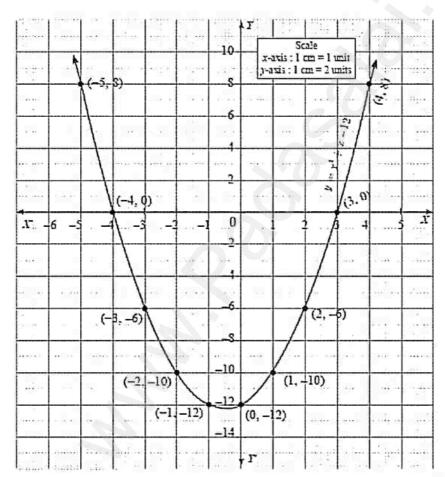
24. Construct a triangle similar to a given triangle PQR with its sides equal to  $\frac{7}{3}$  of the corresponding sides of the triangle PQR (scale factor  $\frac{7}{3}$ ).



#### Steps of construction

- Construct a ΔPQR with any measurement.
- Draw a ray PX making an acute angle with PR on the side opposite to vertex Q.
- 3. Locate 7 points (greater of 3 and 7 in  $\frac{7}{3}$ ) points.

$$P_1, P_2, \dots, P_7$$
 on PX so that  $PP_1 = P_1P_2 = P_2P_3 \dots = P_6P_7$ ,


- 4. Join  $P_3R$  (3 being smaller of 3 and 7 in  $\frac{7}{3}$ ) and draw a line through  $P_7$  parallel to  $P_3R$  to intersecting the extended line segment PR at R'.
- Draw line through R' parallel to QR intersect the extended line segment PQ to Q'.

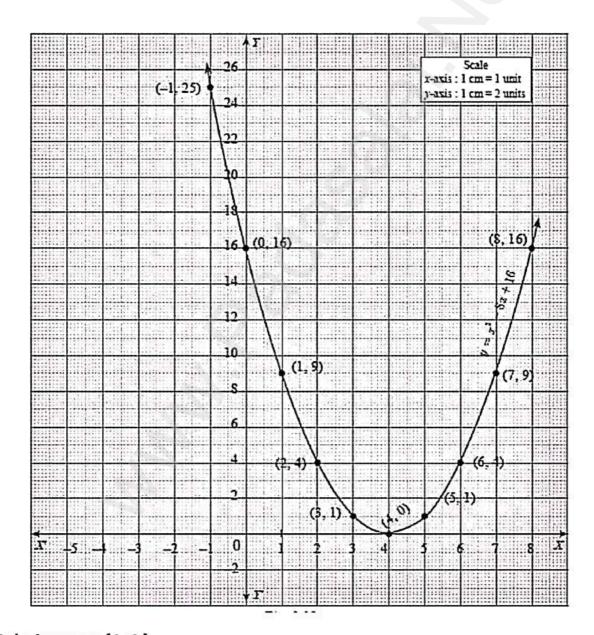
Then,  $\Delta P'Q'R'$  is the required  $\Delta$ .

GRAPH

#### 1. Discuss the nature of solution of the following quadratic equation $X^2 + X - 12 = 0$

| Х              | -5  | -4  | -3  | -2  | -1  | 0   | 1   | 2   | 3   | 4   | 5   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| X <sup>2</sup> | 25  | 16  | 9   | 4   | 1   | 0   | 1   | 4   | 9   | 16  | 25  |
| X              | -5  | -4  | -3  | -2  | -1  | 0   | 1   | 2   | 3   | 4   | 5   |
| -12            | -12 | -12 | -12 | -12 | -12 | -12 | -12 | -12 | -12 | -12 | -12 |
| +              | 25  | 26  | 9   | 4   | 1   | 0   | 2   | 6   | 12  | 20  | 30  |
|                | -17 | -26 | -15 | -16 | -13 | -12 | -12 | -12 | -12 | -12 | -12 |
| Y              | 8   | 0   | -6  | -10 | -12 | -12 | -10 | -6  | 0   | 8   | 18  |



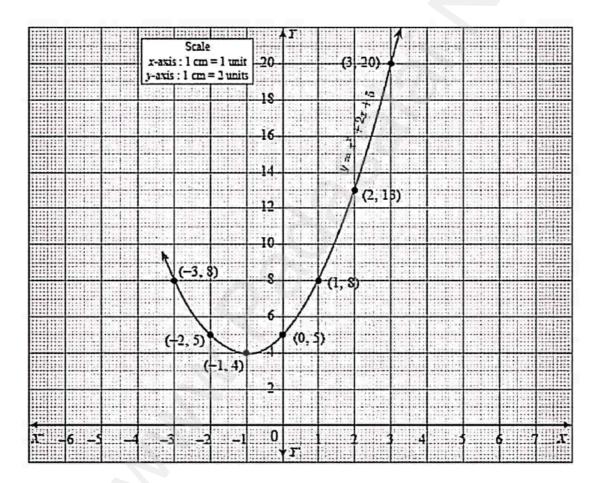

Solution set = { -4, 3 }
Therefore the roots are real and unequal.

Public Exam Revision Going On.... contact 9629216361

26

## 2. Discuss the nature of solution of the following quadratic equation $X^2 - 8X + 16 = 0$

| Х              | -5   | -4 | -3 | -2 | -1 | 0  | 1  | 2   | 3   | 4   | 5   | 6   | 7   |
|----------------|------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| X <sup>2</sup> | 25   | 16 | 9  | 4  | 1  | 0  | 1  | 4   | 9   | 16  | 25  | 36  | 49  |
| -8X            | . 40 | 32 | 24 | 16 | 8  | 0  | -8 | -16 | -24 | -32 | -40 | -48 | -56 |
| 16             | 16   | 16 | 16 | 16 | 16 | 16 | 16 | 16  | 16  | 16  | 16  | 16  | 16  |
| +              | 81   | 64 | 49 | 36 | 25 | 16 | 17 | 20  | 26  | 32  | 41  | 52  | 65  |
|                | 0    | 0  | 0  | 0  | 0  | 0  | -8 | -16 | -24 | -32 | -40 | -48 | -56 |
| Y              | 81   | 64 | 49 | 36 | 25 | 16 | 9  | 4   | 1   | 0   | 1   | 4   | 9   |



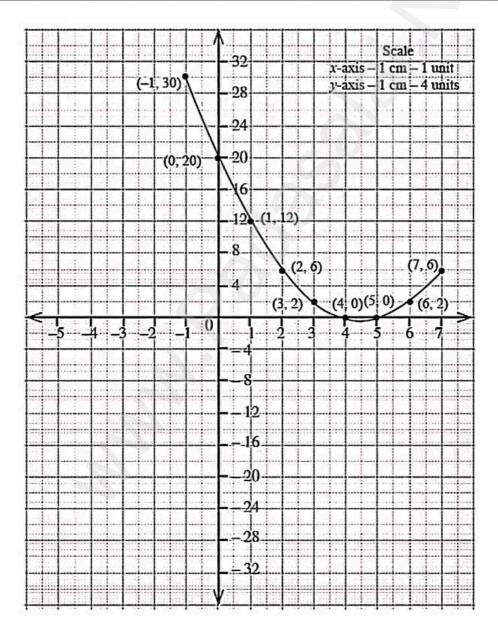

Solution set = {4, 4 }
Therefore the roots are real and equal.

27

## 3. Discuss the nature of solution of the following quadratic equation $X^2 + 2X + 5 = 0$

| Х              | -5  | -4 | -3 | -2 | -1 | 0 | 1 | 2  | 3  | 4  | 5  |
|----------------|-----|----|----|----|----|---|---|----|----|----|----|
| X <sup>2</sup> | 25  | 16 | 9  | 4  | ,1 | 0 | 1 | 4  | 9  | 16 | 25 |
| 2X             | -10 | -8 | -6 | -4 | -2 | 0 | 2 | 4  | 6  | 8  | 10 |
| 5              | 5   | 5  | 5  | 5  | 5  | 5 | 5 | 5  | 5  | 5  | 5  |
| +              | 30  | 21 | 15 | 9  | 6  | 5 | 8 | 13 | 20 | 29 | 40 |
| 1.5            | -10 | -8 | -6 | -4 | -2 | 0 | 0 | 0  | 0  | 0  | 0  |
| γ              | 20  | 13 | 8  | 5  | 4  | 5 | 8 | 13 | 20 | 29 | 40 |




No solution
Therefore the roots are unreal.

Public Exam Revision Going On.... contact 9629216361

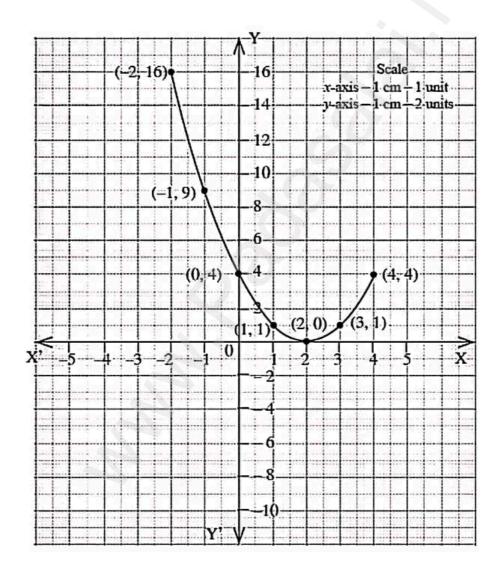
28

## 4. Discuss the nature of solution of the following quadratic equation $X^2 - 9X + 20 = 0$

| X              | -5 | -4 | -3 | -2 | -1 | 0  | 1  | 2   | 3   | 4   | 5   | 6   | 7   |
|----------------|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|
| X <sup>2</sup> | 25 | 16 | 9  | 4  | 1  | О  | 1  | 4   | 9   | 16  | 25  | 36  | 49  |
| -9X            | 45 | 36 | 27 | 18 | 9  | 0  | -9 | -18 | -27 | -36 | -45 | -54 | -63 |
| 20             | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20  | 20  | 20  | 20  | 20  | 20  |
| +              | 90 | 72 | 56 | 42 | 30 | 20 | 21 | 24  | 29  | 36  | 45  | 56  | 69  |
| 55-4           | 0  | 0  | 0  | 0  | 0  | 0  | -9 | -18 | -27 | -36 | -45 | -54 | -63 |
| Y              | 90 | 72 | 56 | 42 | 30 | 20 | 12 | 6   | 2   | 0   | 0   | 2   | 6   |



Solution :  $\{4,5\}$ 


Therefore the roots are real and unequal. 2

29

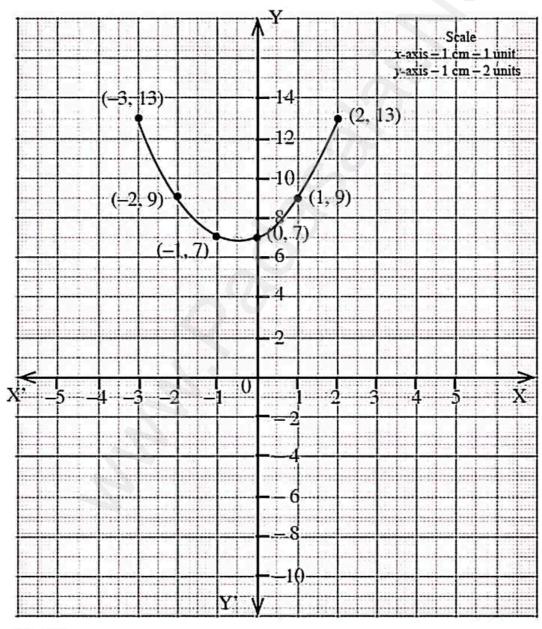
10" MATHS SUN TUITION CENTER- 9629216361

## 5. Discuss the nature of solution of the following quadratic equation $X^2 - 4X + 4 = 0$

| Х              | -5 | -4 | -3 | -2 | -1 | 0 | 1  | 2  | 3   | 4   | 5   |
|----------------|----|----|----|----|----|---|----|----|-----|-----|-----|
| X <sup>2</sup> | 25 | 16 | 9  | 4  | 1  | 0 | 1  | 4  | 9   | 16  | 25  |
| -4X            | 20 | 16 | 12 | 8  | 4  | 0 | -4 | -8 | -12 | -16 | -20 |
| 4              | 4  | 4  | 4  | 4  | 4  | 4 | 4  | 4  | 4   | 4   | 4   |
| +              | 49 | 36 | 25 | 16 | 9  | 4 | 5  | 8  | 13  | 20  | 29  |
| (-             | 0  | 0  | 0  | 0  | 0  | 0 | -1 | -8 | -12 | -16 | -25 |
| Υ              | 49 | 36 | 25 | 16 | 9  | 4 | 1  | 0  | 1   | 4   | 9   |



Solution :  $\{2,2\}$ 


Therefore the roots are real and equal

*30* 

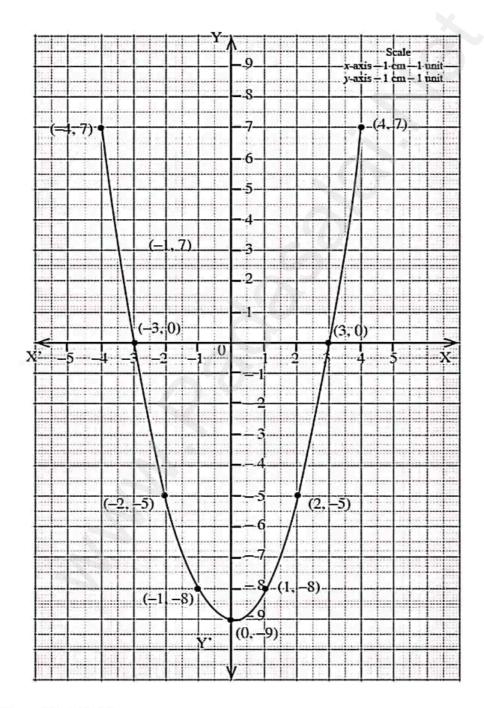
10™ MATHS

## 6. Discuss the nature of solution of the following quadratic equation $X^2 + X + 7 = 0$

| Х              | -5       | -4       | -3       | -2       | -1      | 0      | 1      | 2       | 3       | 4       | 5       |
|----------------|----------|----------|----------|----------|---------|--------|--------|---------|---------|---------|---------|
| X <sup>2</sup> | 25       | 16       | 9        | 4        | 1       | 0      | 1      | 4       | 9       | 16      | 25      |
| X              | -5       | -4       | -3       | -2       | -1      | 0      | 1      | 2       | 3       | 4       | 5       |
| 7              | 7        | 7        | 7        | 7        | 7       | 7      | 7      | 7       | 7       | 7       | 7       |
| +              | 32<br>-5 | 23<br>-4 | 16<br>-3 | 11<br>-2 | 8<br>-1 | 7<br>0 | 9<br>0 | 13<br>0 | 19<br>0 | 27<br>0 | 37<br>0 |
| γ              | 27       | 19       | 13       | 9        | 7       | 7      | 9      | 13      | 19      | 27      | 37      |



No Solution


Therefore the roots are unreal.

31

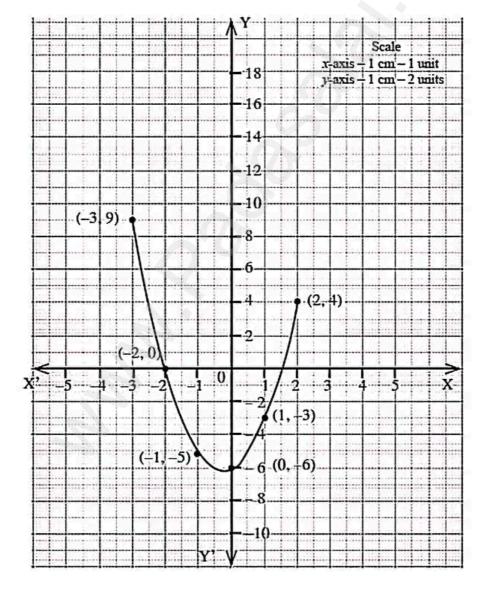
10™ MATHS

## 7. Discuss the nature of solution of the following quadratic equation $X^2 - 9 = 0$

| X              | -5 | -4 | -3 | -2 | -1 | 0  | 1  | 2  | 3  | 4  | 5  |
|----------------|----|----|----|----|----|----|----|----|----|----|----|
| X <sup>2</sup> | 25 | 16 | 9  | 4  | 1  | 0  | 1  | 4  | 9  | 16 | 25 |
| -9,            | -9 | -9 | -9 | -9 | -9 | -9 | -9 | -9 | -9 | -9 | -9 |
| Υ              | 16 | 7  | 0  | -5 | -8 | -9 | -8 | -5 | 0  | 7  | 16 |



Solution : {-3, 3}


Therefore the roots are real and unequal.

32

10™ MATHS

8. Discuss the nature of solution of the following quadratic equation (2x-3)(x+2)=0(2x-3)(x+2)=0  $\Rightarrow 2x^2+x-6=0$ 

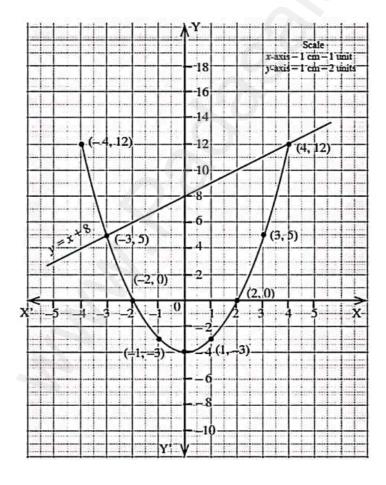
| Х                | -5        | -4        | -3       | -2      | -1      | 0       | 1       | 2        | 3        | 4        | 5  |
|------------------|-----------|-----------|----------|---------|---------|---------|---------|----------|----------|----------|----|
| X <sup>2</sup> . | 25        | 16        | 9        | 4       | 1       | 0       | 1       | 4        | 9        | 16       | 25 |
| 2X <sup>2</sup>  | 50        | 32        | 18       | 8       | 2       | 0       | 2       | 8        | 18       | 32       | 50 |
| X                | -5        | -4        | -3       | -2      | -1      | 0       | 1       | 2        | 3        | 4        | 5  |
| -6               | -6        | -6        | -6       | -6      | -6      | -6      | -6      | -6       | -6       | -6       | -6 |
| +                | 50<br>-11 | 32<br>-10 | 18<br>-9 | 8<br>-8 | 2<br>-7 | 0<br>-6 | 3<br>-6 | 10<br>-6 | 21<br>-6 | 36<br>-6 |    |
| Υ                | 39        | 22        | 9        | 0       | -5      | -6      | -3      | 4        | 15       | 30       | 49 |



Solution : {-2, 1.5}

Therefore the roots are real and unequal. 33

10" MATHS SUN TUITION CENTER- 9629216361


#### Draw the graph of $Y = X^2 - 4$ and hence solve $X^2 - X - 12 = 0$ 9.

| X              | -5 | -4 | -3 | -2 | -1 | 0  | 1  | 2  | 3  | 4  | 5  |
|----------------|----|----|----|----|----|----|----|----|----|----|----|
| X <sup>2</sup> | 25 | 16 | 9  | 4  | 1  | 0  | 1  | 4  | 9  | 16 | 25 |
| -4             | -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4 | -4 |
| Υ              | 21 | 12 | 5  | 0  | -3 | -4 | -3 | 0  | 5  | 10 | 21 |

To solve 
$$x^2 - x - 12 = 0$$
, subtract  $x^2 - x - 12 = 0$  from  $y = x^2 - 4$ .

from 
$$y=x^2-4$$
  
 $y=x^2+0x-4$   
 $0=x^2-x-12$   
 $y=x+8$ 

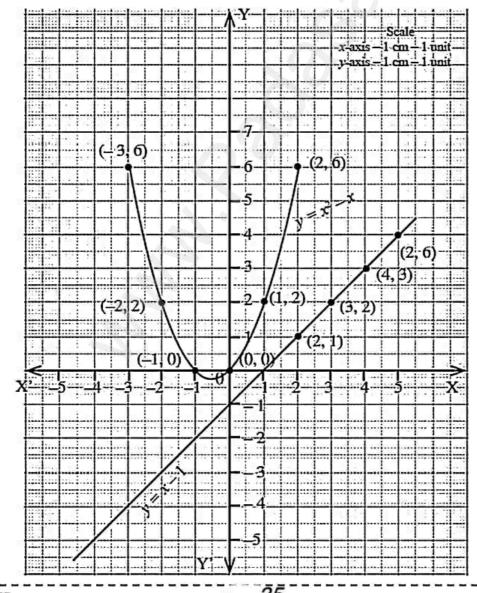
| x | -4 | -3 | -2 | -1 | 0 | 1 | 2  | 3  | 4  |
|---|----|----|----|----|---|---|----|----|----|
| у | 4  | 5  | 6  | 7  | 8 | 9 | 10 | 11 | 12 |



Solution : {-3, 4}

## 10. Draw the graph of $Y = X^2 + X$ and hence solve $X^2 + 1 = 0$

| Х              | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3  | 4  | 5  |
|----------------|----|----|----|----|----|---|---|---|----|----|----|
| X <sup>2</sup> | 25 | 16 | 9  | 4  | 1  | 0 | 1 | 4 | 9  | 16 | 25 |
| X.             | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3  | 4  | 5  |
| γ              | 20 | 12 | 6  | 2  | 0  | 0 | 2 | 6 | 12 | 20 | 30 |


To solve  $x^2 + 1 = 0$ , subtract  $x^2 + 1 = 0$  from  $y = x^2 + x$ .

$$y = x^{2} + x$$

$$0 = x^{2} - 0x + 1$$

$$y = x - 1$$

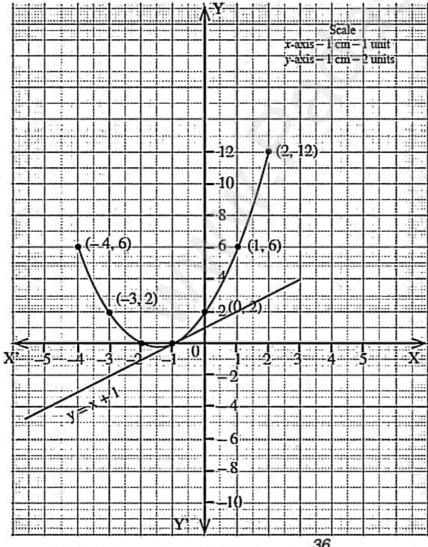
| x | -4 | -3 | -2 | -1 | 0  | 1 | 2 | 3 | 4 | 5 |
|---|----|----|----|----|----|---|---|---|---|---|
| y | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |



No Solution

#### Draw the graph of $Y = X^2 + 3x + 2$ and use it to solve $X^2 + 2x + 1 = 0$ 11.

| х              | -5  | -4  | -3 | -2 | -1 | 0 | 1 | 2  | 3  | 4  | 5  |
|----------------|-----|-----|----|----|----|---|---|----|----|----|----|
| X <sup>2</sup> | 25  | 16  | 9  | 4  | 1  | 0 | 1 | 4  | 9  | 16 | 25 |
| 3X             | -15 | -12 | -9 | -6 | -3 | 0 | 3 | 6  | 9  | 12 | 15 |
| 2              | 2   | 2   | 2  | 2  | 2  | 2 | 2 | 2  | 2  | 2  | 2  |
| +              | 27  | 18  | 11 | 6  | 3  | 2 | 6 | 12 | 20 | 30 | 42 |
|                | -15 | -12 | -9 | -6 | -3 | 0 | 0 | 0  | 0  | 0  | 0  |
| Y              | 12  | 6   | 2  | 0  | 0  | 2 | 6 | 12 | 20 | 30 | 42 |


To solve  $x^2 + 2x + 1 = 0$ , subtract  $x^2 + 2x + 1 = 0$  from  $y = x^2 + 3x + 2$ .

$$y=x^2+3x+2$$

$$0=x^2+2x+1$$

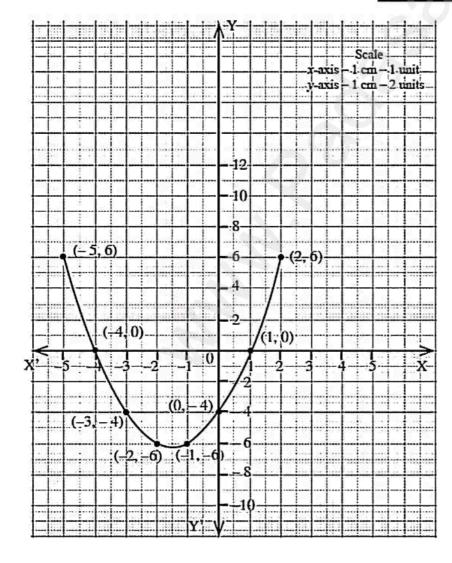
$$y=x+1$$

| x | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
|---|----|----|----|----|---|---|---|---|---|
| y | -3 | -2 | -1 | 0  | 1 | 2 | 3 | 4 | 5 |



Solution : {-1,-1}

## 12. Draw the graph of $Y = X^2 + 3x - 4$ and hence use it to solve $x^2 + 3x - 4 - 0$


| Х              | -5  | -4  | -3  | -2  | -1 | 0  | 1  | 2  | 3  | 4  | 5  |
|----------------|-----|-----|-----|-----|----|----|----|----|----|----|----|
| X <sup>2</sup> | 25  | 16  | 9   | 4   | 1  | 0  | 1  | 4  | 9  | 16 | 25 |
| ЗХ             | -15 | -12 | -9  | -6  | -3 | 0  | 3  | 6  | 9  | 12 | 15 |
| -4             | -4  | -4  | -4  | -4  | -4 | -4 | -4 | -4 | -4 | -4 | -4 |
| +              | 25  | 16  | 9   | 4   | 1  | 0  | 4  | 10 | 18 | 28 | 30 |
| -              | -19 | -16 | -13 | -10 | -7 | -4 | -4 | -4 | -4 | -4 | -4 |
| Υ              | 6   | 0   | -4  | -6  | -6 | -4 | 0  | 6  | 14 | 24 | 26 |

To solve  $x^2 + 3x - 4 = 0$ , subtract  $x^2 + 3x - 4 = 0$  from  $y = x^2 + 3x - 4$ .

$$y = x^2 + 3x - 4$$

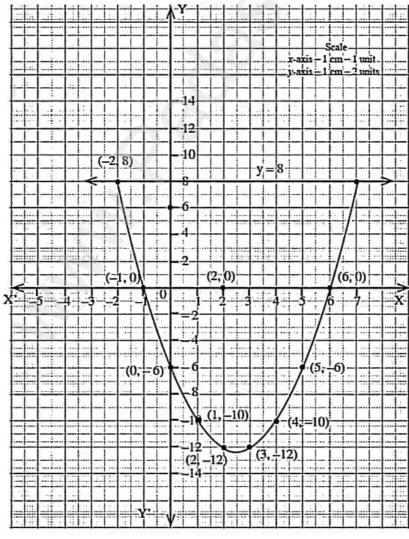
$$0 = x^2 + 3x - 4$$

$$y = 0$$



Solution :  $\{-4, 1\}$ 

## 13. Draw the graph of $Y = X^2 - 5X - 6$ and hence solve $X^2 - 5X - 14 = 0$


| Х              | -5 | -4 | -3 | -2 | -1 | 0  | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|----------------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| X <sup>2</sup> | 25 | 16 | 9  | 4  | 1  | 0  | 1   | 4   | 9   | 16  | 25  | 36  | 49  |
| -5X            | 25 | 20 | 15 | 10 | 5  | 0  | -5  | -10 | -15 | -20 | -25 | -30 | -35 |
| -6             | -6 | -6 | -6 | -6 | -6 | -6 | -6  | -6  | -6  | -6  | -6  | -6  | -6  |
| +              | 50 | 36 | 24 | 14 | 6  | 0  | 1   | 4   | 9   | 16  | 25  | 36  | 49  |
| -              | -6 | -6 | -6 | -6 | -6 | -6 | -11 | -16 | -21 | -26 | -31 | -36 | -41 |
| Υ              | 44 | 30 | 18 | 8  | 0  | -6 | -10 | -12 | -12 | -10 | -6  | 0   | 8   |

To solve 
$$x^2 - 5x - 14 = 0$$
, subtract  $x^2 - 5x - 14 = 0$  from  $y = x^2 - 5x - 6$ .

$$y=x^2-5x-6$$

$$0=x^2-5x-14$$

$$y=8$$



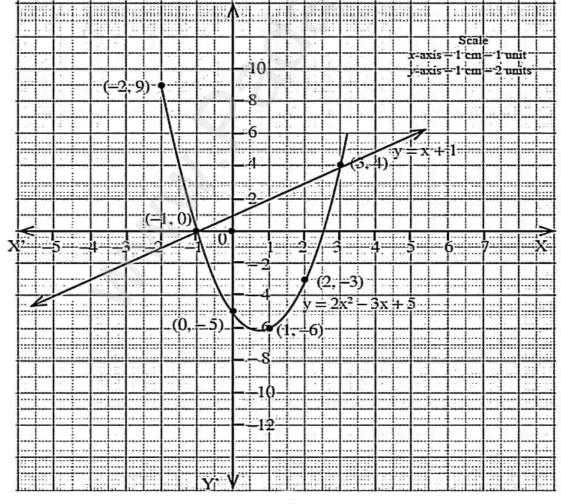
38

Solution

: {-2,7}

## 14. Draw the graph of $Y = 2x^2 - 3x - 5$ and hence solve $2x^2 - 4x - 6 = 0$

| х               | -5       | -4       | -3       | -2       | -1      | 0       | 1       | 2        | 3         | 4         | 5         |
|-----------------|----------|----------|----------|----------|---------|---------|---------|----------|-----------|-----------|-----------|
| X <sup>2</sup>  | 25       | 16       | 9        | 4        | 1       | 0       | 1       | 4        | 9         | 16        | 25        |
| 2X <sup>2</sup> | 50       | 32       | 18       | 8        | 2       | 0       | 2       | 8        | 18        | 32        | 50        |
| -3x             | 15       | 12       | 9        | 6        | 3       | 0       | -3      | -6       | -9        | -12       | -15       |
| -5              | -5       | -5       | -5       | -5       | -5      | -5      | -5      | -5       | -5        | -5        | -5        |
| +               | 65<br>-5 | 44<br>-5 | 27<br>-5 | 14<br>-5 | 5<br>-5 | 0<br>-5 | 2<br>-8 | 8<br>-11 | 18<br>-14 | 32<br>-17 | 50<br>-20 |
| Y               | 60       | 39       | 22       | 9        | 0       | -5      | -6      | -3       | 4         | 15        | 30        |


To solve  $2x^2-4x-6=0$ , subtract it from  $y=2x^2-3x-5$ .

$$y=2x^2-3x-5$$

$$0=2x^2-4x-6$$

$$y=x+1$$

| X | 0 | 1 | 2 | -1 |
|---|---|---|---|----|
| У | 1 | 2 | 3 | 0  |

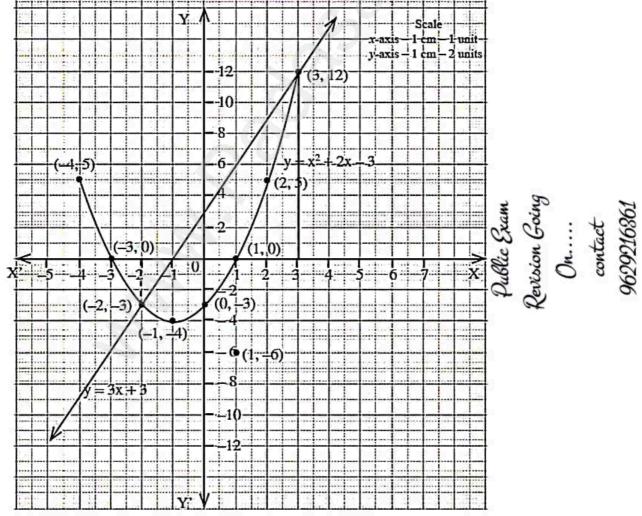


**Solution** : {-1, 3}

39

## 15. Draw the graph of Y = (X-1)(X+3) and hence solve $X^2 - X - 6 = 0$ $Y = x^2 + 2x - 3$

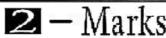
| Х              | -5  | -4  | -3 | -2 | -1 | 0  | 1  | 2  | 3  | 4  | 5  |
|----------------|-----|-----|----|----|----|----|----|----|----|----|----|
| X <sup>2</sup> | 25  | 16  | 9  | 4  | 1  | 0  | 1  | 4  | 9  | 16 | 25 |
| 2X             | -10 | -8  | -6 | -4 | -2 | 0  | 2  | 4  | 6  | 8  | 10 |
| -3             | -3  | -3  | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 | -3 |
| +              | 25  | 16  | 9  | 4  | 1  | 0  | 3  | 8  | 15 | 24 | 35 |
| -              | -13 | -11 | -9 | -7 | -5 | -3 | -3 | -3 | -3 | -3 | -3 |
| Y              | 12  | 5   | 0  | -3 | -4 | -3 | 0  | 5  | 12 | 21 | 32 |


To solve  $x^2 - x - 6 = 0$ , subtract it from  $y = x^2 + 2x - 3$ .

$$y = x^{2} + 2x - 3$$

$$0 = x^{2} - x - 6$$

$$y = 3x + 3$$


| X | 0 | 1 | 2 | -1 |
|---|---|---|---|----|
| у | 3 | 6 | 9 | 0  |



Solution : {-2, 3}

Sun Tuition center 9629216361

## STANDARD TEN



1. Find the range and coefficient of range of the following data: 25, 67, 48, 53, 18, 39, 44.

**Solution:** Largest value L = 67; Smallest value S = 18

Range 
$$R = L - S = 67 - 18 = 49$$

Coefficient of range 
$$=\frac{L-S}{L+S} = \frac{67-18}{67+18} = \frac{49}{85} = 0.576$$

2. Find the range of the following distribution.

| Age (in years)     | 16-18 | 18- 20 | 20- 22 | 22- 24 | 24- 26 | 26- 28 |
|--------------------|-------|--------|--------|--------|--------|--------|
| Number of students | 0     | 4      | 6      | 8      | 2      | 2      |

**Solution**: Here Largest value L = 28

Smallest value S = 18

Range R = L - S = 28 - 18 = 10 Years.

3. The range of a set of data is 13.67 and the largest value is 70.08. Find the smallest value.

Solution: Range R = 13.67 Largest value L = 70.08 Range R = L - S

13.67 = 70.08 - S S = 70.08 - 13.67 = 56.41

4. Find the range and coefficient of range of the following data. 63, 89, 98, 125, 79, 108, 117, 68

**Solution:** Range = L - S = 125 - 63 = 62

Coefficient of range = 
$$\frac{L-S}{L+S} = \frac{125-63}{125+63} = \frac{62}{185} = 0.33$$

5. Find the range and coefficient of range of the following data. 43.5, 13.6, 18.9, 38.4, 61.4, 29.8

**Solution:** Range = L - S = 61.4 - 13.6 = 47.8

\*\*\*\*\*\*\*\*

Coefficient of range = 
$$\frac{L-S}{L+S} = \frac{61.4-13.6}{61.4+13.6} = \frac{47.8}{75} = 0.64$$

6. If the standard deviation of a data is 4.5 and if each value of the data is decreased by 5, then find the new standard deviation.

Solution: Given, S.D of a data = 4.5 each value is decreased by 5, then the new SD = 4.5

7. If the standard deviation of a data is 3.6 and each value of the data is divided by 3, then find the new variance and new standard deviation.

Solution: Given, S.D of a data = 3.6 each value is divided by 3 then the new S.D =  $\frac{3.6}{3}$  = 1.2

New Variance = 
$$(S.D)^2 = (1.2)^2 = 1.44$$

8. Calculate the range of the following data.

| Income               | 400-450 | 450-500 | 500-550 | 550-600 | 600-650 |
|----------------------|---------|---------|---------|---------|---------|
| Number of<br>workers | 8       | 12      | 30      | 21      | 6       |

Solution: Here, Largest value = L = 650 Smallest value = S = 400

$$\therefore$$
 Range = L - S = 650 - 400 = 250

 If the range and the smallest value of a set of data are 36.8 and 13.4 respectively, then find the largest value.

Solution: Given; range = 36.8 Smallest value = 13.4  $\therefore$  R = L - S 36.8 = L - 13.4

10. Find the standard deviation of first 21 natural numbers.

Solution: SD of first 21 natural numbers  $=\sqrt{\frac{n^2-1}{12}} = \sqrt{\frac{441-1}{12}} = \sqrt{\frac{440}{12}} = 6.0$ 

\*\*\*\*\*\*\*\*\*\*

11. The standard deviation of some temperature data in degree celsius (°C) is 5. If the data were converted into degree Farenheit (°F) then what is the variance?

Given  $\sigma_c = 5$   $F = \frac{9c}{5} + 32 \Rightarrow \sigma_F = \frac{9}{5}\sigma_c = \frac{9}{5} \times 5 = 9 \therefore \sigma_F^2 = 9^2 = 81.$ Solution:

12. A bag contains 5 blue balls and 4 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is (i) blue (ii) not blue.

**Solution:** n(S) = 5 + 4 = 9 (i) Let A blue ball. n(A) = 5,  $P(A) = \frac{5}{9}$ 

(ii) B will be the event of not getting a blue ball. n(B) = 4,  $P(B) = \frac{4}{9}$ 

 $1\overline{3}$ . Two coins are tossed together. What is the probability of getting different faces on the coins?

Solution:  $S = \{HH, HT, TH, TT\}$  Let A be the different faces on the coins. n(S) = 4

\*\*\*\*\*\*\*\*\*

 $A = \{HT, TH\}; n(A) = 2, P(A) = \frac{2}{1} = \frac{1}{1}$ 

14. What is the probability that a leap year selected at random will contain 53 saturdays. (Hint:  $366 = 52 \times 7 + 2$ )

Solution: A leap year has 366 days. 52 weeks and 2 days.

S = {(Sun-Mon, Mon-Tue, Tue-Wed, Wed-Thu, Thu-Fri, Fri-Sat, Sat-Sun)};

Let A 53<sup>rd</sup> Saturday.  $A = \{Fri\text{-Sat}, Sat\text{-Sun}\}; n(A) = 2$ ,  $P(A) = \frac{2}{3}$ 

15. A die is rolled and a coin is tossed simultaneously. Find the probability that the die shows an odd number and the coin shows a head.

**Solution:**  $S = \{1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T\}; n(S) = 12$ Let A odd number and a head.  $A = \{1H, 3H, 5H\}; n(A) = 3$ ,  $P(A) = \frac{3}{12} = \frac{1}{4}$ 

16. A bag contains 6 green balls, some black and red balls. Number of black balls is as twice as the number of red balls. Probability of getting a green ball is thrice the probability of getting a red ball. Find (i) number of black balls (ii) total number of balls.

**Solution:** Number of green balls is n(G) = 6 Let number of red balls is n(R) = x

Therefore, number of black balls is n (B) = 2x Total number of balls n(S) = 6 + x + 2x = 6 + 3x

It is given that,  $P(G) = 3 \times P(R) \Rightarrow \frac{6}{6+3x} = 3 \times \frac{x}{6+3x} \Rightarrow 3x = 6 \Rightarrow x = \frac{6}{3} = 2 \Rightarrow x = 2$ .

(i) Number of black balls =  $2 \times 2 = 4$  (ii) Total number of balls =  $6 + (3 \times 2) = 12$ 

17. If A is an event of a random experiment such that  $P(A) : P(\overline{A}) = 17:15$  and n(S) = 640 then find (i) P (A) (ii) n(A).

Total event = 17+15 = 32Solution: Given  $P(A): P(\overline{A}) = 17:15$ 

(i) 
$$P(\overline{A}) = \frac{15}{32}$$
 (ii)  $n(A) = \frac{17}{32} \times 640 = 340$ 

18. A coin is tossed thrice. What is the probability of getting two consecutive tails?

Solution: A coin is tossed thrice. S = {(HHH), (HHT), (HTH), (HTT), (THH), (TTH), (TTT)},

n(S) = 8Let A two consecutive tails  $A = \{(HTT), (TTH), (TTT)\}$ , n(A) = 3,  $P(A) = \frac{3}{8}$ 

19. At a fete, cards bearing numbers 1 to 1000, one number on one card are put in a box. Each player selects one card at random and that card is not replaced. If the selected card has a perfect square number greater than 500, the player wins a prize. What is the probability that (i) the first player wins a prize (ii) the second player wins a prize, if the first has won?

ares between 500 and 1000  $A = \{23^2, 24^2, 25^2, 26^2, ..., 31^2\}$ , n(A) = 9,  $P(A) = \frac{9}{1000}$ i) Let A perfect squares

(ii) Let A the second player wins a prize, if the first has won n(S) = 999, n(B) = 8, P(B) = 8

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*

20. Find the diameter of a sphere whose surface area is 154 m<sup>2</sup>.

**Solution:** surface area of sphere = 154 m<sup>2</sup>  $\Rightarrow$   $4\pi r^2 = 154$ 

$$4 \times \frac{22}{7} \times r^2 = 154 \Rightarrow r^2 = 154 \times \frac{1}{4} \times \frac{7}{22} \Rightarrow r^2 = \frac{49}{4} \Rightarrow r = \frac{7}{2}$$

21 .The curved surface area of a right circular cylinder of height 14 cm is 88 cm2. Find the diameter of the cylinder.

Solution: C.S.A. of the cylinder =88 sq. cm

Given that, 
$$2\pi rh = 88 \implies 2 \times \frac{22}{7} \times r \times 14 = 88 \implies 2r = \frac{88 \times 7}{22 \times 14} = 2$$

Therefore, diameter = 2 cm

22. If the total surface area of a cone of radius 7cm is 704 cm2, then find its slant height.

Solution: r = 7 cm T.S.A. of cone =  $\pi r(l+r)$  sq. units

T.S.A. = 704 cm<sup>2</sup> 
$$\Rightarrow$$
 704 =  $\frac{22}{7} \times 7(l+7)$ 

$$(l+7) = \frac{32}{7.04 \times 7} \Rightarrow l+7 = 32 \Rightarrow l = 32-7 = 25 \text{ cm}$$
slant height of the cone is 25 cm.

23. The radius of a spherical balloon increases from 12 cm to 16 cm as air being pumped into it. Find the ratio of the surface area of the balloons in the two cases.

Solution: Given that,

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

 $\frac{4\pi r_1^2}{4\pi r_2^2} = \frac{r_1^2}{r_2^2} = \frac{3^2}{4^2} = \frac{9}{16}$  Therefore, ratio of C.S.A. of balloons is 9:16. Now, ratio of C.S.A. of balloons =

24. The radius of a conical tent is 7 m and the height is 24 m. Calculate the length of the canvas used to make the tent if the width of the rectangular canvas is 4 m?

Solution: r=7 m and h=24 m

$$l = \sqrt{r^2 + h^2} = \sqrt{49 + 576} = \sqrt{625} = 25$$
m

C.S.A. of the conical tent =  $\pi r I$  sq. units

Area of the canvas = 
$$\frac{22}{7} \times 7 \times 25 = 550 \text{ m}^2$$

length of the canvas = 
$$\frac{7}{\text{Area of canvas}} = \frac{550}{4} = 137.5 \, m$$

25. A garden roller whose length is 3 m long and whose diameter is 2.8 m is rolled to level a garden.

How much area will it cover in 8 revolutions?

Solution: d = 2.8 mand height = 3 mr = 1.4 m

Area covered in one revolution = curved surface area of the cylinder =  $2\pi rh$  sq. units

$$=2\times\frac{22}{7}\times1.4\times3=26.4$$

Area covered in 8 revolutions =  $8 \times 26.4 = 211.2$ Area covered in 1 revolution =  $26.4 \text{ m}^2$ 

26. A sphere, a cylinder and a cone are of the same radius, where as cone and cylinder are of same height. Find the ratio of their curved surface areas.

Solution: Required Ratio = C.S.A. of the sphere: C.S.A. of the cylinder: C.S.A. of the cone

= 
$$4\pi r^2 : 2\pi rh : \pi rl$$
  
=  $4:2:\sqrt{2} = 2\sqrt{2}:\sqrt{2}:1$ 







\*\*\*\*\*



26.0 The slant height of a frustum of a cone is 5 cm and the radii of its ends are 4 cm and 1 cm. Find its curved surface area.

Solution: 
$$l = 5$$
 cm,  $R = 4$  cm,  $r = 1$  cm  
C.S.A. of the frustum  $= \pi (R + r) l = \frac{22}{7} \times (4 + 1) \times 5 = \frac{550}{7} = 78.57$  cm<sup>2</sup>

27. 4 persons live in a conical tent whose slant height is 19 cm. If each person require 22 cm² of the floor area, then find the height of the tent.

Solution: Given slant height of the cone l=19 cm Total floor area of 4 persons = 88 cm<sup>2</sup>  $\Rightarrow \pi r^2 = 88 \Rightarrow \frac{22}{7} \times r^2 = 88 \Rightarrow r^2 = 28$  $\therefore h = \sqrt{l^2 - r^2} = \sqrt{19^2 - 28} = \sqrt{361 - 28} = \sqrt{333} \approx 18.25 \text{ cm}.$ 

28. From a solid Cylinder whose height is 2.4 cm and the diameter 1.4 cm, a cone of the same height and same diameter is carved out. Find the volume of the remaining solid to the nearest cm<sup>3</sup>.

Solution: Volume of the remaining solid = Vol. of Cylinder - Vol. of Cone

\*\*\*\*\*\*\*

$$= \pi r^2 h - \frac{1}{3} \pi r^2 h = \frac{2}{3} \pi r^2 h$$
$$= \frac{2}{3} \times \frac{22}{7} \times 0.7 \times 0.7 \times 2.4 = 2.46 \text{ cm}^3$$

29. The volume of a solid right circular cone is 11088 cm<sup>3</sup>. If its height is 24 cm then find the radius of the cone.

Solution: Volume of the cone = 11088 cm<sup>3</sup>  $\Rightarrow \frac{1}{3}\pi r^2 h = 11088 \Rightarrow \frac{1}{3} \times \frac{22}{7} \times r^2 \times 24 = 11088$ 

Therefore, radius of the cone r = 21 cm

30. The ratio of the volumes of two cones is 2:3. Find the ratio of their radii if the height of second cone is double the height of the first..

Solution: Given  $h_2 = 2h_1$  and  $\frac{\text{Volume of the cone I}}{\text{Volume of the cone II}} = \frac{2}{3}$   $\frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2} = \frac{2}{3} \Rightarrow \frac{r_1^2}{r_2^2} \times \frac{h_1}{2h_1} = \frac{2}{3} \Rightarrow \frac{r_1^2}{r_2^2} = \frac{4}{3} \Rightarrow \frac{r_1}{r_2} = \frac{2}{\sqrt{3}} \quad \text{ratio of their radii} = 2: \sqrt{3}$ 

31. The volumes of two cones of same base radius are 3600 cm<sup>3</sup> and 5040 cm<sup>3</sup>. Find the ratio of heights.

Solution: Given volumes of 2 cones = 3600 cm<sup>3</sup> & 5040 cm<sup>3</sup> & base radius are equal

∴ Ratio of volumes = 
$$\frac{V_1}{V_2} = \frac{3600}{5040}$$
  $\Rightarrow \frac{\frac{1}{3} \pi_1^2 h_1}{\frac{1}{3} \pi_2^2 h_2} = \frac{3600}{5040}$   $\Rightarrow \frac{h_1}{h_2} = \frac{40}{56} = \frac{5}{7}$   
∴  $h_1 : h_2 = 5 : 7$ 

32. A solid sphere and a solid hemisphere have equal total surface area. Prove that the ratio of their volume is  $3\sqrt{3}$ : 4.

Solution: Given TSA of a solid sphere = TSA of a solid hemisphere

$$\Rightarrow 4\pi R^2 = 3\pi r^2 \Rightarrow \therefore \frac{R^2}{r^2} = \frac{3}{4} \qquad \therefore \frac{R}{r} = \frac{\sqrt{3}}{2}$$

$$\therefore \text{ Ratio of their volumes} = \frac{\frac{4}{3}\pi R^3}{\frac{2}{3}\pi r^3} = \frac{2R^3}{r^3} = 2\left[\frac{R}{r}\right]^3 = 2\left(\frac{\sqrt{3}}{2}\right)^3 = 2 \times \frac{3\sqrt{3}}{8} = \frac{3\sqrt{3}}{4}$$

$$\therefore \text{ Ratio of the volumes} = 3\sqrt{3} : 4$$

\*\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 33. Use Euclid's Division Algorithm to find the Highest Common Factor (HCF) of 10224 and 9648 \*\*\*\*\*\*\*\*\* Solution: HCF of 10224 and 9648  $10224 = 9648 \times 1 + 576$  $9648 = 576 \times 16 + 432$  $576 = 432 \times 1 + 144$ .. The last divisior "144" is the HCF.

34. Find the largest number which divides 1230 and 1926 leaving remainder 12 in each case.

Solution: HCF of 1230 - 12 and 1926 - 12 i.e., HCF of 1218 and 1914  $1914 = 1218 \times 1 + 696$  $1218 = 696 \times 1 + 522$  $696 = 522 \times 1 + 174$  $522 = (174) \times 3 + 0$ .. The required largest number = 174.  $\therefore$  HCF = 174

 $432 = (144) \times 3 + 0$ 

35. When the positive integers a, b and c are divided by 13, the respective remainders are 9,7 and 10. Show that a + b + c is divisible by 13.

**Solution:** When a is divided by 13, remainder is 9 i.e., a = 13q + 9.....(1) When b is divided by 13, remainder is 7 i.e., b = 13q + 7.....(2) When c is divided by 13, remainder is 11 i.e., c = 13q + 11.....(3)

Adding (1), (2) & (3) a+b+c=39q+26=13(2q+2)a + b + c is divisible by 13

36. Find the HCF of 252525 and 363636. Solution: 5 252525 5 50505 3 10101 3367 481

 $\therefore 252525 = 5 \times 5 \times \underline{3} \times \underline{7} \times \underline{481}$  $363636 = 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 481$  $= 3 \times 7 \times 481 = 10,101$ : HCF

37. Find the least number that is divisible by the first ten natural numbers.

**Solution:** The required number is the LCM of (1, 2, 3, ....... 10)

 $8 = 2 \times 2 \times 2$  $2 = 2 \times 1$  $4 = 2 \times 2$  $6 = 3 \times 2$ 

 $10 = 5 \times 2$  and 1, 3, 5, 7

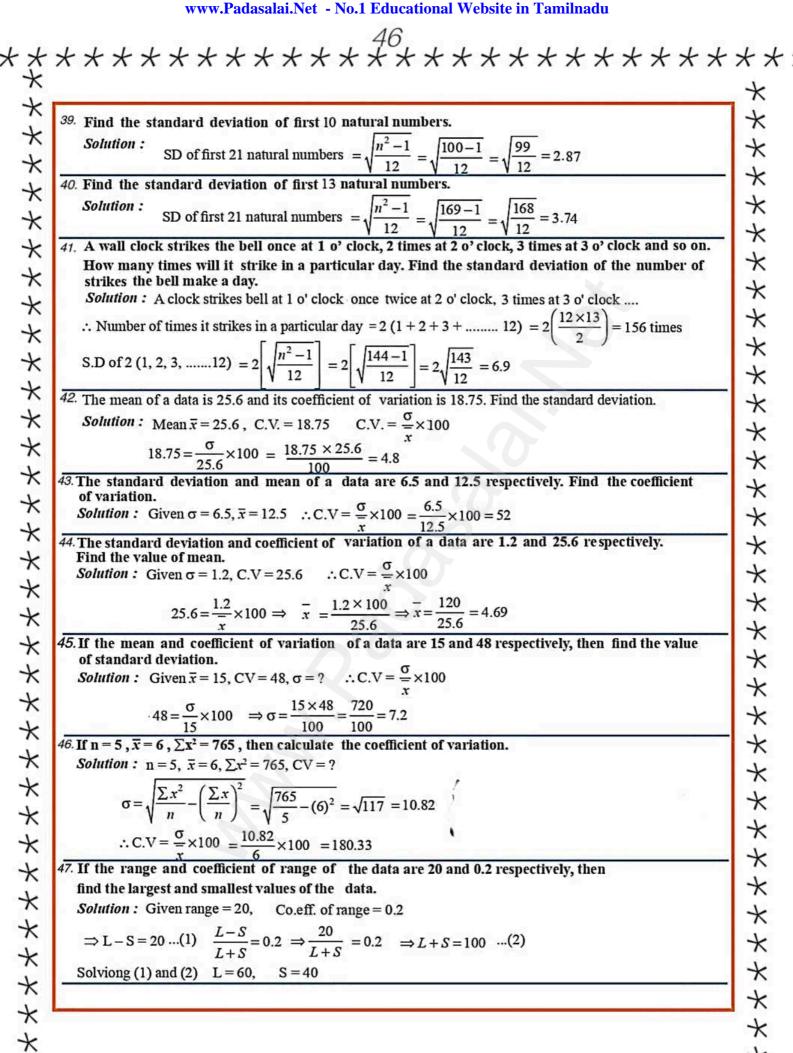
 $L.C.M = 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 = 2520$ 

38. If  $13824 = 2^a \times 3^b$  then find a and b. 2 13824 2 Solution: Given  $2^a \times 3^b = 13824$ 

 $2^a \times 3^b = 2^9 \times 3^2$ :. a = 9, b = 2

6912 2 3456

1728


2 864 2 432

2

2 216 2 108 2 54 3 27

3

 $9 = 3 \times 3$ 



40. Find the standard deviation of first 13 natural numbers.

Solution: SD of first 21 natural numbers  $=\sqrt{\frac{n^2-1}{12}} = \sqrt{\frac{169-1}{12}} = \sqrt{\frac{168}{12}} = 3.74$ 

41. A wall clock strikes the bell once at 1 o' clock, 2 times at 2 o' clock, 3 times at 3 o' clock and so on. How many times will it strike in a particular day. Find the standard deviation of the number of strikes the bell make a day.

\*

X

X

\*\*\*

X

\*

X

X X

\*

\*\*\*

\*

X

\*\*\*\*\*

Solution: A clock strikes bell at 1 o' clock once twice at 2 o' clock, 3 times at 3 o' clock ....

42. The mean of a data is 25.6 and its coefficient of variation is 18.75. Find the standard deviation.

**Solution:** Mean  $\bar{x} = 25.6$ , C.V. = 18.75 C.V. =  $\frac{\sigma}{=} \times 100$ 

 $\frac{18.75 = \frac{\sigma}{25.6} \times 100 = \frac{18.75 \times 25.6}{100} = 4.8}{43. \text{ The standard deviation and mean of a data are 6.5 and 12.5 respectively. Find the coefficient}}$ of variation.

**Solution:** Given  $\sigma = 6.5$ ,  $\bar{x} = 12.5$  ::  $C.V = \frac{\sigma}{x} \times 100 = \frac{6.5}{12.5} \times 100 = 52$ 

44. The standard deviation and coefficient of variation of a data are 1.2 and 25.6 respectively. Find the value of mean.

 $\therefore \text{C.V} = \frac{\sigma}{=} \times 100$ **Solution**: Given  $\sigma = 1.2$ , C.V = 25.6

 $25.6 = \frac{1.2}{\overline{x}} \times 100 \implies \overline{x} = \frac{1.2 \times 100}{25.6} \implies \overline{x} = \frac{120}{25.6} = 4.69$ 

45. If the mean and coefficient of variation of a data are 15 and 48 respectively, then find the value of standard deviation.

Solution: Given  $\bar{x} = 15$ , CV = 48,  $\sigma = ?$   $\therefore C.V = \frac{\sigma}{=} \times 100$ 

$$48 = \frac{\sigma}{15} \times 100 \implies \sigma = \frac{15 \times 48}{100} = \frac{720}{100} = 7.2$$

46. If n = 5,  $\bar{x} = 6$ ,  $\sum x^2 = 765$ , then calculate the coefficient of variation.

**Solution**: n = 5,  $\bar{x} = 6$ ,  $\sum x^2 = 765$ , CV = ?

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2} = \sqrt{\frac{765}{5} - (6)^2} = \sqrt{117} = 10.82$$

 $\therefore \text{C.V} = \frac{\sigma}{x} \times 100 = \frac{10.82}{6} \times 100 = 180.33$ 

47. If the range and coefficient of range of the data are 20 and 0.2 respectively, then find the largest and smallest values of the data.

**Solution**: Given range = 20, Co.eff. of range = 0.2

$$\Rightarrow L - S = 20 \dots (1)$$
  $\frac{L - S}{L + S} = 0.2$   $\Rightarrow \frac{20}{L + S} = 0.2$   $\Rightarrow L + S = 100 \dots (2)$ 

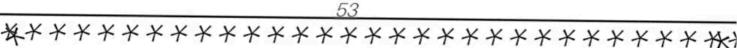
Solviong (1) and (2) L = 60, S = 40

```
*
    48. Find the 12^{th} term from the last term of the A.P - 2, -4, -6, ... -100.
                                                                                                                 X
        Solution: Given A.P is -2, -4, -6, \dots -100
X
         12th term from the last term
                                                                                                                  X
X
                                          t_{12} = a + 11d = -100 + 11(2) = -100 + 22 = -78
    49. If 1+2+3+\ldots+k=325, then find 1^3+2^3+3^3+\ldots+k^3
                                                                                                                 **********************
       Solution: 1+2+3+.....+k=325
X
                   1^3 + 2^3 + 3^3 + \dots + k^3 = \left(\frac{k(k+1)}{2}\right)^2 = (325)^2 = 105625
X
X
    50. Find the G.P. in which the 2^{nd} term is \sqrt{6} and the 6th term is 9\sqrt{6} .
       Solution: Given t_2 = \sqrt{6}, t_6 = 9\sqrt{6} in G.P.
X
                     a.r = \sqrt{6} .....(1)
                                                (2) divide (1)
X
                     \therefore a \times \sqrt{3} = \sqrt{6}
X
                                                       \therefore The G.P is \sqrt{2}, \sqrt{6}, \sqrt{18}, \dots
X
     51. When the positive integers a, b and c are divided by 13 the respective remainders are 9, 7 and 10.
X
        Find the remainder when a + 2b + 3c is divided by 13.
                                         b = 13q + 7 \Rightarrow 2b = 26q + 14
                                                                           c = 13q + 10 \Rightarrow 3c = 39q + 30
                    Let a = 13q + 9
                   a+2b+c=(13q+9)+(26q+14)+(39q+30)=78q+53=13 (6q) +13(4) +1
             : When a + 2b + 3c is divided by 13, the remainder is 1.
X
     52. The value of a motor cycle depreciates at the rate of 15% per year. What will be the value of the
X
        motor cycle 3 year hence, which is now purchased for ₹ 45,000?
        Solution: P = 745000, n = 3, r = 15\% (depreciation)
X
                   A = P \left( 1 - \frac{r}{100} \right)^n = 45,000 \left( 1 - \frac{15}{100} \right)^3 = 27636
X
X
     53. Show that the square of an odd integer is of the form 4q + 1, for some integer q.
X
        Solution: Let x = 2k + 1 be any odd integer.
        The square of an odd integer x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k+1) + 1 = 4q + 1
     54. A man has 532 flower pots. He wants to arrange them in rows such that each row contains 21
X
                                                                                                        25
        flower pots. Find the number of completed rows and how many flower pots are left over
                                                                                                        532
        Solution: No. of flower pots = 532
                                               each row to contain 21 flower pots.
                                                                                                         42
                               \Rightarrow 532 = 21 × 25 + 7
                                                                                                        112
105
                                   .. Number of completed rows = 25
                                   Number of flower pots left out = 7
     55. 'a' and 'b' are two positive integers such that a^b \times b^a = 800. Find 'a' and 'b'.
        Solution: 800 = 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 = 2^5 \times 5^2
                                         This implies that a = 2 and b = 5 (or) a = 5 and b = 2.
             Hence, a^b \times b^a = 2^5 \times 5^2
    56. Prove that two consecutive positive integers are always coprime.
X
       Solution: Let x, x+1 be two consecutive integers.
                   G.C.D. of (x, x + 1) = 1
                                             \Rightarrow x \& x + 1 are Co-prime.
    ****************
```

```
*******
      57. Find the number of terms in the A.P. 3, 6, 9, 12, .... 111.
                                                                                                                                   X
 X
                                                               n = \left(\frac{l-a}{d}\right) + 1 = \left(\frac{111-3}{3}\right) + 1 = \left(\frac{108}{3}\right) + 1 = 37
            Solution: a = 3; d = 6 - 3 = 3; l = 111
 X
                                                 the number of terms in the A.P. 37
                                                                                                                                   *
****
      58. Prove that 2^n + 6 \times 9^n is always divisible by 7 for any positive integer n.
                                                                                                                                   *
           Solution: When n = 1, 2n + 6 \times 9n = 2 + (6 \times 9) = 56, divisible by 7.
            What is the time 100 hours after 7 a.m.?
             Solution: Formula:
                                         t+n=f
                                                      (mod 24)
                                                                      100 + 7 = f \pmod{24}
                                                                                                                                   *
                                                             \Rightarrow 107 – f is divisible by 24
                                                                                                                                   ×
                               :. f = 11 so that 107 - 11 = 96 is divisible by 24.
                                         .. The time is 11 A.M.
                                                                                                                                   X
           Kala and Vani are friends, Kala says, "Today is my birthday" and she asks Vani, "When will you
                                                                                                                                   X
            celebrate your birthday?" Vani replies, "Today is Monday and I celebrated my birthday 75 days
X
            ago". Find the day when Vani celebrated her birthday:
                                                                                                                                   X
X
            Solution :
                                                                                                                                   X
**
                  Let 0, 1, 2, 3, 4, 5, 6 to represent the weekdays from Sunday to Saturday respectively.
                -74 \pmod{7} \equiv -4 \pmod{7} \equiv 7 - 4 \pmod{7} \equiv 3 \pmod{7}
                                                                                                                                   X
                  The day for the number 3 is Wednesday. Vani's birthday must be on Wednesday.
                                                                                                                                   X
X
      60.
            Today is Tuesday. My uncle will come after 45 days. In which day my uncle will be coming?
                                                                                                                                   X
            Solution: Today is Tuesday
                                                 Day after 45 \text{ days} = ?
X
                         When we divide 45 by 7, remainder is 3. : The 3rd day from Tuesday is <u>Friday</u>
                                                                                                                                   X
X
            A man starts his journey from Chennai to Delhi by train. He starts at 22.30 hours on Wednesday.
                                                                                                                                   X
X
            If it takes 32 hours of travelling time and assuming that the train is not late, when will be reach Delhi?
                                                                                                                                   X
             Solution: Starting time 22.30, Travelling time 32 hours. Here we use modulo 24.
X
                                                                                                                                   *
                     The reaching time is 22.30 + 32 \pmod{24} \equiv 54.30 \pmod{24} \equiv 6.30 \pmod{24}
X
             What is the smallest number that when divided by three numbers such as 35, 56 and 91
                                                                                                                                   X
             leaves remainder 7 in each case?
X
                                                                                                                                  *
             Solution: The required number is the LCM of (35, 56, 91) + remainder 7
X
                                                                                                                                   *
                                      56 = 7 \times 2 \times 2 \times 2
                                         91 = 13 \times 7
***
                                                                                                                                   X
                              L.C.M = 7 \times 5 \times 13 \times 8 = 3640
                  \therefore The required number is 3640 + 7 = 3647
                                                                                                                                   X
      62. Find the first five terms of the following sequence. a_1 = 1, a_2 = 1, a_n = \frac{a_{n-1}}{a_{n-2} + 3}; n \ge 3, n \in \mathbb{N}
                                                                                                                                   X
                          a_3 = \frac{a_{3-1}}{a_{3-2} + 3} = \frac{a_2}{a_1 + 3} = \frac{1}{1+3} = \frac{1}{4}
            Solution:
                                                                                                                                   X
                                                                                                                                   X
                          a_4 = \frac{a_{4-1}}{a_{4-2} + 3} = \frac{a_3}{a_2 + 3} = \frac{\overline{4}}{1+3} = \frac{\overline{4}}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}
                                                                                                                                   *
                                                                                                                                   *
                         a_5 = \frac{a_{5-1}}{a_{5-2} + 3} = \frac{a_4}{a_3 + 3} = \frac{\frac{1}{16}}{\frac{1}{1 + 3}} = \frac{1}{16} \times \frac{4}{13} = \frac{1}{52}
               The first five terms of the sequence are 1, 1, \frac{1}{4}, \frac{1}{16}, \frac{1}{25}
```

\*\*\*\*\*\*\*

```
63. The external radius and the length of a hollow wooden log are 16 cm and 13 cm respectively.
   If its thickness is 4 cm then find its T.S.A.
    Solution: R=16 \text{ cm} h=13 \text{ cm} thickness = 4 cm \therefore r=R-w=16-4=12
                                                                                                                                            \star
      :. TSA of hollow cylinder = 2\pi (R + r) (R - r + h) = 2 \times \frac{22}{7} (28) (4 + 13) = 44 \times 4 \times 17 = 2992 \text{ cm}^2
64. Find the volume of a cylinder whose height is 2 m and whose base area is 250 m2.
                                                                                                                                            \star
                                                      volume of a cylinder = \pi r^2 h cu. units
   Solution: height h = 2 \text{ m},
                                                                               = base area \times h = 250 \times 2 = 500 m<sup>3</sup>
            base area = 250 \text{ m}^2
                                                       Therefore, volume of the cylinder = 500 \text{ m}^3
65. The ratio of the radii of two right circular cones of same height is 1:3. Find the ratio of their
                                                                                                                                            X
   curved surface area when the height of each cone is 3 times the radius of the smaller cone.
                                                      r_1 = 1 \mid h_1 = 3r_1 = 3
   Solution: Given r_1: r_2=1:3
                                           \begin{vmatrix} l_1 = \sqrt{h_1^2 + r_1^2} \\ = \sqrt{9 + 1} = \sqrt{10} \end{vmatrix} \begin{vmatrix} l_2 = \sqrt{h_2^2 + r_2^2} \\ = \sqrt{9 + 9} = 3\sqrt{2}. \end{vmatrix}
                               :. Ratio of their CSA = \frac{\pi r_1 l_1}{\pi r_2 l_2} = \frac{1}{3} \times \frac{\sqrt{10}}{3\sqrt{2}} = \frac{\sqrt{5}}{9} = \sqrt{5}:9
66. Find the volume of the iron used to make a hollow cylinder of height 9 cm and whose internal and external
                                                                                                                                            X
   radii are 21 cm and 28 cm respectively.
                                                                                                                                             X
    Solution: Given that, r = 21 \text{ cm}, R = 28 \text{ cm}, h = 9 \text{ cm}
                                              = \pi(R^2 - r^2) h = \frac{22}{7} (28^2 - 21^2) \times 9 = \frac{22}{7} (784 - 441) \times 9 = 9702 \text{ cm}^3.
          volume of hollow cylinder
                                                                                                                                             X
                                                                                                                                             *
  10<sup>th</sup> & 12<sup>th</sup> All Subject Question Bank are Available
                                                                                                                                             X
                                                                                                                                            X
                                              contact - 9629216361
                                                                                                                                            X
67. If A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\} then find A and B.
                                                                                                                                            X
                                                             Thus A = \{3, 5\} and B = \{2, 4\}.
   Solution: A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}
                                                                                                                                             X
68. Find A \times B, A \times A and B \times A If A = B = \{p, q\}
   Solution: A \times B = \{(p, p), (p, q), (q, p), (q, q)\}
              A \times A = \{(p, p), (p, q), (q, p), (q, q)\}, B \times A = \{(p, p), (p, q), (q, p), (q, q)\}
                                                                                                                                             X
69. Find A \times B, A \times A and B \times A If A = \{m, n\}; B = \phi
   Solution: A = \{m, n\}, B = \emptyset
                                                                                                                                             X
               If A = \phi (or) B = \phi, then A \times B = \phi. and B \times A = \phi A \times B = \phi and B \times A = \phi
                A \times A = \{(m, m), (m, n), (n, m), (n, n)\}
                                                                                                                                             \star
70.Let A = \{1, 2, 3\} and B = \{x \mid x \text{ is a prime number less than 10}\}. Find A \times B and B \times A.
                                                                                                                                             X
  Solution: A = \{1, 2, 3\}, B = \{x \mid x \text{ is a prime number less than } 10\}. : B = \{2, 3, 5, 7\}
                                                                                                                                             X
      A \times B = \{(1, 2), (1, 3), (1, 5), (1, 7), (2, 2), (2, 3), (2, 5), (2, 7), (3, 2), (3, 3), (3, 5), (3, 7)\}
      B \times A = \{(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (5, 1), (5, 2), (5, 3), (7, 1), (7, 2), (7, 3)\}
                                                                                                                                             X
71.If B \times A = \{(-2, 3), (-2, 4), (0, 3), (0, 4), (3, 3), (3, 4)\} find A and B.
   Solution: B \times A = \{(-2, 3), (-2, 4), (0, 3), (0, 4), (3, 3), (3, 4)\} \therefore A = \{3, 4\}, B = \{-2, 0, 3\}
```


\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

```
********
    72. Find the 19th term of an A.P. -11, -15,-19,...
       Solution: A.P is -11, -15, -19, ...... a = -11, d = -15 - (-11) = -15 + 11 = -4
                                                                                                                       X
                                  t_n = a + (n-1) d
                                                                                                                       X
                     t_{19} = a + 18 d = (-11) + 18 (-4) = -11 - 72 = -83
                                                                                                                       X
     73. Which term of an A.P. 16, 11, 6, 1,... is -54?
       Solution: A.P. is 16, 11, 6, 1, ...... - 54
                                                                                                                       X
             a = 16, d = -5, t_n = -54
                                                                                                                       X
                a+(n-1)d=-54 \Rightarrow 16+(n-1)(-5)=-54 \Rightarrow
                                                                             16 - 5n + 5 = -54
                                                                                                                       X
                                                                               -5n + 21 = -54
                                                                                 -5n + 21 = -54
                                                                                                                       X
                                                                                      -5n = -54 - 21
                                                                                                                       X
                                                                                      -5n = -75
                                                                                      n = 15
                                                                                                                       X
                                               ∴ 15th term of A.P. is - 54
    74. If a_1 = 1, a_2 = 1 and a_n = 2a_{n-1} + a_{n-2}, n \ge 3, n \in \mathbb{N}, then find the first six terms of the sequence.
                                                                                                                       X
        Solution: Given
                             a_1 = 1, a_2 = 1
                                                   a_1 = 2a_2 + a_1 = 2(1) + 1 = 3 a_2 = 2a_3 + a_5 = 2(3) + 1 = 7
                                                                                                                       X
                   a_5 = 2a_4 + a_3 = 2 (7) + 3 = 17 a_6 = 2a_5 + a_4 = 2 (17) + 7 = 41
                                                                                                                       X
                                .. The first 6 terms are 1, 1, 3, 7, 17, 41
                                                                                                                      ***
    75. Find the middle term(s) of an A.P. 9, 15, 21, 27,...,183.
        Solution: Given A.P is 9, 15, 21, 27, ....... 183 a = 9, d = 6, l = 183
                    n = \frac{l-a}{d} + 1 = \frac{183-9}{6} + 1 = \frac{174}{6} + 1 = 29 + 1 = 30 .: Middle terms are \frac{30}{2}, \frac{30}{2} + 1 = 15^{\text{th}}, \frac{16^{\text{th}}}{6}
                                                                                          t_{16} = a + 15d
                                                                      t_{15} = a + 14d
                                                                                                                       *
                                                                                              =9+15(6)
                                                                          =9+14(6)
                                                                                                                       *
                                                                                              =9+90
                                                                          = 9 + 84
                                                                                                                       X
                                                                          =93
                                                                                              = 99
         A milk man has 175 litres of cow's milk and 105 litres of buffalow's milk. He wishes to sell the
                                                                                                                      X
         milk by filling the two types of milk in cans of equal capacity. Claculate the following
                                                                                                                       X
         (i) Capacity of a can (ii) Number of cans of cow's milk (iii) Number of cans of buffalow's milk.
                                                                                                                       X
         Solution: Cow's milk = 175 lrs.
                                                Buffalow's milk = 105 lrs.
                Capacity of a can = HCF of 175 and 105 = 35 litres
                                                                                                                       X
               Number of cans of Cow's milk = \frac{175}{35} = 5 iii) Number of cans of buffalow's milk = \frac{105}{35} = 3
     77. If 3+k, 18-k, 5k+1 are in A.P. then find k.
          Solution: a, b, c are in A.P. \Rightarrow 2b = a + c
               \Rightarrow 2 (18 - k) = (3 + k) + (5k + 1)
                      36 - 2k = 6k + 4
                           8k = 32 \Rightarrow k = 4
          Find x, y and z, given that the numbers x, 10, y, 24, z are in A.P.
                                                            .. y is the arithmetic mean of 10 & 24
          Solution: Given that x, 10, y, 24, z are in A.P.
                     2y = 10 + 24 \Rightarrow y = \frac{10 + 24}{2} = \frac{34}{2} = 17
                                                             Clearly d = 7
                     \therefore x, 10, y, 24, z \text{ are in A.P.} \qquad \therefore x = 10 - 7 = 3 \quad \& z = 24 + 7 = 31
                                        x = 3, y = 17, z = 31
```

\*\*\*\*\*\*\*\*\*\*

```
******
                                                                                                                                                       X
      79. Prove that
             Solution: \sin A \times \sin A = (1 + \cos A) \times (1 - \cos A) \implies \sin^2 A = 1 - \cos^2 A \implies \sin^2 A = \sin^2 A
       80. Prove that 1+-
                                             = cosec \theta
X
                                1+cosecθ
X
                             \cot^2 \theta
                                         = (\csc\theta - 1) \Longrightarrow \frac{(\csc\theta + 1)(\csc\theta - 1)}{}
             Solution:
                                                                                                                                                       \star
                                                                                            = (\csc\theta - 1) \Rightarrow (\csc\theta - 1) = (\csc\theta - 1)
                           1 + \csc\theta
                                                                       cosece+1
                                                                                                                                                       X
X
      81. Prove that \sec \theta - \cos \theta = \tan \theta \sin \theta
X
                                                                 1-\cos^2\theta
             Solution: \sec \theta - \cos \theta = -\cos \theta
                                                                                                   \times \sin \theta = \tan \theta \sin \theta
X
                                     \sin \theta
                           \sec \theta
      82.
             Prove that
                                     \cos \theta
                           \sin \theta
                                                      \sec \theta \cos \theta - \sin \theta \sin \theta
              Solution:
                                                                                                                           \sin\theta\cos\theta
                                 \sin \theta
                                           \cos \theta
                                                              \cos\theta\sin\theta
                                                                                          \sin\theta\cos\theta
                                                                                                           \sin\theta\cos\theta
X
                                                                                                                                                       X
X
             Show that
X
                                                                                                                                                       \star
             Solution:
X
                                                                                                   \Rightarrow \tan^2 A = (-\tan A)^2 \Rightarrow \tan^2 A = \tan^2 A
                                                                                                                                                       X
                                                                                       \tan A - 1
                                                                                        tan A
X
      84. Prove that (\csc\theta - \sin\theta)(\sec\theta - \cos\theta)(\tan\theta + \cot\theta) = 1
X
             Solution:
                                 (\csc\theta - \sin\theta) (\sec\theta - \cos\theta) (\tan\theta + \cot\theta) =
X
                                                                                             \times \frac{\sin^2\theta + \cos^2\theta}{}
                                                                                                                 \cos^2\theta\sin^2\theta\times 1
X
                                                                                                  \sin\theta\cos\theta
                                             \sin A
      85. Prove that
                                                                                                                                                        \star
X
                                                       = 2 \operatorname{cosec} A
                            1+cos A
                                          1-\cos A
                                                                                                       2\sin A
                                                                                                                                                        \star
X
             Solution:
                             sin A
                                                                                                                                   = 2cosec A
                                                          (1-\cos A) \times (1+\cos A) \quad 1-\cos^2 A
                                                                                                                    sin A sin A
                           1+ cos A
X
      86.
            Prove that \sin^2 A \cos^2 B + \cos^2 A \sin^2 B + \cos^2 A \cos^2 B + \sin^2 A \sin^2 B = 1
                                                                                                                                                        \star
X
             Solution: \sin^2 A \cos^2 B + \cos^2 A \sin^2 B + \cos^2 A \cos^2 B + \sin^2 A \sin^2 B
                                                                                                                                                        X
                                                   = \sin^2 A \cos^2 B + \sin^2 A \sin^2 B + \cos^2 A \sin^2 B + \cos^2 A \cos^2 B
                                                   = \sin^2 A (\cos^2 B + \sin^2 B) + \cos^2 A (\sin^2 B + \cos^2 B)
                                                                                                                                                        X
                                                   = \sin^2 A(1) + \cos^2 A(1) = \sin^2 A + \cos^2 A = 1
                                                                                                                                                        \star
X
       87. Prove \sec^6 \theta = \tan^6 \theta + 3\tan^2 \theta \sec^2 \theta + 1
                                                                                                                                                        X
             Solution Take
X
                                               b = \tan^2 \theta
                                                                    (a+b)^3 = a^3 + b^3 + 3ab (a+b)
                                     a = 1
                                 (1+\tan^2\theta)^3 = 1 + \tan^6\theta + 3(1)\tan^2\theta)(1 + \tan^2\theta)
                                                                                                                                                        X
X
                                       \sec^6 \theta = 1 + \tan^6 \theta + 3\tan^2 \theta \cdot \sec^2 \theta
                                                                                                                                                        X
      88. Prove (\sin\theta + \sec\theta)^2 + (\cos\theta + \csc\theta)^2 = 1 + (\sec\theta + \csc\theta)^2
             Solution: (\sin \theta + \sec \theta)^2 + (\cos \theta + \csc \theta)^2 = \sin^2 \theta + \sec^2 \theta + 2\sin \theta \cdot \sec \theta + \cos^2 \theta + \csc^2 \theta
                                                                                                                     +2\cos\theta. cosec \theta
                                                                           =1+(\sec\theta\csc\theta)^2
       **********
```

```
89. Find the sum of 0.40 + 0.43 + 0.46 + ... + 1.
            Solution: a = 0.40 and l = 1, d = 0.43 - 0.40 = 0.03. n = \left(\frac{l-a}{d}\right) + 1 = \left(\frac{1-0.40}{0.03}\right) + 1 = 21
                                                                                                                                           X
                                               S_n = \frac{n}{2}[a+l] S_{21} = \frac{21}{2}[0.40+1] = 14.7
                                                                                                                                           X
          90. Find the sum of first 15 terms of the A.P. 8, 7\frac{1}{4}, 6\frac{1}{2}, 5\frac{3}{4}, ....
            Solution: a = 8, d = 7\frac{1}{4} - 8 = -\frac{3}{4}, S_n = \frac{n}{2}[2a + (n-1)d]
                              S_{15} = \frac{15}{2} \left[ 2 \times 8 + (15 - 1)(-\frac{3}{4}) \right] S_{15} = \frac{15}{2} \left[ 16 - \frac{21}{2} \right] = \frac{165}{4}
                                                                                                                                           X
             contains two additional seats than its front row. How many seats are there in the last row?
             Solution: a = 20, d = 2, n = 30
                                                       t_{30} = a + 29d = 20 + 29(2) = 20 + 58 = 78
                          t_n = a + (n-1) d
                                                               .. The no. of seats in 30th row = 78
           92. Find the sum of all odd positive integers less than 450.
                                                                                                                                           *
                          1+3+5+7+\dots+449 = \left[\frac{(l+1)}{2}\right]^2 = \left[\frac{449+1}{2}\right]^2 = \left[\frac{450}{2}\right]^2 = \left[225\right]^2 = 50,625
            Solution:
                                                                                                                                           *
          93. In a G.P. 729, 243, 81,... find t.
                                                                                                                                           X
                                                     a = 729 , r = \frac{8}{243} = \frac{1}{3}
 \therefore t_n = a \cdot r^{n-1}
            Solution: 729, 243, 21, ......
                                                                                                                                           X
                                     \Rightarrow t_7 = a \cdot r^6 = 729 \times \left(\frac{1}{3}\right)^6 = 729 \times \left(\frac{1}{729}\right) = 1
          94. Find x so that x+6, x+12 and x+15 are consecutive terms of a Geometric Progression.
            Solution: Given x + 6, x + 12, x + 15 are consecutive terms of a G.P.
                          a, b, c are in G.P. \Rightarrow b^2 = ac
                                                                                                                                           X
                        \Rightarrow (x+12)^2 = (x+15)(x+6) \Rightarrow x^2 + 24x + 144 = x^2 + 21x + 90 \Rightarrow 3x = -54 \Rightarrow x = -18
                                                                                                                                           ×
          95. Find the 10th term of a G.P. whose 8th term is 768 and the common ratio is 2.
                                                                                                                                           X
             Solution: t_0 = 768,
                  \Rightarrow a \cdot r^7 = 768 \Rightarrow a \times 2^7 = 768 \Rightarrow a \times 128 = 768 \Rightarrow a = 6
                                                                                                                                           X
                                         t_{10} = a \cdot r^9 = 6 \times 2^9 = 6 \times 512 = 3072
         96. If a, b, c are in A.P. then show that 3a, 3b, 3c are in G.P.
                                                                                                                                           X
             Solution: Given a, b, c are in A.P. \Rightarrow 2b = a + c ....(1)
                           To Prove: 3^a, 3^b, 3^c are in G.P. i.e. TP: (3^b)^2 = 3^a \cdot 3^c
                                        (3^b)^2 = 3^{2b} = 3^{a+c} = 3^a \cdot 3^c = RHS \quad (from (1))
                                       .: 3°, 3b, 3° are in G.P.
         97. Find the sum of 2+4+6+....+80
                                                                                                                                           X
             Solution: 2+4+6+....+80 = 2(1+2+3+....+40) = 2 \times \frac{40 \times (40+1)}{2} = 1640
          98. Find the sum of 1 + 3 + 5 + .... + 55
                                                                                                                                           X
             Solution: 1+3+5+...+55=\left\lceil \frac{(l+1)}{2} \right\rceil^2 = \left\lceil \frac{(55+1)}{2} \right\rceil^2 = \left\lceil \frac{56}{2} \right\rceil^2 = (28)^2 = 784.
                                                                                                                                           X
                                                                                                                                           X
           *******
```



99. In a box there are 20 non-defective and some defective bulbs. If the probability that a bul selected at random from the box found to be defective is  $\frac{3}{8}$  then, find the number of defective bulbs.

**Solution:** Let x be the number of defective bulbs.  $\therefore$  n(S) = x + 20

Let A defective balls : n(A) = x  $P(A) = \frac{x}{x+20}$ 

Given  $\frac{x}{x+20} = \frac{3}{8}$   $\Rightarrow$  8x = 3x + 60  $\Rightarrow$  5x = 60  $\Rightarrow x = 12$ 

100. Write the sample space for tossing three coins using tree diagram

Solution:

H
T
H
T
T

X

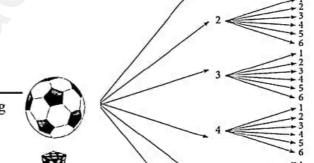
\*\*\*

*LXXXXXXXXXX* 

Sample space = {(HHH), (HHT), (HTH), (HTT), (THH), (THT), (TTH), (TTT)}

X

\* \* \*


\*\*\*

X

101. Write the sample space for selecting two balls from a bag containing 6 balls numbered 1 to 6 (using tree diagram).

Solution:  $S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$  (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) $(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$ 

Express the sample space for rolling two dice using tree diagram.



103. The probability that a student will pass the final examination in both English and Tamil is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Tamil examination?

Solution:  $P(E \cap T) = 0.5$ ;  $P(\overline{E} \cap \overline{T}) = 0.1$  & P(E) = 0.75  $\Rightarrow$   $P(E \cup T) = 1-01 = 0.9$   $P(E \cup T) = P(E) + P(T) - P(E \cap T)$   $\Rightarrow$  0.9 = 0.75 + P(T) - 0.5P(T) = 0.9 - 0.25  $= 0.65 = \frac{65}{100} = \frac{13}{20}$ 

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

104. An artist has created a triangular stained glass window and has one strip of small length left before completing the window. She needs to figure out the length of left out portion based on the lengths of the other sides as shown in the figure.

Solution: By applying Ceva's theorem,

X

X

X

X

X

X

X

X

X

$$BD \times CE \times AF = DC \times EA \times FB$$

$$\Rightarrow$$
 3×4×5 = 10×3×FB,

BE: EC = 3: 2 and AC = 21. Find the length of the line segment CF.

Solution: By Ceva's theorem, 
$$\frac{AD}{DB} \times \frac{BE}{EC} \times \frac{CF}{FA} = 1 \implies \frac{5}{3} \times \frac{3}{2} \times \frac{x}{21-x} = 1$$

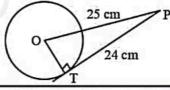
$$\Rightarrow \frac{x}{21-x} = \frac{2}{5}$$

$$\Rightarrow 5x = 42 - 2x \Rightarrow 7x = 42 \therefore x = 6 \therefore CF = 6$$

106. Ceva's Theorem: Let ABC be a triangle and let D,E,F be points on lines BC, CA, AB respectively.

Then the cevians AD, BE, CF are concurrent if and only if 
$$\frac{BD}{DC} \times \frac{CE}{EA} \times \frac{AF}{FB} = 1$$

107 Menelaus Theorem: A necessary and sufficient condition for points P, Q, R on the respective sides


BC, CA, AB of a triangle ABC to be collinear is that 
$$\frac{BP}{PC} \times \frac{CQ}{QA} \times \frac{AR}{RB} = 1$$

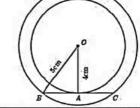
108. The length of the tangent to a circle from a point P, which is 25 cm away from the centre is 24 cm.

What is the radius of the circle?

**Solution:** : 
$$OT = \sqrt{25^2 - 24^2} = \sqrt{625 - 576} = \sqrt{49} = 7 \text{ cm}$$

$$\therefore$$
 Radius = 7 cm




109. If radii of two concentric circles are 4 cm and 5 cm then find the length of the chord of one circle which is a tangent to the other circle.

Solution:  $OB^2 = OA^2 + AB^2$ 

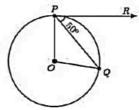
$$5^2 = 4^2 + AB^2$$
 gives  $AB^2 = 9$ 

Therefore 
$$AB = 3 \text{ cm}$$

$$BC = 2AB$$
 hence  $BC = 2 \times 3 = 6$  cm



10. In Figure O is the centre of a circle. PQ is a chord and the tangent PR at P makes an angle of 50° with PQ. Find ∠POQ


**Solution**:  $\angle OPQ = 90^{\circ}-50^{\circ}=40^{\circ}$ 

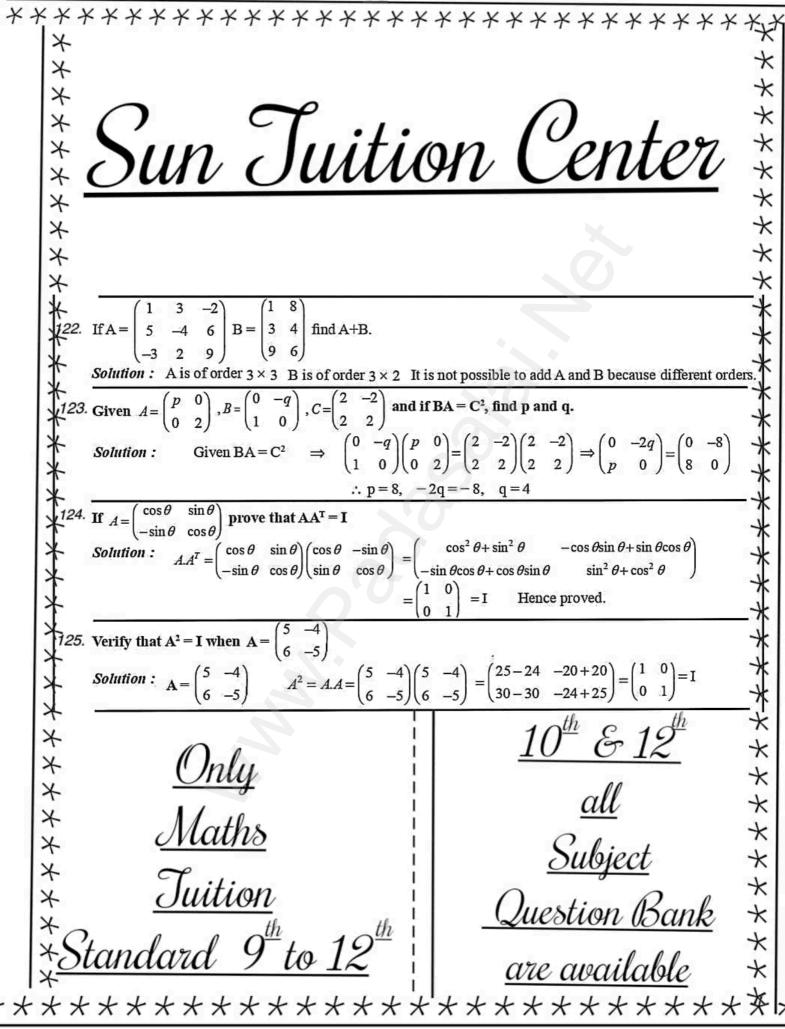
OP = OQ (Radii of a circle are equal)

$$\angle OPQ = \angle OQP = 40^{\circ} (\triangle OPQ \text{ is isosceles})$$

$$\angle POQ = 180^{\circ} - \angle OPQ - \angle OQP$$

$$\angle POQ = 180^{\circ} - 40^{\circ} - 40^{\circ} = 100^{\circ}$$




```
55
```

```
*********
* Find the sum of first six terms of the G.P. 5, 15, 45,
        \therefore S_6 = 5.\frac{3^6 - 1}{3 - 1} = \frac{5}{2} \times 728 = 5 \times 364 = 1820
                                                                                                                                      X
                                                                                                                                      X
      12 Find the sum 3 + 1 + -+ ... ∞
                                                                                                                                      ×
                        Here a = 3, r = \frac{t_2}{t_1} = \frac{1}{3} Sum of infinite terms = \frac{a}{1 - r} = \frac{3}{1 - \frac{1}{2}} = \frac{9}{2}
        Solution:
                                                                                                                                      X
                                                                                                                                      X
     Find the sum to infinity of 21+14+\frac{28}{3}+\dots

Solution: a=21, r=14/21=2/3<1 \therefore S_{\infty}=\frac{a}{1-r}=\frac{21}{1-2/3}=\frac{21}{1-2/3}=\frac{21}{1/2}=63
                                                                                                                                      *
                                                                                                                                      *
                                                                                                                                      X
      14If the first term of an infinite G.P. is 8 and its sum to infinity is \frac{32}{3} then find the common ratio.
                                                                                                                                      X
        Solution: a = 8, S_{\infty} = \frac{32}{3}, r = ?
                                                 \Rightarrow \frac{a}{1-r} = \frac{32}{3} \Rightarrow \frac{\cancel{3}}{1-r} = \frac{\cancel{3}\cancel{2}}{3} \Rightarrow 3 = 4 - 4r \Rightarrow 4r = 1
                                                                                                                                      X
                                                                                                                                      *
                                                                                                                                      X
      Find the first term of G.P. in which S_6 = 4095 and r = 4.
                                                                                                                                      X
        Solution: S_n = \frac{a(r^n - 1)}{r - 1} = 4095  r = 4, \frac{a(4^6 - 1)}{4 - 1} = 4095 gives a \times \frac{4095}{3} = 4095
                                                                                                                  a=3.
                                                                                                                                       X
                                                                                                                                       *
      16. Find the rational form of the number 0.123.
                                                  x = 0.123123123
        Solution: Let
                               x = 0.123
                                                                                                                                      X
                                            \Rightarrow 1000 x = 123.123123
                                                                                                                                       *
                                            \Rightarrow 1000 x = 123+0.123123123
                                            \Rightarrow 1000 x = 123 + x 

1000 x - x = 123 \Rightarrow 999x = 123 \Rightarrow x = \frac{123}{999} : x = \frac{41}{333}
                                                                                                                                       *
                                                                                                                                       X
      17. Find the 8th term of the G.P. 9, 3, 1, ...
                                                                                                                                       X
                      First term a = 9, common ratio r = \frac{t_2}{t_1} = \frac{3}{9} = \frac{1}{3} \implies t_8 = 9 \times \left(\frac{1}{3}\right)^{s-1} = 9 \times \left(\frac{1}{3}\right)' = \frac{1}{243}
        Solution:
                                                                                                                                       X
      18. If 1^3 + 2^3 + 3^3 + \dots + k^3 = 44100, then find 1 + 2 + 3 + \dots + k
                                                                                                                                       *
        Solution: Given 1^3 + 2^3 + 3^3 + \dots + k^3 = 44100
                                                                                                                                       X
                        \Rightarrow \left(\frac{k(k+1)}{2}\right)^2 = 44100 \Rightarrow \frac{k(k+1)}{2} = 210 \Rightarrow 1+2+3+\dots+k=210
                                                                                                                                       X
     19. Find the sum of the following series 3+6+9+\dots+96
        Solution: 3+6+9+.....+96
                                                                                                                                       X
                     =3(1+2+3+....+32)=3\left(\frac{32\times33}{2}\right)=3\times16\times33=1584
                                                                                                                                       X
     120. Find the sum of the following series 1+4+9+16+\dots+225
        Solution: 1+4+9+16+\dots+225 = 1^2+2^2+3^2+\dots+15^2 = \frac{15\times16\times31}{1} = 1240
                     \sum n^2 = \frac{n(n+1)(2n+1)}{6}
                                                                                                                                       ×
     Find the sum of the following series 1+3+5+.....+71.
                                                                                                                                       X
        Solution: 1+3+5+.....+71 ("." 1+3+5+......+n terms = n^2)
                 \therefore 1 + 3 + 5 + \dots + 71 = (36)^2 = 1296
```

\*\*\*\*\*\*



| 1 | 5 | , | 7 |
|---|---|---|---|
| , | 7 |   | , |

<del>\*\*\*\*\*\*\*\*\*\*\*\*</del>

$$\times$$
 131. Construct a 3 × 3 matrix whose elements

Construct a 
$$3 \times 3$$
 matrix whose elements  
are given by  $a_{ij} = \frac{(i+j)^3}{3}$   $a_{11} = \frac{8}{3}$ ,  $a_{12} = \frac{27}{3} = 9$ ,  $a_{13} = \frac{64}{3}$   $a_{21} = \frac{27}{3} = 9$ ,  $a_{22} = \frac{64}{3}$ ,  $a_{31} = \frac{64}{3}$ ,  $a_{32} = \frac{125}{3}$ ,  $a_{33} = \frac{216}{3} = 72$   

$$\therefore A = \begin{pmatrix} \frac{8}{3} & 9 & \frac{64}{3} \\ 9 & \frac{64}{3} & \frac{125}{3} \\ \frac{64}{3} & \frac{125}{3} & 72 \end{pmatrix}$$

$$\therefore A = \begin{pmatrix} 8/3 & 9 & 64/3 \\ 9 & 64/3 & 125/3 \\ 64/3 & 125/3 & 72 \end{pmatrix}$$

132. If 
$$\begin{pmatrix} 5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2 \end{pmatrix}$$
 then find the transpose of A. Solution:  $A = \begin{pmatrix} 5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2 \end{pmatrix}$   $\therefore A^T = \begin{pmatrix} 5 & 1 & 3 \\ 4 & -7 & 8 \\ 3 & 9 & 2 \end{pmatrix}$ 

133. If a matrix has 18 elements, what are the possible orders it can have? What if it has 6 elements? **Solution:** Given, a matrix has 18 elements. The possible orders  $18 \times 1$ ,  $1 \times 18$ ,  $9 \times 2$ ,  $2 \times 9$ ,  $6 \times 3$ ,  $3 \times 6$ The matrix has 6 elements. The order are  $1 \times 6$ ,  $6 \times 1$ ,  $3 \times 2$ ,  $2 \times 3$ 

X

X

134. If 
$$A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix}$$
 then find the transpose of-A.

Solution: 
$$A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix}$$
  $-A = \begin{pmatrix} -\sqrt{7} & 3 \\ \sqrt{5} & -2 \\ -\sqrt{3} & 5 \end{pmatrix}$  :: Transpose of  $-A = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & 5 \end{pmatrix}$ 

135. Construct a 3 × 3 matrix whose elements are given by 
$$a_{ij} = |i-2j|$$

Solution: Given 
$$a_{ij} = |i-2j|$$
,  $3 \times 3$ 

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$a_{11} = |1 - 2| = |-1| = 1$$
  $a_{12} = |1 - 4| = |-3| = 3$ 

$$a_{11} = |1 - 2| = |-1| = 1 \quad a_{12} = |1 - 4| = |-5| = 5$$

$$a_{13} = |1 - 6| = |-5| = 5 \quad a_{21} = |2 - 2| = 0$$

$$a_{22} = |2 - 4| = |-2| = 2 \quad a_{23} = |2 - 6| = |-4| = 4 \quad \therefore \quad A = \begin{pmatrix} 1 & 3 & 5 \\ 0 & 2 & 4 \\ 1 & 1 & 3 \end{pmatrix}$$

$$a_{13} = |3 - 2| = |1| = 1 \quad a_{12} = |3 - 4| = |-1| = 1$$

$$a_{31} = |3-2| = |1| = 1$$
  $a_{32} = |3-4| = |-1| = 1$ 

136. If 
$$A = \begin{bmatrix} 3 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{bmatrix}$$
 then verify  $A^T = \begin{bmatrix} 5 & -\sqrt{17} & 8 \\ 2 & 0.7 & 3 \\ 2 & \frac{5}{2} & 1 \end{bmatrix}$   $A^T = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{bmatrix} = A$ 

\*\*\*\*\*\*\*\*\*\*\*

```
144. If A = \begin{bmatrix} 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 3 & 3 \end{bmatrix} then verify that A + B = B + A
                 Solution :
                                     \therefore A + B = \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{pmatrix} + \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 16 \\ 6 & 7 \\ 9 & -3 \end{pmatrix} \quad B + A = \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{pmatrix} = \begin{pmatrix} 6 & 16 \\ 6 & 7 \\ 9 & -3 \end{pmatrix}
                                                                                                                                                                                                                             ****
                                                                                                           A+B=B+A
 ****
        145. Find the value of a, b, c, d, x, y from the following matrix equation. \begin{pmatrix} d & 8 \end{pmatrix}
                Solution: \begin{pmatrix} d+3 & 8+a \\ 3b-2 & a-4 \end{pmatrix} = \begin{pmatrix} 2 & 2a+1 \\ b-5 & 4c \end{pmatrix} d+3=2 \Rightarrow d=2-3 \Rightarrow d=-1 8+a=2a+1 \Rightarrow 8-1=2a-a \Rightarrow a=7
                                         3b-2=b-5 \Rightarrow 3b-b=-5+2 \Rightarrow 2b=-3 \Rightarrow
                Substituting a = 7 in a - 4 = 4c \implies 7 - 4 = 4c \implies 3 = 4c \implies c =
       146. If A = \begin{bmatrix} 3 & 4 \end{bmatrix}
                                              |B| 3 3 then verify that A + (-A) = (-A) + A = 0
 メ×××××
                 Solution:
       147. If A = \begin{pmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ \end{pmatrix}, B = \begin{pmatrix} 8 & -6 & -4 \\ 2 & 11 & -3 \\ \end{pmatrix}, C = \begin{pmatrix} 5 & 3 & 0 \\ -1 & -7 & 2 \\ \end{pmatrix} compute \frac{1}{2}A - \frac{3}{2}B
*****
                 Solution:
       148. If A = \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}, B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix} find the value of B – 5A
                              \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}, B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix} find the value of 3A - 9B
                                         3A - 9B = \begin{pmatrix} 0 & 12 & 27 \\ 24 & 9 & 21 \end{pmatrix} - \begin{pmatrix} 63 & 27 & 72 \\ 9 & 36 & 81 \end{pmatrix} = \begin{pmatrix} -63 & -65 & -45 \\ 15 & -27 & -60 \end{pmatrix}
                                                                                                                                                                                                                              ×
           **********
```

151. Construct a 3 × 3 matrix whose elements are 
$$a_{ij} = i^2 j^2$$
Solution: The general 3 × 3 matrix is given by
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$a_{ij} = i^2 j^2$$

$$a_{11} = 1^2 \times 1^2 = 1 \times 1 = 1 \quad ; \quad a_{12} = 1^2 \times 2^2 = 1 \times 4 = 4 \quad ; \quad a_{13} = 1^2 \times 3^2 = 1 \times 9 = 9$$

$$a_{21} = 2^2 \times 1^2 = 4 \times 1 = 4 \quad ; \quad a_{22} = 2^2 \times 2^2 = 4 \times 4 = 16 \quad ; \quad a_{23} = 2^2 \times 3^2 = 4 \times 9 = 36 \quad A = \begin{pmatrix} 1 & 4 & 9 & 4 \\ 4 & 16 & 36 & 4 \\ 3 & 3 & 3^2 \times 1^2 = 9 \times 1 = 9 \quad ; \quad a_{32} = 3^2 \times 2^2 = 9 \times 4 = 36 \quad ; \quad a_{33} = 3^2 \times 3^2 = 9 \times 9 = 81 \end{pmatrix}$$

# <u>Only</u> <u>Maths Tuition</u> Standard 9 to 12

IOT & 12th

ALL

SUBJECT

QUESTION BANK

ARE AVAILABLE

152. A has 'a' rows and 'a + 3' columns. B has 'b' rows and '17-b' columns, and if both products AB and BA exist, find a, b?

Solution: Given Order of A is  $a \times (a+3)$  Order of B is  $b \times (17-b)$ 

$$\Rightarrow$$
 a+3=b  $\Rightarrow$  a-b=-3.....(1)

Solving (1) & (2) 
$$2a = 14$$
  $a = 7$ 

$$\Rightarrow$$
 17 - b = a  $\Rightarrow$  a + b = 17 ...... (2)

Sub a = 7 in (1) 
$$7-b=-3$$
  $b=10$ 

153. In the matrix 
$$A = \begin{pmatrix} -1 & \sqrt{7} & \frac{\sqrt{3}}{2} & 5 \\ 1 & 4 & 3 & 0 \\ 6 & 8 & -11 & 1 \end{pmatrix}$$

X

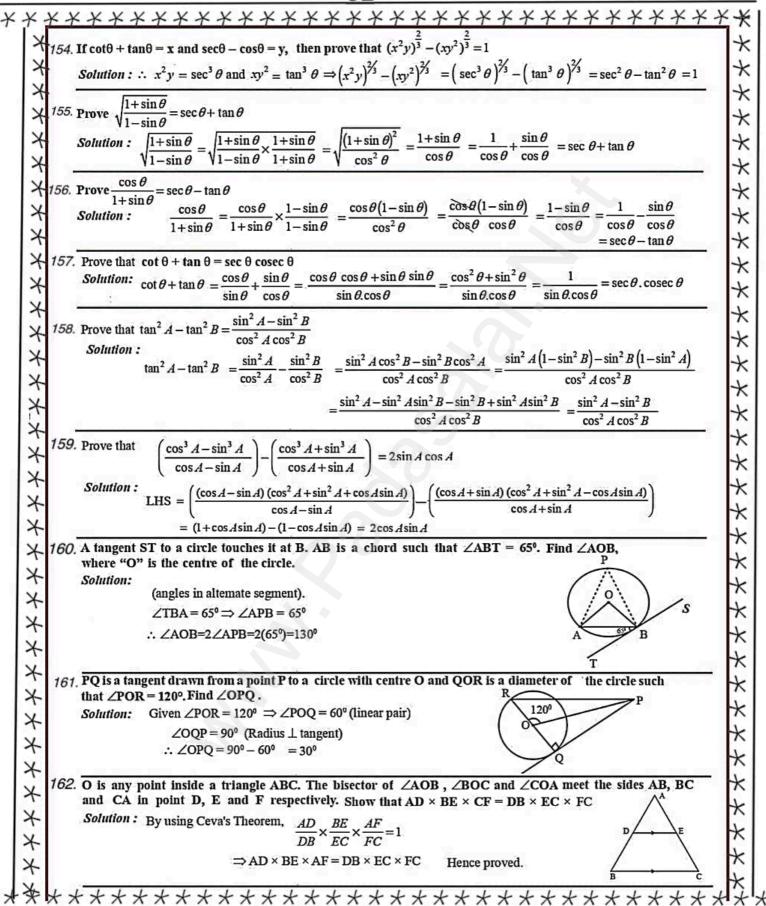
XX

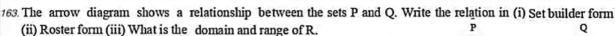
X

XX

(i) The number of elements

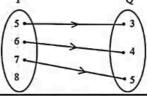
(ii) The order of the matrix


3 0 , (iii) Write the elements a<sub>22</sub>, a<sub>23</sub>, a<sub>24</sub>, a<sub>34</sub>, a<sub>43</sub>, a<sub>44</sub>


Solution: i) A has 4 rows and 4 columns Number of elements = 16

ii) Order of the matrix =  $4 \times 4$ 

iii) 
$$a_{22} = \sqrt{7}$$
,  $a_{23} = \sqrt{3}/2$   $a_{24} = 5$   $a_{34} = 0$ ,  $a_{43} = -11$ ,  $a_{44} = 1$ 


\*\*\*\*\*\*\*\*\*





(i) Set builder form of  $R = \{(x, y) | y = x - 2, x \in P, y \in Q\}$ Solution:

- (ii) Roster form  $R = \{(5, 3), (6, 4), (7, 5)\}$
- (iii) Domain of  $R = \{5, 6, 7\}$  and range of  $R = \{3, 4, 5\}$



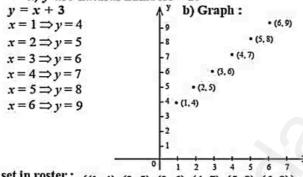
## 164. Let A = {1, 2, 3, 4 ....., 45} and R be the relation defined as "is square of" on A. Write R as a subset of A × A. Also, find the domain and range of R.

Solution:  $A = \{1, 2, 3, 4, \dots, 45\}$  R: "is square of"  $R = \{1, 4, 9, 16, 25, 36\}$  Clearly R is a subset of A.  $\therefore$  Domain = {1, 2, 3, 4, 5, 6}  $\therefore$  Range = {1, 4, 9, 16, 25, 36}

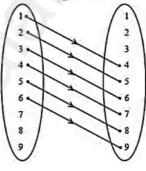
165. A Relation R is given by the set  $\{(x,y)/y = x+3, x \in \{0,1,2,3,4,5\}\}$ . Determine its domain and range.

Solution: Given  $R = \{(x, y) / y = x + 3,$ 

$$x \in \{0, 1, 2, 3, 4, 5\}\}\$$
  
 $x = 0 \Rightarrow y = 3$   $x = 1 \Rightarrow y = 4$ 


$$x=0 \Rightarrow y=3$$
  $x=1 \Rightarrow y=4$   
 $x=2 \Rightarrow y=5$   $x=3 \Rightarrow y=6$ 

$$x=2 \Rightarrow y=3$$
  $x=5 \Rightarrow y=8$   $x=5 \Rightarrow y=8$ 


 $\therefore R = \{(0,3), (1,4), (2,5), (3,6), (4,7), (5,8)\}$ 

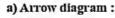
166. Represent each of the given relation by (a) an arrow diagram, (b) a graph and (c) a set in roster form, wherever possible.  $\{(x, y) \mid y = x + 3, x, y \text{ are natural numbers} < 10\}$ 

Solution: x, y are natural numbers < 10



a) Arrow Diagram:



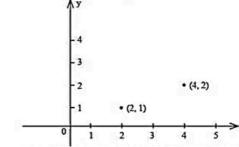

- c) a set in roster: {(1, 4), (2, 5), (3, 6), (4, 7), (5, 8), (6, 9)}
- 167. Represent each of the given relation by (a) an arrow diagram, (b) a graph and (c) a set in roster form, wherever possible.  $\{(x, y) \mid x = 2y, x \in \{2, 3, 4, 5\}, y \in \{1, 2, 3, 4\}$ b) Graph:

Solution:

\*\*\*\*

X

X



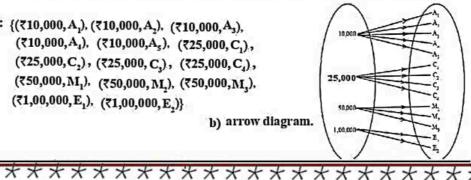

$$y = 1 \Rightarrow x = 2$$

$$y = 2 \Rightarrow x = 4$$

$$y = 3 \Rightarrow x = 6$$

 $y = 4 \Rightarrow x = 8$ c) a set in roster:  $\{(2, 1), (4, 2)\}$ 




168. A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M) and an Executive Officer (E). The company provide ₹10,000, ₹25,000, ₹50,000 and ₹1,00,000 as salaries to the people who work in the categories A, C, M and E respectively. If A, A, A, A, and A, were Assistants ; C, C, C, C4 were Clerks; M1, M2, M3 were managers and E1, E2 were Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram.

Solution: a) Ordered Pair: {(₹10,000, A1), (₹10,000, A2), (₹10,000, A3), (₹10,000,A4), (₹10,000,A5), (₹25,000,C1), (₹25,000,C<sub>2</sub>), (₹25,000,C<sub>3</sub>), (₹25,000,C<sub>4</sub>),

(₹50,000, M<sub>1</sub>), (₹50,000, M<sub>1</sub>), (₹50,000, M<sub>1</sub>),

(₹1,00,000,E<sub>1</sub>), (₹1,00,000,E<sub>1</sub>)}

b) arrow diagram.



```
***********************
 169. Find the values of x, y, z if (x y-z z+3)+(y 4 3)=(4 8 16)
       Solution: (x y-z z+3)+(y 4 3)=(4 8 16)
          \Rightarrow x+y=4
                                y-z+4=8 | z+6=16
          \Rightarrow x + 14 = 4
                                                          z = 10
                                     y - 10 = 4
                     x = -10
                                          y = 14
               x = -10, y = 14, z = 10
 170. Find x and y if x \begin{pmatrix} 4 \\ -3 \end{pmatrix} + y
       Solution:
                                                           4x - 2y = 4 .......(1)
                                           \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix} \quad \begin{array}{l} 4x - 2y = 4 & \dots & (1) \\ -3x + 3y = 6 & \dots & (2) \end{array}
                                   \Rightarrow -x+y=2 ..... (2)
                             2x - y = 2
                                                           Sub x = 4 in (2)
              (2)
                      \Rightarrow -x+y=2
                                                           -4+y=2 \Rightarrow y=6
                  Adding,
                                    x = 4
 171. Find the values of x, y, z if
                                              \left(x+y+7 \quad x+y+z\right)^{=} \left(1\right)
       Solution: \Rightarrow x-3=1 \mid 3x-z=0
                           \therefore x = 4 \mid 12 - z = 0 \implies z = 12
 172. If a matrix has 16 elements, what are the possible orders it can have?
       Solution: The matrix has 16 elements. Hence possible orders are 1 \times 16, 16 \times 1, 4 \times 4, 2 \times 8, 8 \times 2.
        Solution :
                    8+4+0 3+8+0 1+2+0)
                                                             24+2+25 9+4+15 3+1+5
 174. If
                                                                   Show that A and B satisfy commutative property
                                      and B =
                                                            2 with respect to matrix multiplication.
        Solution :
           AB = \begin{pmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \times \begin{pmatrix} 2 & 2\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} \quad BA = \begin{pmatrix} 2 & 2\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}
                                              A and B satisfy commutative property
```

\*\*\*\*\*\*\*\*

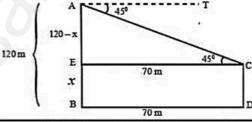
By matrix multiplication 
$$\binom{2x+y}{x+2y} = \binom{4}{5} \ \ \begin{array}{c} 2x+y=4 \\ x+2y=5 \end{array}$$
 ......(1)

(1) - 2 × (2) gives 
$$2x + y = 4$$
  
 $2x + 4y = 10$  (-)  
 $-3y = -6$  gives  $y = 2$ 

Substituting y = 2 in (1), 2x + 2 = 4 gives x = 1Therefore, x = 1, y = 2.

76. From the top of a rock  $50\sqrt{3}$  m high, the angle of depression of a car on the ground is observed to be 30°. Find the distance of the car from the rock.

Solution:


$$\tan 30^{0} = \frac{RC}{CB} \implies \frac{1}{\sqrt{3}} = \frac{50\sqrt{3}}{CB}$$
$$\implies CB = 50\sqrt{3}\sqrt{3} \implies CB = 150m$$

 $\therefore$  Dist. of the car from the rock = 150m

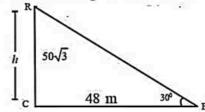
77. The horizontal distance between two buildings is 70 m. The angle of depression of the top of the first building when seen from the top of the second building is 45°. If the height of the second building is 120 m, find the height of the first building.

> $\tan 45^{0} = \frac{AE}{EC} \implies 1 = \frac{120 - x}{70}$  $\implies 70 = 120 - x$  $\Rightarrow x = 120 - 70$

.. Height of 1st building = 50 m



78. A tower stands vertically on the ground. From a point on the ground, which is 48 m away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.

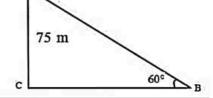

Solution:

Solution:

$$\tan 30^{0} = \frac{h}{48}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{48} \Rightarrow h = 16\sqrt{3}$$

The height of the tower is  $16\sqrt{3}$  m




179. A kite is flying at a height of 75 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

Solution:

$$\sin 60^{\circ} = \frac{75}{RB} \implies \frac{\sqrt{3}}{2} = \frac{75}{RB}$$
$$\Rightarrow RB = \frac{150}{\sqrt{3}} = 50\sqrt{3}$$

length of the string is  $50\sqrt{3}$  m



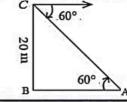
X

180. If the base area of a hemispherical solid is 1386 sq. metres, then find its total surface area? **Solution:** base area =  $\pi r^2 = 1386$  sq. m

T.S.A. =  $3\pi r^2$  sq.m =  $3 \times 1386 = 4158$  m<sup>2</sup>.

\*\*\*\*\*\*\*\*

```
***
****
                                                                                                                             * *
     181. Find f o g and g o f when f(x) = 2x + 1 and g(x) = x^2 - 2.
          Solution: f(x) = 2x + 1, g(x) = x^2 - 2
                f \circ g = (2x+1)(x^2-2) = 2(x^2-2) + 1 = 2x^2-3
                                                                                                                              ***
               g \circ f = (x^2 - 2)(2x + 1) = (2x + 1)^2 - 2 = 4x^2 + 4x + 1 - 2 = 4x^2 + 4x - 1 : f \circ g \neq g \circ f
X
      182. Represent the function f(x) = \sqrt{2x^2 - 5x + 3} as a composition of two functions.
XX
         Solution: f_1(x) = 2x^2 - 5x + 3 and f_1(x) = \sqrt{x}
                                                                                                                              *
              f(x) = \sqrt{2x^2 - 5x + 3} = \sqrt{f_2(x)} = f_1 f_2(x)
                                                                                                                              *
     183. Find k if f \circ f(k) = 5 where f(k) = 2k - 1.
                                                                                                                              *
          Solution:
                        f \circ f(k) = (2k-1)(2k-1) = 2(2k-1) - 1 = 4k-3. But, f \circ f(k) = 5
                                                                                                                              X
X
                             Therefore 4k-3=5 \implies 4k=5+3 \implies 4k=8 \implies k=2.
                                                                                                                              X
X
     184. If f(x) = x - 6, g(x) = x^2, find f \circ g and g \circ f. Check whether f \circ g = g \circ f.
                                                                                                                              X
X
         Solution: f(x) = x - 6, g(x) = x^2
                                                                                                                              X
X
                   (f \circ g) = (x-6)(x^2) = x^2-6
                                                                                                                              X
                   (g \circ f) = (x^2)(x-6) = (x-6)^2 = x^2 - 12x + 36
X
                            \therefore f \circ g \neq g \circ f
                                                         ,g\left( x\right) =1+x
                                                                                                                              X
     185. If f(x) = 4x^2 - 1, g(x) = 1 + x, find f \circ g and g \circ f. Check whether f \circ g = g \circ f.
                                                                                                                              X
X
          Solution: f(x) = 4x^2 - 1, g(x) = 1 + x
                                                                                                                              X
X
                 (f \circ g) = (4x^2 - 1)(1 + x) = 4(1 + x^2) - 1 = 4(1 + x^2 + 2x) - 1 = 4x^2 + 8x + 3
                  (g \circ f) = (1+x)(4x^2-1) = 1+4x^2-1 = 4x^2 : f \circ g \neq g \circ f
                                                                                                                              X
X
                                                                                                                              X
X
     186. If f(x) = 4x^2 - 1, g(x) = 1 + x, find f \circ g and g \circ f. Check whether f \circ g = g \circ f.
                                                                                                                              X
X
                        f(x) = \frac{2}{x}, g(x) = 2x^2 - 1
(f \circ g) = \left(\frac{2}{x}\right)(2x^2 - 1) = \frac{2}{2x^2 - 1}
          Solution:
                                                                                                                              X
X
                                                                                                                              X
X
                                                                                                                              X
                       (g \circ f) = \left(\frac{2}{x}\right)(2x^2 - 1) = 2\left(\frac{2}{x}\right)^2 - 1 = \frac{8}{x^2} - 1   \therefore f \circ g \neq g \circ f
X
                                                                                                                              *
                                                                                                                              X
     187.If f(x) = \frac{x+6}{x}, g(x) = 3-x,
                                            find f \circ g and g \circ f. Check whether f \circ g = g \circ f.
                                                                                                                              *
          Solution:
X
                        f(x) = \frac{x+6}{3}, g(x) = 3-x
                                                                                                                              *
X
                     (f \circ g) = \left(\frac{x+6}{3}\right)(3-x) = \frac{(3-x)+6}{3} = \frac{9-x}{3}
                                                                                                                              ***
X
X
                  (g \circ f)(x) = \left(\frac{x+6}{3}\right)(3-x) = 3 - \frac{x+6}{3} = \frac{9-x-3}{3} = \frac{6-x}{3} : f \circ g \neq g \circ f
*
X
    *********
```


```
_{188} If f(x) = x^2 - 1, g(x) = x - 2 find a, if g \circ f(a) = 1.
           Solution: f(x) = x^2 - 1, g(x) = x - 2
                                                                                                                           X
                                               \Rightarrow (x-2)(x^2-1) = 1 \Rightarrow (x-2)(a^2-1) = 1
                         Given g \circ f(a) = 1
                    \Rightarrow a^2 - 1 - 2 = 1 \Rightarrow a^2 - 3 = 1 \Rightarrow a^2 = 4 \therefore a = \pm 2
          Find k, if f(k) = 2k - 1 and f \circ f(k) = 5.
           Solution: f(k) = 2k-1 \implies f \circ f(k) = 5 \implies (2k-1)(2k-1) = 5 \implies 2(2k-1)-1 = 5
                                                                                                                            X
                                                                           \Rightarrow 4k-2 = 6 \Rightarrow 4k = 8
          190If f(x) = 2x - k, g(x) = 4x + 5 Find k, f \circ g = g \circ f
                                 (f \circ g) = (g \circ f) \implies (2x-k)(4x+5) = (4x+5)(2x-k)
                                                                                                                            X
                     \Rightarrow 2(4x+5)-k = 4(2x-k)+5
                                                                                                                            X
                         8x + 10 - k = 8x - 4k + 5 \implies 10 - k = -4k + 5 \implies -k + 4k = 5 - 10 \implies 3k = -5
                                                                                                                           X
          Let A, B, C \subseteq N and a function f: A \rightarrow B be defined by f(x) = 2x + 1 and g: B \rightarrow C be defined by
           g(x) = x^2. Find the range of f \circ g and g \circ f.
                                                                                                                           X
           Solution: f: A \rightarrow B, g: B \rightarrow C where A, B, C \subseteq N. f(x) = 2x + 1, g(x) = x^2
                                                                                                                            X
              Range of f \circ g = (2x+1)(x^2) = 2x^2+1 :. Range of f \circ g = \{y \mid y=2x^2+1, x \in \mathbb{N}\}.
                                                                                                                            X
              Range of g o f = (x^2)(2x+1) = (2x+1)^2 :: Range of g o f = \{y/y = (2x+1)^2, x \in \mathbb{N}\}.
         192. Let f(x) = x^2 - 1. Find f \circ f
                                                                                                                            X
            Solution:
            Given f(x) = x^2 - 1
                        f \circ f = ?
                 a)
                    (f \circ f) = (x^2 - 1)(x^2 - 1) = (x^2 - 1)^2 - 1 = x^4 - 2x^2 + 1 - 1 = x^4 - 2x^2
         193Let f(x) = x^2 - 1. Find f \circ f \circ f
            Solution :
            (f \circ f \circ f) = (x^2 - 1)(x^2 - 1)(x^2 - 1) = (x^4 - 2x^2)(x^2 - 1) = (x^2 - 1)^4 - 2(x^2 - 1)^2 = (x^4 - 2x^2)^2 - 1
     X
         194 If f: \mathbb{R} \to \mathbb{R} and g: \mathbb{R} \to \mathbb{R} are defined by f(x) = x^5 and g(x) = x^4 then check if f, g are one-one
           and fog is one-one?
     X
                                                                                                                            X
           Solution: Let A be the domain. B be the co-domain.
     X
                For every element \in A, there is a unique image in B. Since f is an odd function f is 1-1.
                                                                                                                            X
     X
                But g(x) is an even function.
                                                                                                                            X
     X
                \therefore Two elements of domain will have the since image in co-domain. \therefore g is not 1-1.
     \star
          <sup>95</sup> Let f = \{(-1, 3), (0, -1), (2, -9)\} be a linear function from Z into Z. Find f(x).
           Solution:
                          Given f = \{(-1, 3), (0, -1), (2, -9)\} is a linear function from Z into Z.
     X
            Let y = ax + b
                               When x = -1, y = 3 \implies 3 = -a + b —(1)
     X
                                                        :. b = -1
                                                                      \therefore (1) \Rightarrow 3 = -a - 1 \Rightarrow a = -4
             When x = 0, y = -1 \implies -1 = 0 + b
     X
                                                  a = -4, b = -1
    X
            \therefore y = -4x - 1 is the required linear function.
                                                                                                                           X
          96 In electrical circuit theory, a circuit C(t) is called a linear circuit if it satisfies the superposition
    X
           principle given by C(at_1 + bt_2) = aC(t_1) + bC(t_2), where a, b are constants. Show that the circuit
    X
           C(t) = 3t is linear.
    X
          Solution: Given C(t) = 3t To Prove: C(t) is linear.
                   C(at_1) = 3at_1, C(bt_2) = 3bt^2 Adding,
                   C(at_1) + C(bt_2) = 3at_1 + 3bt_2 = 3(at_1 + bt_2) ... C(t) = 3t is a linear function.
          ***********
```

197. A player sitting on the top of a tower of height 20 m observes the angle of depression of a ball lying on the ground as  $60^{\circ}$ . Find the distance between the foot of the tower and the ball.  $(\sqrt{3} = 1.732)$ 

Solution: 
$$\tan 60^{\circ} = \frac{BC}{AB}$$
  $\Rightarrow \sqrt{3} = \frac{20}{AB}$   $\Rightarrow AB = \frac{20}{\sqrt{3}}$   $\Rightarrow AB = \frac{20 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{20 \times 1.732}{3}$ 

=11.54m

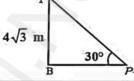
distance between the foot of the tower and the ball is 11.54 m.



198. Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height  $10\sqrt{3}$  m.

Solution:

$$\tan \theta = \frac{10\sqrt{3}}{30}$$
  $\Rightarrow \tan \theta = \frac{\sqrt{3}}{3}$   $\Rightarrow \tan \theta = \frac{1}{\sqrt{3}}$   $\therefore \theta = 30^{\circ}$ 


0√3 m B 30 m A

199. A road is flanked on either side by continuous rows of houses of height  $4\sqrt{3}$  m with no space in between them. A pedestrian is standing on the median of the road facing a row house. The angle of elevation from the pedestrian to the top of the house is 30°. Find the width of the road.

Solution

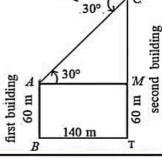
$$\tan 30^{\circ} = \frac{4\sqrt{3}}{PB}$$
  $\Rightarrow \frac{1}{\sqrt{3}} = \frac{4\sqrt{3}}{PB}$   $\Rightarrow PB = 12 \text{ m}$ 

:. Width of the road = 2PB = 2(12) = 24 m



200. The horizontal distance between two buildings is 140 m. The angle of depression of the top of the first building when seen from the top of the second building is 30°. If the height of the first building is 60 m, find the height of the second building. ( $\sqrt{3} = 1.732$ )

Solution :.


$$\tan 30^{0} = \frac{CM}{140}$$

$$\frac{1}{\sqrt{3}} = \frac{CM}{140}$$

$$CM = \frac{140}{\sqrt{3}} = \frac{140\sqrt{3}}{3} = \frac{140 \times 1.732}{3}$$

$$CM = 80.78$$

height of the second building = 60 + 80.78 = 140.78 m



201. Prove 
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = 2\sec\theta$$

Solution: 
$$\sqrt{\frac{1+\sin\theta}{1-\sin\theta}} + \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = (\sec\theta + \tan\theta) + (\sec\theta - \tan\theta) = \sec\theta + \sec\theta = 2\sec\theta$$

202. Prove that 
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} = \csc\theta + \cot\theta$$

Solution: 
$$\sqrt{\frac{1-\cos\theta}{1-\cos\theta}} = \sqrt{\frac{(1+\cos\theta)\times(1+\cos\theta)}{(1-\cos\theta)\times(1+\cos\theta)}} = \sqrt{\frac{(1+\cos\theta)^2}{\sin^2\theta}} = \frac{1+\cos\theta}{\sin\theta} = \csc\theta + \cot\theta$$

203. Prove 
$$\tan^4 \theta + \tan^2 \theta = \sec^4 \theta - \sec^2 \theta$$

Solution: 
$$\tan^2 \theta (\tan^2 \theta + 1) = \sec^2 \theta \cdot (\sec^2 \theta - 1) \implies \tan^2 \theta \sec^2 \theta = \tan^2 \theta \sec^2 \theta$$

204. Prove that 
$$\left(\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}\right)^2 = \frac{1-\cos\theta}{1+\cos\theta}$$

Solution: 
$$\frac{(1+\sin\theta+\cos\theta)}{\text{Take }1+\sin\theta=a} \frac{1+\cos\theta}{\cos\theta=b} \therefore \frac{(a-b)^2}{(a+b)^2} = \frac{a^2+b^2-2ab}{a^2+b^2+2ab} = \frac{2(1+\sin\theta)}{2(1+\sin\theta)} \frac{[1-\cos\theta]}{[1+\cos\theta]} = \frac{1-\cos\theta}{1+\cos\theta}$$

205. Prove 
$$\frac{1-\tan^2\theta}{\cot^2\theta-1}=\tan^2\theta$$

Solution: 
$$1 - \tan^2 \theta = \tan^2 \theta (\cot^2 \theta - 1) \Rightarrow 1 - \tan^2 \theta = \tan^2 \theta \cot^2 \theta - \tan^2 \theta \Rightarrow 1 - \tan^2 \theta = 1 - \tan^2 \theta$$

206. Prove that 
$$\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$$

Solution: 
$$\tan^2 \theta - \sin^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta = \sin^2 \theta \left(\frac{1}{\cos^2 \theta} - 1\right) = \sin^2 \theta (\sec^2 \theta - 1) = \tan^2 \theta \sin^2 \theta$$

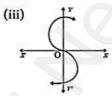
\*\*\*\*\*\*\*

```
**<del>***********</del>
+ 207. Let X = {1, 2, 3, 4} and Y = {2, 4, 6, 8, 10} and R = {(1, 2), (2, 4), (3, 6), (4, 8)}. Show that R is
       a function and find its domain, co-domain and range?
       Solution: Thus all elements in X have only one image in Y. Therefore R is a function.
X
                                                                                                               X
         Domain X = \{1, 2, 3, 4\}; Co-domain Y = \{2, 3, 6, 8, 10\}; Range of f = \{2, 4, 6, 8\}.
X
                                                                                                               X
    208. A relation 'f' is defined by f(x) = x^2 - 2 where, x \in \{-2, -1, 0, 3\} (i) List the elements of f
                                                                                                               X
       (ii) If f a function?
                                                                                                               X
X
       Solution: f(x) = x^2 - 2 where x \in \{-2, -1, 0, 3\} (i) f(-2) = (-2)^2 - 2 = 2;
                                                                                                               X
                                                           f(-1) = (-1)^2 - 2 = -1
                                                            f(0) = (0)^2 - 2 = -2; f(3) = (3)^2 - 2 = 7
                                                                                                               X
X
                                            f = \{(-2, 2), (-1, -1), (0, -2), (3, 7)\}
                                                                                                               X
X
        (ii) each element in the domain of f has a unique image. Therefore f is a function.
                                                                                                               X
    Let f = \{(x, y) \mid x, y \in \mathbb{N} \text{ and } y = 2x\} be a relation on N. Find the domain, co-domain and range.
       Is this relation a function?
                                                                                                               X
X
       Solution: Given f = \{(x, y) \mid x, y \in \mathbb{N} \text{ and } y = 2x\}
                                                                                                               X
X
        Domain = \{1, 2, 3, 4, ...\} Co-domain = \{1, 2, 3, 4, ...\} Range = \{2, 4, 6, 8, ....\}
                                                                                                               X
X
         Since all the elements has unique element Yes, f is a function.
                                                                                                               X
    210. Let f(x) = 2x + 5. If x \ne 0 then find
                                                                                                               X
X
       Solution: f(x) = 2x + 5
                                f(x+2) = 2(x+2)+5 = 2x+9
X
                                                                                                               X
                                  f(2) = 2(2) + 5 = 9
X
                                                                                                               X
X
                                                                                                               X
                                                                                                               X
    211. Let X = {3, 4, 6, 8}. Determine whether the relation R = \{(x, f(x)) | x \in X, f(x) = x^2 + 1\} is a
X
       function from X to N?
                                                                                                               X
       Solution: X = \{3, 4, 6, 8\} Given R = \{(x, f(x)) | x \in X, f(x) = x^2 + 1\}
X
                                                                                                               *
          x = 3 \implies f(x) = f(3) = 9 + 1 = 10
                                              x = 6 \Rightarrow f(x) = f(6) = 36 + 1 = 37
X
          x = 4 \implies f(x) = f(4) = 16 + 1 = 17
                                             x = 8 \Rightarrow f(x) = f(8) = 64 + 1 = 65
                                                                                                               X
                      R = \{(3, 10), (4, 17), (6, 37), (8, 65)\} :. The relation R: X \to N is a function.
                                                                                                               X
    212 An open box is to be made from a square piece of material, 24 cm on a side, by cutting equal
                                                                                                               X
       squares from the corners and turning up the sides as shown in the figure. Express the
       volume V of the box as a function of x.
                                                                                                               X
       Solution: l = b = 24 - 2x cm, height = x cm.
                                                                                                               X
              :. Volume of the box, V = lbh = (24 - 2x)(24 - 2x)x = (24 - 2x)^2x
                                            = (576 + 4x^2 - 96x) x
                                                                                                               \star
                                            =4x^3-96x^2+576x
                   .. Volume is expressed as a function of x.
                                                                                                               X
    213. A function f is defined by f(x) = 3 - 2x. Find x such that f(x^2) = (f(x))^2.
       Solution:
                    f(x) = 3 - 2x and f(x^2) = (f(x))^2
                                                                                                               X
               \Rightarrow 3 - 2x^2 = (3 - 2x)^2 \Rightarrow 3 - 2x^2 = 9 + 4x^2 - 12x \Rightarrow 6x^2 - 12x + 6 = 0
                                                                                                               X
                                                                      \Rightarrow x^2 - 2x + 1 = 0
                                                                                                               X
                                                                      \Rightarrow (x-1)^2 = 0
                                                                       \Rightarrow x = 1 (twice)
                                                                                                               X
                                                                                                               X
```

```
214. A plane is flying at a speed of 500km per hour. Express the distance d travelled by the plane as
                                                                                                                                                                                                    X
          function of time tin hours.
                                                                                                                                                                                                     X
                                                                                                    :. Distance = Time × Speed = 500t
             Solution: Speed of the plane = 500 \text{ km/h}
                                                                                                                                                                                                    X
      215 Let f be a function from R to R defined by f(x) = 3x - 5. Find the values of a and b given
           that (a, 4) and (1, b) belong to f.
           Solution: 3a-5=4 \Rightarrow a=3
                                                                                                                                                                                                    X
                              3(1) - 5 = b \implies b = -2
                                                                                                                                                                                                    X
      216. If A = \{-2, -1, 0, 1, 2\} and f: A \rightarrow B is an onto function defined by f(x) = x^2 + x + 1 then find B.
                                                                                                                                                                                                    X
           Solution: A= \{-2, -1, 0, 1, 2\} and f(x) = x^2 + x + 1
                                                                                                       f(-2)=(-2)^2+(-2)+1=3;
                                                                                                       f(-1) = (-1)^2 + (-1) + 1 = 1;
                                                                                                                                                                                                    X
                                                                                                       f(0)=0^2+0+1=1;
                                                                                                                                                                                                    X
                                                                                                       f(1) = 1^2 + 1 + 1 = 3
                                                                                                                                                                                                    X
                                                                                                       f(2) = 2^2 + 2 + 1 = 7
                                                                                                                                                                                                    X
                        f is an onto function, range of f = B = \text{co-domain of } f.
                                                                                                                       Therefore, B = \{1, 3, 7\}.
                                                                                                                                                                                                    X
     217. The Cartesian product A \times A has 9 elements among which (-1, 0) and (0, 1) are found.
            Find the set A and the remaining elements of A \times A.
                                                                                                                                                                                                    X
            Solution: n(A \times A) = 9 and (-1, 0), (0, 1) \in A \times A
                                                                                                             A = \{-1, 0, 1\}
              set A and the remaining elements of A \times A = \{(-1, -1), (-1, 1), (0, -1), (0, 0), (1, -1), (1, 0), (1, 1)\}
                                                                                                                                                                                                    X
      218. Find the domain of the function
                                                                        f(x) = \sqrt{1 + \sqrt{1 - x^2}}
                                                                                                                                                                                                    X
X
            Solution: If x > 1 and x < -1, f(x) leads to unreal
                                                                                                       \therefore The domain of f(x) = \{-1, 0, 1\}
      219. Write the domain f(x) = \frac{2x+1}{x-9} ng real
                                                                                                                                                                                                    X
           Solution:
                               If x = 9, f(x) \to \infty The domain is R - \{9\}
           Write the domain g(x) = \sqrt{x-2}
                                                                                                                                                                                                    X
           Solution: The function exists only if x \ge 2 .: The domain is [2, \infty).
                                                                                                                                                                                                    X
      220. Let A = \{-1, 1\} and B = \{0, 2\}. If the function f: A \to B defined by f(x) = ax + b is an onto function?
                                                                                                                                                                                                    X
           Find a and b.
                                                                                                                                                                                                    X
                                                                                               Solving (1) and (2) 2b = 2 \Rightarrow b = 1
            Solution: f(-1) = 0 \Rightarrow -a + b = 0—(1)
                                                                                                                                                            : a = 1, b = 1
                                                                                                                                   \Rightarrow a = 1
                                                                                                                                                                                                    X
                                   f(1)=2 \Rightarrow a+b=2 —(2)
                                                                                                                                                                                                    X
      221. If the ordered pairs (x^2 - 3x, y^2 + 4y) and (-2, 5) are equal, then find x and y.
            Solution: Given (x^2 - 3x, y^2 + 4y) = (-2, 5)
                                                                                                                                                                                                    X
                      \therefore x^2 - 3x = -2
                                                      y^2 + 4y = 5
                      \Rightarrow x^2-3x+2=0
                                                       v^2 + 4v - 5 = 0
                                                                                                                                                                                                    X
                      \Rightarrow (x-2)(x-1) = 0 \mid (y+5)(y-1) = 0
                                                                                                                                                                                                    X
                                                       y = -5.1
                                                                                                                                                                                                    X
      222. Let A = \{1, 2\} and B = \{1, 2, 3, 4\}, C = \{5, 6\} and D = \{5, 6, 7, 8\}. Verify whether
                                                                                                                                                                                                    *
             A \times C is a subset of B \times D = ?
             Solution: A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}, D = \{5, 6, 7, 8\}
                                                                                                                                                                                                    X
              A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}
             B \times D = \{(1,5), (1,6), (1,7), (1,8), (2,5), (2,6), (2,7), (2,8), (3,5), (3,6), (3,7), (3,8), (4,5), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6), (4,6)
                                                                                                                                                                                                    X
                                                                                                                                                            (4, 7), (4, 8).
                                   Clearly A \times C is a subset of B \times D.
 6*********
```

# Sun Tuition Centre

223. Let  $A = \{9, 10, 11, 12, 13, 14, 15, 16, 17\}$  and let  $f: A \to N$  be defined by f(n) = the highest prime factor of  $n \in A$ . Write f as a set of ordered pairs and find the range of f.


**Solution:**  $f = \{(9, 3), (10, 5), (11, 11), (12, 3), (13, 13), (14, 7), (15, 5), (16, 2), (17, 17)\}$ 

Range of  $f = \{2, 3, 5, 7, 11, 13, 17\}$ 

224. Determine whether the graph given below represent functions. Give reason for your answers concerning each graph.









Solution:

\*\*\*\*

X

X

X

X

X

X

X

X

X

X

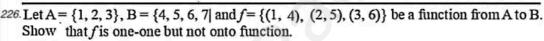
X

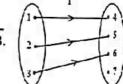
X

X

- (i) The curve do not represent a function since it meets y-axis at 2 points.
- (ii) The curve represents a function as it meets x-axis or y-axis at only one point.
- (iii) The curve do not represent a function since it meets y-axis at 2 points.
- (iv) The line represents a function as it meets axes at origin.
- 225.Let  $A = \{1, 2, 3, 4\}$  and B = N. Let  $f: A \to B$  be defined by  $f(x) = x^3$  then, (i) find the range of f (ii) identify the type of function

**Solution**:  $A = \{1, 2, 3, 4\}, B = N$   $f(x) = x^3$ 


$$x=1 \Rightarrow f(1) = 1$$
  $x=3 \Rightarrow f(3) = 27$ 


(diff. elements have diff. images)

$$x=2 \Rightarrow f(2) = 8$$
  $x=4 \Rightarrow f(4) = 64$ 

(Range ≠ co-domain)

(i) Range of  $f = \{1, 8, 27, 64\}$  (ii) f is one-one and f is into





Solution:  $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}; f = \{(1, 4), (2, 5), (3, 6)\}$ 

different elements in A are different images in B.

Hence f is one-one function. Note that the element 7 does not have any pre-image in A Hence f is not onto.

227. Show that the function  $f: \mathbb{N} \to \mathbb{N}$  defined by  $f(m) = m^2 + m + 3$  is one-one function. Solution:

Given  $f: \mathbb{N} \to \mathbb{N}$  defined by  $f(m) = m^2 + m + 3$ 

$$m=1 \Rightarrow f(1)=1+1+3=5$$
  $m=3 \Rightarrow f(3)=9+3+3=15$ 

$$m=2 \Rightarrow f(2)=4+2+3=9$$
  $m=4 \Rightarrow f(4)=16+4+3=23...$ 

different elements in N are different images in N  $\therefore f$  is one-one function.

228. Show that the function  $f: N \to N$  defined f(x) = 2x - 1 is one-one but not onto.

**Solution:** Given  $f: \mathbb{N} \to \mathbb{N}$  defined by f(x) = 2x - 1.

$$x = 1 \Rightarrow f(1) = 2 - 1 = 1$$
  $x = 3 \Rightarrow f(3) = 6 - 1 = 5$ 

$$x=2 \Rightarrow f(2)=4-1=3$$
  $x=4 \Rightarrow f(4)=8-1=7....$ 

different elements in N are different images in N  $\therefore f$  is one-one function.

 $\therefore$  Range  $\neq$  Co-domain.  $\therefore f$  is not on-to.

\*\*\*\*\*\*\*\*\*\*\*

|                            | <u>72</u>                                                                                                                                      |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | <del>***************</del>                                                                                                                     |
| and the same of the same   | asses through the points $(3, -2)$ , $(12, 4)$ and the line $q$ passes through the points $(6, -2)$ . Is $p$ parallel to $q$ ?                 |
| Solution:                  | The slope $=\frac{y_2-y_1}{x_2-x_1}$ The slope of line $p$ is $m_1 = \frac{(4)-(-2)}{(12)-(3)} = \frac{4+2}{12-3} = \frac{6}{9} = \frac{2}{3}$ |
|                            | The slope of line q is $m_2 = \frac{(2) - (-2)}{(12) - (6)} = \frac{2+2}{12-6} = \frac{4}{6} = \frac{2}{3}$                                    |
|                            | Thus, slope of line $p =$ slope of line $q$ . Therefore, line $p$ is parallel to the line $q$ .                                                |
| and (-2, 0).               | asses through the points $(-2, 2)$ and $(5, 8)$ and the line s passes through the points $(-8, 7)$ Is the line r perpendicular to s?           |
| Solution :                 | The slope = $\frac{y_2 - y_1}{x_2 - x_1}$                                                                                                      |
|                            | of line $r$ is $m_1 = \frac{(8)-(2)}{(5)-(-2)} = \frac{8-2}{5+2} = \frac{6}{7}$                                                                |
| The slope of               | of line s is $m_2 = \frac{(0) - (7)}{(-2) - (-8)} = \frac{0 - 7}{-2 + 8} = \frac{-7}{6}$                                                       |
| The p                      | roduct of slopes = $\frac{6}{7} \times \frac{-7}{6} = -1$ That is, $m_1 m_2 = -1$                                                              |
| Without usi<br>angled tria | ng Pythagoras theorem, show that the points $(1,-4)$ , $(2,-3)$ and $(4,-7)$ form a right ngle.                                                |
| Solution:                  | Let the given points be $A(1, -4)$ , $B(2, -3)$ and $C(4, -7)$ .                                                                               |
|                            | The slope of AB = $\frac{-3+4}{2-1} = \frac{1}{1} = 1$ The slope of BC = $\frac{-7+3}{4-2} = \frac{-4}{2} = -2$                                |
|                            | of AC = $\frac{-7+4}{4-1} = \frac{-3}{3} = -1$ Slope of AB slope of AC = (1)(-1) = -1                                                          |
|                            | endicular to AC. $\angle A = 90^{\circ}$ Therefore, $\triangle ABC$ is a right angled triangle.                                                |
| If the thi<br>Solution:    | ree points (3, -1), (a, 3) and (1, -3) are collinear, find the value of a.  ∴ Slope of AB = Slope of BC                                        |
|                            | $\Rightarrow \frac{4}{a-3} = \frac{-6}{1-a} \Rightarrow 4-4a = -6a+18 \Rightarrow 2a=14 \Rightarrow a=7$                                       |
| Find the s                 | ope of a line joining the points ( $\sin \theta$ , $-\cos \theta$ ) and ( $-\sin \theta$ , $\cos \theta$ )                                     |
| Solution:                  | $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\cos\theta + \cos\theta}{-\sin\theta - \sin\theta} = \frac{2\cos\theta}{-2\sin\theta} = -\cot\theta$  |
|                            | the given points are collinear (-3, -4), (7, 2) and (12, 5).<br>Given points are A (-3, -4), B (7, 2), C (12, 5)                               |
|                            | of AB = $\frac{2+4}{7+3} = \frac{6}{10} = \frac{3}{5}$ Slope of BC = $\frac{5-2}{12-7} = \frac{3}{5}$                                          |
|                            | 7+3 10 5 $12-7$ 5<br>e of AB = Slope of BC $\therefore$ A, B, C are collinear.                                                                 |
| What is th                 | e slope of a line perpendicular to the line joining A (5, 1) and P where P is the mid-                                                         |
| Solution:                  | P is the midpoint of (4, 2), (-6, 4) $\Rightarrow P = \left(\frac{4-6}{2}, \frac{2+4}{2}\right) = (-1, 3)$                                     |
| : Slo                      | be of the line joining A (5, 1), P (-1, 3) $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{-1 - 5} = \frac{2}{-6} = \frac{-1}{3}$              |
|                            | :. Slope of the line perpendicular = 3                                                                                                         |

\*\*\*\*\*\*\*\*\*

235. The line through the points (-2, a) and (9, 3) has slope  $-\frac{1}{2}$ . Find the value of a. Solution:

Slope of the line joining (-2, a), (9, 3) =  $-\frac{1}{2}$   $\Rightarrow \frac{3-a}{9+2} = \frac{-1}{2}$   $\Rightarrow \frac{3-a}{11} = \frac{-1}{2}$   $\Rightarrow 6-2a=-11$   $\Rightarrow 2a=17$   $\therefore a=\frac{17}{2}$   $\Rightarrow 2a=17$   $\therefore a=\frac{17}{2}$   $\Rightarrow 2a=17$   $\therefore a=\frac{17}{2}$   $\Rightarrow 2a=17$   $\therefore a=\frac{17}{2}$   $\Rightarrow 2a=17$   $\therefore a=17$   $\Rightarrow 2a=17$   $\Rightarrow 2a=17$ 

Slope of line joining (8, 12), (x, 24)  $m_2 = \frac{24-12}{x-8} = \frac{12}{x-8}$ 

X

X

X

X

 $\star$ 

 $\star$ 

X

X

X

Since two lines are perpendicular,  $\Rightarrow \frac{1}{3} \times \frac{12}{x-8} = -1 \Rightarrow \frac{4}{x-8} = -1 \Rightarrow -x+8=4 \Rightarrow x=4$ 

237. Find the intercepts made by the line 4x - 9y + 36 = 0 on the coordinate axes.

Solution: put  $x=0 \Rightarrow 4x=-36$  x intercept a=-9

put  $y=0 \Rightarrow -9y+36=0$ .  $-9y=-36 \Rightarrow y$  intercept b=4

238. Show that the straight lines 2x + 3y - 8 = 0 and 4x + 6y + 18 = 0 are parallel.

Solution: Slope of the straight line 2x + 3y - 8 = 0 is  $m_1 = \frac{-\text{coefficient of } x}{\text{coefficient of } y} = \frac{-2}{3}$ 

Slope of the straight line 4x + 6y + 18 = 0 is  $m_2 = \frac{-4}{6} = \frac{-2}{2}$  Here,  $m_1 = m_2$ 

That is, slopes are equal. Hence, the two straight lines are parallel.

239. Show that the straight lines x - 2y + 3 = 0 and 6x + 3y + 8 = 0 are perpendicular.

Slope of the straight line x - 2y + 3 = 0 is  $m_1 = \frac{-1}{-2} = \frac{1}{2}$ 

Slope of the straight line 6x + 3y + 8 = 0 is  $m_2 = \frac{-6}{3} = -2$ 

Now,  $m_1 \times m_2 = \frac{1}{2} \times (-2) = -1$  Hence, the two straight lines are perpendicular.

X X

X

\*

240. Find the equation of a straight line which is parallel to the line 3x - 7y = 12 and passing through the point (6, 4).

**Solution:** Equation of the straight line, parallel to 3x - 7y - 12 = 0 is 3x - 7y + k = 0

 $3(6) - 7(4) + k = 0 \implies k = 28 - 18 = 10$ 

the required straight line is 3x - 7y + 10 = 0.

241. Find the equation of a straight line perpendicular to the line  $y = \frac{4}{3}x - 7$  and passing through the point (7, -1).

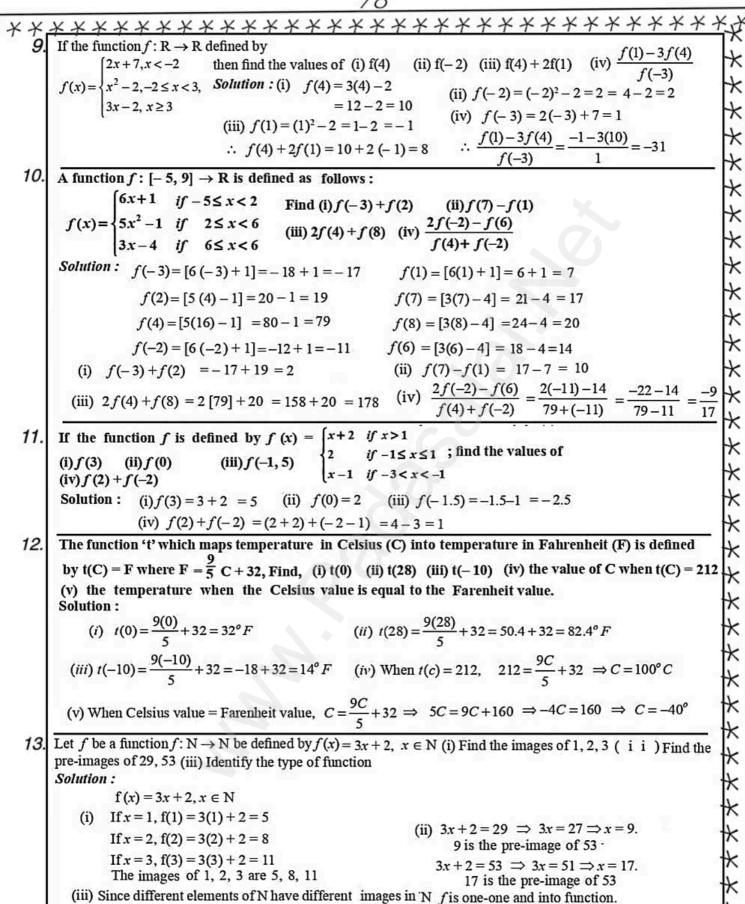
The equation  $y = \frac{4}{3}x - 7$  can be written as 4x - 3y - 21 = 0. Solution:

Equation of a straight line perpendicular to 4x - 3y - 21 = 0 is 3x + 4y + k = 0

21-4+k=0 we get, k=-17Since it is passes through the point (7, -1),

the required straight line is 3x + 4y - 17 = 0.

\*\*\*\*\*\*\*\*\*


242. Find the equation of a straight line passing through (5,7) and is (i) parallel to X axis (ii) parallel to Y axis. Solution: (i) The equation of any straight line parallel to X axis is y=b The required equation of the line is y=7. (ii) The equation of any straight line parallel to Y axis is x=c The required equation of the line is x = 5. Find the equation of a straight line whose Slope is 5 and x intercept is -9 243. **Solution:** Given, Slope = 5, x intercept, d=-9The equation of a straight line is y = m(x-d) y = 5(x+9) y = 5x + 45244. Find the equation of a line passing through the point (3, -4) and having slope -5**Solution**: Given slope of the line is  $-\frac{5}{7}$  and (3, -4) is a point on the line.  $y-y_1=m\ (x-x_1) \qquad y+4=-\frac{5}{7}(x-3) \qquad 5x+7y+13=0.$  Find the equation of a straight line which has slope  $\frac{-5}{1}$  and passing through the point (-1,2). \*\*\*\*\*\*\*\* 245 **Solution**: slope of the line is  $\frac{-5}{4}$  and (-1, 2) is a point on the line.  $\therefore$  its equation is  $y - y_1 = m(x - x_1)$  $\Rightarrow y - 2 = \frac{-5}{4}(x+1) \Rightarrow 4y - 8 = -5x - 5 \Rightarrow 5x + 4y - 3 = 0$ Two buildings of different heights are located at opposite sides of each other. If a heavy rod is attached 246 joining the terrace of the buildings from (6, 10) to (14, 12), find the equation of the rod joining the buildings? Solution:  $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} \Rightarrow \frac{y-10}{12-10} = \frac{x-6}{11-6} \Rightarrow \frac{y-10}{2} = \frac{x-6}{8} \Rightarrow x-4y+34=0.$ Find the equation of a straight line passing through the mid-point of a line segment joining 247 the points (1,-5), (4,2) and parallel to (i) X axis (ii) Y axis **Solution:** Equation of a Straight line parallel to the Y axis is x = c. Equation of a straight line parallel to X axis is y = bMid point of the line joining the points (1,-5), (4,2) is  $= \left[\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right] = \left(\frac{1+4}{2}, \frac{-5+2}{2}\right) = \left(\frac{5}{2}, \frac{-3}{2}\right)$ (i) Parallel to x-axis is  $y = -\frac{3}{2}$  (ii) Parallel to y-axis is  $x = \frac{5}{2}$ Determine the sets of points are collinear? (a, b + c), (b, c + a) and (c, a + b)248 Area of triangle =  $\frac{1}{2} \begin{bmatrix} a & b & c & a \\ b+c & c+a & a+b & b+c \end{bmatrix}$  $= \frac{1}{2}[(a^2+b^2+c^2+ab+bc+ca)-(a^2+b^2+c^2+ab+bc+ca)] = \frac{1}{2}[0] = 0$ . The 3 points are collinear. If the straight lines 12y = -(p + 3)x + 12, 12x - 7y = 16 are perpendicular then find 'P'. 249 **Solution**: 12y = -(p+3)x + 12, ⇒ (p+3)x + 12y = 12 and 12x - 7y = 16 are perpendicular  $m_1 = \frac{-(p+3)}{12} \quad m_2 = \frac{12}{7} \quad m_1 \times m_2 = -1 \quad \Rightarrow \quad \frac{-(p+3)}{12} \times \frac{12}{7} = -1 \quad \Rightarrow \quad p = 4$ \*\*\*\*\*\*\*\*\*\*\*

| <u>/5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <i>******************</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XX     |
| $\{-250.$ Determine the sets of points are collinear? $\{-\frac{1}{2},3\}$ , $(-5,6)$ and $(-8,8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Solution: Area of triangle $=\frac{1}{2}\begin{bmatrix} -\frac{1}{2} & -5 & -8 & -\frac{1}{2} \\ 3 & 6 & 8 & 3 \end{bmatrix} = \frac{1}{2}[(-3-40-24)-(-15-48-4)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| $\begin{bmatrix} 2 & 3 & 6 & 8 & 3 \end{bmatrix} = \begin{bmatrix} -1 & -3 & -40 & -24 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 & -40 $ |        |
| Solution: Area of triangle $=\frac{1}{2}\begin{bmatrix} -\frac{1}{2} & -5 & -8 & -\frac{1}{2} \\ 3 & 6 & 8 & 3 \end{bmatrix} = \frac{1}{2}[(-3-40-24)-(-15-48-4)]$<br>$=\frac{1}{2}[-67-(67)] = \frac{1}{2}(0) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| ∴ The 3 points are collinear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| 251. Find the value of 'p'. Vertices Area (sq. units)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -      |
| (n n) (5 () (5 ())                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| Solution: Area of triangle $= \frac{1}{2} \begin{bmatrix} p & 5 & 5 \\ p & 6 \end{bmatrix} = 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| $\Rightarrow (6p-10+5p)-(5p+30-2p)=64 \Rightarrow (11p-10)-(3p+30) = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| $\Rightarrow 8p = 104 \Rightarrow p = \frac{104}{8} \Rightarrow p = 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| 252. If the points (2, 3), (4, a) and (6, -3) are collinear, then find the value of 'a'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| Solution: $\frac{1}{2}\begin{bmatrix} 2 & 4 & 6 & 2 \\ 3 & a & -3 & 3 \end{bmatrix} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| $\Rightarrow (2a - 12 + 18) - (12 + 6a - 6) = 0$<br>$\Rightarrow (2a + 6) - (6a + 6) = 0 \Rightarrow -4a = 0 \Rightarrow a = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| 253 If the points $(-a+1, 2a)$ and $(-4-a, 6-2a)$ are collinear, then find the value of 'a'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Solution: $1 \begin{bmatrix} a \\ -a+1 \end{bmatrix} \begin{bmatrix} -4-a \\ a \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| The second secon                                         |        |
| $\Rightarrow 8a^2 + 4a - 4 = 0 \Rightarrow 2a^2 + a - 1 = 0 \Rightarrow a = -1, \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 254. Find the slope of a line joining the given points $\left(-\frac{1}{3}, \frac{1}{2}\right)$ and $\left(\frac{2}{7}, \frac{3}{7}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| (3, (1) 3 1 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| Solution: The slope $=\frac{y_2-y_1}{x_2-x_1}=\frac{\left(\frac{3}{7}\right)-\left(\frac{1}{2}\right)}{\left(\frac{2}{7}\right)-\left(-\frac{1}{3}\right)}=\frac{\frac{3}{7}-\frac{1}{2}}{\frac{2}{7}+\frac{1}{3}}=\frac{\frac{6-7}{14}}{\frac{6+7}{21}}=-\frac{1}{14}\times\frac{21}{13}=-\frac{3}{26}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| Solution: The slope $=\frac{y_2-y_1}{x_2-x_1} = \frac{\left(\frac{3}{7}\right)-\left(\frac{1}{2}\right)}{\left(\frac{2}{7}\right)-\left(-\frac{1}{3}\right)} = \frac{\frac{3}{7}-\frac{1}{2}}{\frac{2}{7}+\frac{1}{3}} = \frac{\frac{6-7}{14}}{\frac{6+7}{21}} = -\frac{1}{14} \times \frac{21}{13} = -\frac{3}{26}.$ 255. Find the slope of a line joining the given points (14, 10) and (14, -6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| 255. Find the slope of a line joining the given points $(14, 10)$ and $(14, -6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| Solution: The slope $=\frac{y_2-y_1}{x_2-x_1}=\frac{(-6)-(10)}{(14)-(14)}=\frac{-6-10}{14-14}=\frac{-16}{0}$ . The slope is undefined.<br>256. Show that the points $(-2, 5)$ , $(6, -1)$ and $(2, 2)$ are collinear.<br>Solution: The vertices are A $(-2,5)$ , B $(6, -1)$ and C $(2, 2)$ . The slope $=\frac{y_2-y_1}{x_2-x_1}$<br>Slope of AB $=\frac{(-1)-(5)}{(6)-(-2)}=\frac{-1-5}{6+2}=\frac{-6}{8}=\frac{-3}{4}$<br>Slope of BC $=\frac{(2)-(-1)}{(2)-(6)}=\frac{2+1}{2-6}=\frac{3}{-4}=\frac{-3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| 256. Show that the points $(-2, 5)$ , $(6, -1)$ and $(2, 2)$ are collinear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 7 CT |
| <b>Solution:</b> The vertices are A (-2,5), B (6, -1) and C (2, 2). The slope = $\frac{y_2 - y_1}{x_2 - x_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      |
| Slope of AB = $\frac{(-1)-(5)}{(6)-(-2)} = \frac{-1-5}{6+2} = \frac{-6}{8} = \frac{-3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| (6)-(-2) $6+2$ $8$ $4$ $(2)-(-1)$ $2+1$ $3$ $-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| Slope of BC = $\frac{(2)-(-1)}{(2)-(6)} = \frac{2+1}{2-6} = \frac{3}{-4} = \frac{-3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| We get, Slope of AB = Slope of BC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| Hence the points A, B and C are collinear.  ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |

4 = 257. Find the slope and y intercept of  $\sqrt{3}x + (1 - \sqrt{3})y = 3$ . **Solution:**  $a = \sqrt{3}$   $b = (1 - \sqrt{3})$  c = -3Slope of the line =  $\frac{-a}{b}$  =  $\frac{-\sqrt{3}}{(1-\sqrt{3})}$  =  $\frac{3+\sqrt{3}}{2}$ Intercept on y-axis =  $\frac{-c}{b} = \frac{-(-3)}{1-\sqrt{3}} = \frac{3+3\sqrt{3}}{-2}$ 258. Find the equation of a line whose inclination is 30° and making an intercept -3 on the Y axis. Solution: Given  $\theta = 30^{\circ} \Rightarrow m = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$  and y - intercept = -3 The required equation of the line is  $y = mx + c \Rightarrow y = \frac{1}{\sqrt{3}}x - 3 \Rightarrow \sqrt{3}y = x - 3\sqrt{3}$   $\Rightarrow x - \sqrt{3}y - 3\sqrt{3} = 0$ 259 Find the equation of a line through the given pair of points  $\left(2, \frac{2}{3}\right)$  and  $\left(\frac{-1}{2}, -2\right)$ X X **Solution:** Given points are  $\left(2,\frac{2}{3}\right),\left(\frac{-1}{2},-2\right)$  two-point form  $\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$ X  $\frac{y - \frac{2}{3}}{-2 - \frac{2}{3}} = \frac{x - 2}{\frac{-1}{2} - 2} \Rightarrow \frac{3y - 2}{-8} = \frac{x - 2}{\frac{-5}{2}} \Rightarrow \frac{3y - 2}{-8} = \frac{2x - 4}{-5} \Rightarrow 15y - 10 = 16x - 32 \Rightarrow 16x - 15y - 22 = 0$ \* × \* 260. The equation of a straight line is 2(x-y)+5=0. Find its slope, inclination and intercept X \* on the Y axis. X **Solution**:  $2(x-y)+5=0 \Rightarrow 2x-2y+5=0$ i) Slope of the line =  $\frac{-a}{b} = \frac{-2}{-2} = 1$ X ii) The slope of the straight line is  $m = \tan \theta$ X Slope of the line = 1  $\therefore$  tan  $\theta = 1$   $\therefore$   $\theta = 45^{\circ}$ . iii) Interecept on y-axis =  $\frac{-c}{b} = \frac{-5}{-2}$  : y - intercept =  $\frac{5}{2}$ \* X X \* 261. The hill in the form of a right triangle has its foot at (19, 3). The inclination of the hill to the \* X ground is 45°. Find the equation of the hill joining the foot and top. X X **Solution:** : Equation of slope  $m = \tan 45^{\circ} = 1$  and passing through C(19, 3) X  $\Rightarrow y-y_1 = m(x-x_1) \Rightarrow y-3 = 1(x-19) \Rightarrow x-y-16 = 0.$ 262 Find the value of 'a', if the line through (-2, 3) and (8, 5) is perpendicular to y = ax + 2. X X Solution: X Slope of the line joining (-2, 3), (8, 5).  $\Rightarrow \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 3}{8 + 2} = \frac{2}{10} \Rightarrow m_1 = \frac{1}{5}$ X Slope of the line y = ax + 2  $\Rightarrow ax - y + 2 = 0$  Slope of the line  $= \frac{-a}{b} = \frac{-a}{-1} \Rightarrow m_2 = a$ . X X  $m_1 m_2 = -1$   $\Rightarrow \frac{1}{5} \times a = -1 \Rightarrow a = -5$ X X 263. Find the equation of a straight line passing through (5, -3) and (7, -4). X X Solution:  $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} \Rightarrow \frac{y+3}{-4+3} = \frac{x-5}{7-5} \Rightarrow 2y+6=-x+5 \Rightarrow x+2y+1=0.$ The equation of the required straight line is x + 2y + 1 = 0.

\*\*\*\*\*\*\*\*\*\*\*

```
IMPORTANT 5 MARKS MINIMUM MATERIAL
             If f(x) = 2x + 3, g(x) = 1 - 2x and h(x) = 3x. Prove that f \circ (g \circ h) = (f \circ g) \circ h.
                                                                                                                                                                                                                              X
             Solution: f(x) = 2x + 3, g(x) = 1 - 2x, h(x) = 3x
                                                                                                                                                                                                                              X
                                           (f \circ g) = (2x+3)(1-2x) = 2(1-2x) + 3 = 2-4x + 3 = 5-4x
 X
                                     (f \circ g) \circ h = (5 - 4x)(3x) = 5 - 4(3x) = 5 - 12x \dots (1)
                                                                                                                                                                                                                              X
                                            (g \circ h) = (1 - 2x)(3x) = 1 - 2(3x) = 1 - 6x
                                                                                                                                                                                                                              X
                                      f \circ (g \circ h) = (2x+3)(1-6x) = 2(1-6x) + 3 = 2-12x + 3 = 5-12x \dots (2)
X
                  From (1) and (2), we get f \circ (g \circ h) = (f \circ g) \circ h.
                                                                                                                                                                                                                              X
X2
             If f(x) = 4x^2 - 1 and g(x) = 1 + x, find f \circ g and g \circ f. Check whether f \circ g = g \circ f.
                                                                                                                                                                                                                              X
             Solution: (f \circ g) = (4x^2 - 1)(1 + x) = 4(1 + x)^2 - 1 = 4(1 + x^2 + 2x) - 1 = 4x^2 + 8x + 3
X
                                                                                                                                                                                                                              X
                                  (g \circ f) = (1+x)(4x^2-1) = 1+4x^2-1 = 4x^2  \therefore f \circ g \neq g \circ f.
****
             If f(x) = \frac{x+6}{2} and g(x) = 3-x, find f \circ g and g \circ f. Check whether f \circ g = g \circ f.
                                                                                                                                                                                                                              X
                                                                                                                                                                                                                              X
              Solution:
             (f \circ g) = \left(\frac{x+6}{3}\right)(3-x) = \frac{(3-x)+6}{3} = \frac{9-x}{3} \quad \left| \quad (g \circ f) = (3-x)\left(\frac{x+6}{3}\right) = 3 - \frac{x+6}{3} = \frac{9-x-3}{3} = \frac{6-x}{3} =
                                                                                                                                                                                                                              X
                                                                                                                                                                                                                              X
                                       From (1) and (2), we get \therefore f \circ g \neq g \circ f.
             If f(x) = x - 4, g(x) = x^2 and h(x) = 3x - 5, Prove that f \circ (g \circ h) = (f \circ g) \circ h.
                                                                                                                                                                                                                              X
             Solution:
                                            (f \circ g) = (x-4)(x^2) = x^2-4
                                                                                                                                                                                                                              X
                   \therefore ((f \circ g) \circ h) = (x^2 - 4)(3x - 5) = (3x - 5)^2 - 4 \dots (1)
                                                                                                                                                                                                                              X
                                            (g \circ h) = (x^2)(3x-5) = (3x-5)^2
X
                                   :. (f \circ (g \circ h) = (x - 4)(3x - 5)^2 = (3x - 5)^2 - 4 ...(2)
                                                                                                                                                                                                                              *
X
                                   From (1) and (2), we get ,(f \circ g) \circ h = f \circ (g \circ h)
                                                                                                                                                                                                                              *
             If f(x) = x^2, g(x) = 2x and h(x) = 3x - 5, Prove that f \circ (g \circ h) = (f \circ g) \circ h.
X5
                                                                                                                                                                                                                              X
              Solution:
                                                (f \circ g) = (x^2)(2x) = (2x)^2 = 4x^2
                                                                                                                                                                                                                              X
                                   \therefore ((f \circ g) \circ h) = (4x^2)(x+4) = 4(x+4)^2 \dots (1)
                                                 (g \circ h) = (2x)(x+4) = 2(x+4) = 2x+8
X
                                        \therefore (f \circ (g \circ h) = (x^2)(2x+8) = (2x+8)^2 = (2(x+4))^2 = 4(x+4)^2 \dots (2)
                                                                                                                                                                                                                               X
X
                                   From (1) and (2), we get ,(f \circ g) \circ h = f \circ (g \circ h)
X6
             If f(x) = 3x - 2, g(x) = 2x + k and if f \circ g = g \circ f, then find the value of k.
                                                                                                                                                                                                                              X
             Solution: f \circ g = (3x-2)(2x+k) = 3(2x+k) - 2 = 6x + 3k - 2
X
                                   g \circ f = (2x + k)(3x - 2) = 2(3x - 2) + k = 6x - 4 + k
                                                                                                                                                                                                                              X
*
                    f \circ g = g \circ f \Rightarrow 6x + 3k - 2 = 6x - 4 + k
                                                                                                                                                                                                                              X
                                                  6x - 6x + 3k - k = -4 + 2
XXX
                                                                                                                                                                                                                               *
                                                                               2k = -2
                                                                                  k = -1
             If f(x) = x^2 - 1, find f \circ f \circ f
                                                                                                                                                                                                                              X
             Solution: (f \circ f \circ f)(x) = (x^2 - 1)(x^2 - 1)(x^2 - 1) = (x^2 - 1)((x^2 - 1)^2 - 1) = (x^2 - 1)(x^4 - 2x^2) = (x^4 - 2x^2)^2 - 1
X
             If f(x) = 2x + 1 and g(x) = x^2 - 2, find f \circ g and g \circ f. Check whether f \circ g = g \circ f.
X
             Solution: f \circ g = (2x+1)(x^2-2) = 2(x^2-2) + 1 = 2x^2-3
                                                                                                                                                                                                                               X
X
                                  g \circ f = (x^2 - 2)(2x + 1) = (2x + 1)^2 - 2 = 4x^2 + 4x - 1 \therefore f \circ g \neq g \circ f.
            Given the function f: x \to x^2 - 5x + 6, evaluate (i) f(-1) (ii) f(2a) (iii) f(2) (iv) f(x-1)
                                                                                                                                                                                                                              X
            Solution: f: x \to x^2 - 5x + 6 \implies f(x) = x^2 - 5x + 6
X
                                                                                                                  (iii) f(2) = 2^2 - 5(2) + 6 = 4 - 10 + 6 = 0
                       f(-1) = (-1)^2 - 5(-1) + 6 = 1 + 5 + 6 = 12
            (i)
                                                                                                                                                                                                                              X
                                                                                                                  (iv) f(x-1) = (x-1)^2 - 5(x-1) + 6
\star
              (ii) f(2a) = (2a)^2 - 5(2a) + 6 = 4a^2 - 10a + 6
                                                                                                                                          =x^2-2x+1-5x+5+6=x^2-7x+12
             *********************
```



\*\*\*\*\*\*\*

```
The functions f and g are defined by f(x) = 6x + 8; g(x) = \frac{x-2}{3} (i) Calculate the value of gg(x) = \frac{x-2}{3}
          (ii) Write an expression for gf (x) in its simplest form.
                                                                                                                                  X
          Solution:
           i) gg(x) = \left(\frac{x-2}{3}\right)\left(\frac{x-2}{3}\right) = \left(\frac{x-2}{3}-2\right) = \left(\frac{x-2-6}{3}\right) = \left(\frac{x-8}{9}\right) : gg\left(\frac{1}{2}\right) = \left(\frac{1}{2}-8\right) = \frac{-15}{18} = \frac{-5}{6}
                                                                                                                                  X
                                                                                                                                  X
          (ii) gf(x) = \left(\frac{x-2}{3}\right)(6x+8) = \frac{6x+8-2}{3} = \frac{6x+6}{3} = 2x+2 = 2(x+1)
                                                                                                                                  X
                                                                                                                                  *
         If f(x) = 2x - 1, g(x) = \frac{x+1}{2}, show that f \circ g = g \circ f = x.
                                                                                                                                  X
          Solution:
                      f \circ g = (2x-1)\left(\frac{x+1}{2}\right) = 2\left(\frac{x+1}{2}\right) - 1 = x+1-1 = x
                                                                                                                                  X
                                                                                                                                  *
                      g \circ f = \left(\frac{x+1}{2}\right)(2x-1) = \frac{2x-1+1}{2} = x
                                                                                                                                  X
                                                                                                                                  X
          If f(x) = x^2, g(x) = 3x and h(x) = x - 2. Prove that (f o g) o h = f o (g o h).
                                                                                                                                  X
          Solution: f(x) = x^2, g(x) = 3x, h(x) = x - 2
                                                                    (g \circ h) = (3x)(x-2) = 3(x-2) = 3x-6
                                                                                                                                  X
             (f \circ g) = (x^2)(3x) = (3x)^2 = 9x^2
                                                                   f \circ (g \circ h) = (x^2)(3x - 6) = (3x - 6)^2 = (3(x - 2))^2
            (f \circ g) \circ h) = (9x^2)(x-2) = 9(x-2)^2 - (1)
                                                                                                                                  X
                                                                                                         =9(x-2)^2-(2)
                                           \therefore From (1) and (2), (f og) o h = f o (g o h).
                                                                                                                                  *
          If f(x) = 2x - k, g(x) = 4x + 5 such that f \circ g = g \circ f. Find the value of k
                                                                                                                                  X
          Solution:
                                                      (2x-k)(4x+5)=(4x+5)(2x-k)
                              (f \circ g) = (g \circ f) \Rightarrow
                                                                                                                                  X
                                                        2(4x+5)-k = 4(2x-k)+5
                                                                                                                                  *
                                                           8x + 10 - k = 8x - 4k + 5
                                                                 10-k = -4k+5
                                                                                                                                  X
                                                                -k+4k = 5-10
                                                                     3k = -5 \Rightarrow k = \frac{-5}{3}
                                                                                                                                  X
                                                                                                                                  X
          If f(x) = 3x + 2, g(x) = 6x - k such that f \circ g = g of. Find the value of k
                                                                                                                                  X
          Solution: (f \circ g) = (g \circ f) \Rightarrow (3x+2)(6x-k) = (6x-k)(3x+2)
                                               3(6x-k)+2=6(3x+2)-k
                                                18x - 3k + 2 = 18x + 12 - k
                                                        k + 2 = 12 - k 

- 2k = 10      \Rightarrow k = \frac{-10}{2} = -5
                                                                                                                                  X
                                                     -3k+2=12-k
                                                                                                                                  X
                                                                                                                                  X
          Find x if gff (x) = fgg(x), given f(x) = 3x + 1 and g(x) = x + 3.
          Solution :
                                                                                                                                  X
           gff(x)=(x+3)(3x+1)(3x+1)=(x+3)[3(3x+1)+1]=(x+3)(9x+4)=[(9x+4)+3]=9x+7
                                                                                                                                  X
           fgg(x) = (3x+1)(x+3)(x+3) = (3x+1)[(x+3)+3] = (3x+1)(x+6) = [3(x+6)+1] = 3x+19
           gff(x) = fgg(x) \implies 9x + 7 = 3x + 19 \implies 9x - 3x = 19 - 7 \implies 6x = 12 \implies x = 2.
                                                                                                                                  *
         f: \mathbb{R} \to \mathbb{R} defined by f(x) = 2x + 1 whether the function is bijective or not. Justify your answer.
                                                                                                                                  *
         Solution: f: \mathbb{R} \to \mathbb{R} defined by f(x) = 2x + 1
                                                              Let f(x_1) = f(x_2)
                                                                                                                                  X
            \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2 \therefore f(x_1) = f(x_2) \Rightarrow x_1 = x_2
                                                                                                                                  X
                                                     \therefore f is 1-1 function.
             y=2x+1 \implies \therefore 2x=y-1 \implies x=\frac{y-1}{2} \therefore f(x)=2\left(\frac{y-1}{2}\right)+1=y \therefore f \text{ is onto.}
                                                                                                                                  X
                                                                                                                                  X
                      \therefore f is one-one and onto \Rightarrow f is bijective.
**********
```

```
X
     21.
                                                        Find (i) f(0) (ii) f(3) (iii) f(a+1) in terms of a. (Given that a \ge 0)
              Given that f(x) =
                                                                                                                                                       X
                                                                    i) f(0) = 4 ii) f(3) = \sqrt{3-1} = \sqrt{2}
              Solution:
                                               \sqrt{x-1} x \ge 1
                                                                                                                                                       X
                             Given f(x) =
                                                                    iii) f(a+1) = \sqrt{a+1-1} = \sqrt{a}
                                                         x < 1
                                                                                                                                                       X
             Let A = \{x \in W \mid x < 2\}, B = \{x \in N \mid 1 < x \le 4\} and C = \{3, 5\}. Verify that A \times (B \cup C) = (A \times B) \cup (A \times C)
     22.
                                                                                                                                                      X
             Solution: A = \{x \in W \mid x < 2\} \Rightarrow A = \{0, 1\} B = \{x \in N \mid 1 < x \le 4\} \Rightarrow B = \{2, 3, 4\}
                                                                                                                                C = \{3, 5\}
                                                                                                                                                       \star
                B \cup C = \{2, 3, 4, 5\}
              \therefore A \times (B \cup C) = \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\}
                                                                                                                ...(1)
                                                                                                                                                       *
              A \times B = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}
                                                                                                                                                      X
              A \times C = \{(0,3), (0,5), (1,3), (1,5)\}
                                                                                                                                                      X
             \therefore (A \times B) \cup (A \times C) = \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\} \dots (2)
                   \therefore From (1) and (2) A \times (B \cup C) = (A \times B) \cup (A \times C)
                                                                                                                                                       \star
            Let A = \{x \in W \mid x < 2\}, B = \{x \in N \mid 1 < x \le 4\} and C = \{3, 5\}. Verify that A \times (B \cap C) = (A \times B) \cap (A \times C)
      23.
                                                                                                                                                      X
            Solution: A = \{x \in W \mid x < 2\} \Rightarrow A = \{0, 1\} B = \{x \in N \mid 1 < x \le 4\} \Rightarrow B = \{2, 3, 4\}
                                                                                                                               C = \{3, 5\}
                      B \cap C = \{3\}
                                                                                                                                                      X
                    A \times (B \cap C) = \{(0, 3), (1, 3)\} ...(1)
                                                                                                                                                      X
                  A \times B = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}
                                                                                                                                                      X
                  A \times C = \{(0,3), (0,5), (1,3), (1,5)\}
                       (A \times B) \cap (A \times C) = \{(0, 3), (1, 3)\} ...(2)
                                                                                                                                                      X
                \therefore From (1) and (2), A \times (B \cap C) = (A \times B) \cap (A \times C)
                                                                                                                                                      X
            Let A = \{x \in W \mid x < 2\}, B = \{x \in N \mid 1 < x \le 4\} and C = \{3, 5\}. Verify that (A \cup B) \times C = (A \times C) \cup (B \times C)
                                                                                                                                                      X
             Solution: A = \{x \in W \mid x < 2\} \Rightarrow A = \{0, 1\} \ B = \{x \in N \mid 1 < x \le 4\} \Rightarrow B = \{2, 3, 4\}
                                                                                                                                                      X
                     A \cup B = \{0, 1, 2, 3, 4\}
              \therefore (A \cup B) \times C = \{(0,3), (0,5), (1,3), (1,5), (2,3), (2,5), (3,3), (3,5), (4,3), (4,5)\} \dots (1)
                                                                                                                                                      X
                       A \times C = \{(0,3), (0,5), (1,3), (1,5)\}
                                                                                                                                                      X
                       B \times C = \{(2,3), (2,5), (3,3), (3,5), (4,3), (4,5)\}
                     \therefore (A \times C) \cup (B \times C) = \{(0,3), (0,5), (1,3), (1,5), (2,3), (2,5), (3,3), (3,5), (4,3), (4,5)\}
                                                                                                                                                       X
                                 \therefore From (1) and (2) (A \cup B) \times C = (A \times C) \cup (B \times C)
                                                                                                                                                      X
             Let A = \{x \in \mathbb{N} \mid 1 < x < 4\}, B = \{x \in \mathbb{W} \mid 0 \le x < 2\} and C = \{x \in \mathbb{N} \mid x < 3\}.
      25.
                                                                                                                                                      *
              verify that A\times(B\cup C)=(A\times B)\cup(A\times C)
              Solution: A = \{x \in \mathbb{N} \mid 1 < x < 4\} = \{2, 3\}, B = \{x \in \mathbb{W} \mid 0 \le x < 2\} = \{0, 1\}, C = \{x \in \mathbb{N} \mid x < 3\} = \{1, 2\}
                                                                                                                                                      X
              B \cup C = \{0, 1\} \cup \{1, 2\} = \{0, 1, 2\}
                                                                                                                                                      X
              A \times (B \cup C) = \{2, 3\} \times \{0, 1, 2\} = \{(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)\} \dots (1)
                                                                                                                                                      *
                    A \times B = \{2, 3\} \times \{0, 1\} = \{(2, 0), (2, 1), (3, 0), (3, 1)\}
                                                                                                                                                      X
                    A \times C = \{2, 3\} \times \{1, 2\} = \{(2, 1), (2, 2), (3, 1), (3, 2)\}
                 (A \times B) \cup (A \times C) = \{(2, 0), (2, 1), (3, 0), (3, 1)\} \cup \{(2, 1), (2, 2), (3, 1), (3, 2)\}
                                                                                                                                                      X
                                      = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\} \dots (2)
                                                                                                                                                      *
                    From (1) and (2), A \times (B \cup C) = (A \times B) \cup (A \times C) is verified.
                                                                                                                                                      X
      26.
              Let A = \{x \in \mathbb{N} \mid 1 < x < 4\}, B = \{x \in \mathbb{W} \mid 0 \le x < 2\} and C = \{x \in \mathbb{N} \mid x < 3\}.
              verify that A\times(B\cap C)=(A\times B)\cap(A\times C)
                                                                                                                                                      X
              Solution: A = \{x \in \mathbb{N} \mid 1 < x < 4\} = \{2, 3\}, B = \{x \in \mathbb{W} \mid 0 \le x < 2\} = \{0, 1\}, C = \{x \in \mathbb{N} \mid x < 3\} = \{1, 2\}
                                                                                                                                                      X
               B \cap C = \{0, 1\} \cap \{1, 2\} = \{1\}
                                                                                                                                                      X
              A \times (B \cap C) = \{2, 3\} \times \{1\} = \{(2, 1), (3, 1)\} \dots (1)
              A \times B = \{2, 3\} \times \{0, 1\} = \{(2, 0), (2, 1), (3, 0), (3, 1)\}
                                                                                                                                                      X
              A \times C = \{2, 3\} \times \{1, 2\} = \{(2, 1), (2, 2), (3, 1), (3, 2)\}
**********************************
```

```
**<del>***********</del>
            (A \times B) \cap (A \times C) = \{(2, 0), (2, 1), (3, 0), (3, 1)\} \cap \{(2, 1), (2, 2), (3, 1), (3, 2)\} = \{(2, 1), (3, 1)\} \dots (2)
              From (1) and (2), A \times (B \cap C) = (A \times B) \cap (A \times C) is verified.
           A function f is defined by f(x) = 2x - 3
   27.
                                                                                                                                                  X
           (i) find f(0) + f(1) (ii) find x such that f(x) = 0 (iii) find x such that f(x) = x
                                                                                                                                                  *
           (iv) find x such that f(x) = f(1-x).
                                                                                                                                                   X
           Solution: Given f(x) = 2x - 3
                                                                                                                                                  X
              (i) f(0) = 2(0) - 3 = 0 - 3 = -3
                                                                        (ii) f(x) = 0 \implies 2x - 3 = 0 \implies 2x = 3 \implies x = \frac{3}{2}
                  f(1) = 2(1) - 3 = 2 - 3 = -1
                                                                                                                                                  X
                   f(0) + f(1) = (-3) + (-1) =
                                                                                                                                                   X
                                                                       (iv) f(x) = f(1-x) \implies 2x-3 = 1-x \implies 2x+x=1+3
                                                                                                                    \Rightarrow 3x = 4 \Rightarrow x = \frac{1}{3}
                                                                                                                                                   X
              (iii) f(x) = x \implies 2x - 3 = x \implies 2x - x = 3
                                              \Rightarrow x=3
                                                                                                                                                   X
           Let A = The set of all natural numbers less than 8, B = The set of all prime numbers less than 8,
    28.
                                                                                                                                                   X
           C = The set of even prime number. Verify that (A \cap B) \times C = (A \times C) \cap (B \times C)
                                                                                                                                                  X
            Solution: A = \{1, 2, 3, 4, 5, 6, 7\}
                                                            B = \{1, 3, 5, 7\}
                                                                                                                                                   X
               A \cap B = \{1, 3, 5, 7\}
            \therefore (A \cap B) \times C = \{1, 3, 5, 7\} \times \{2\} = \{(1, 2), (3, 2), (5, 2), (7, 2)\} \dots (1)
                                                                                                                                                   X
              A \times C = \{(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2)\}
              B \times C = \{(1, 2), (3, 2), (5, 2), (7, 2)\}
             (A \times C) \cap (B \times C) = \{(1, 2), (3, 2), (5, 2), (7, 2)\} \dots (2)
                                                                                                                                                   X
               \therefore From (1) and (2), (A \cap B) \times C = (A \times C) \cap (B \times C)
    29.
          If A = \{5, 6\}, B = \{4, 5, 6\}, C = \{5, 6, 7\}. Show that A \times A = (B \times B) \cap (C \times C).
                                                                                                                                                   \star
           Solution: A = \{5, 6\}, B = \{4, 5, 6\}, C = \{5, 6, 7\}
                                                                                                                                                   X
           A \times A = \{5, 6\} \times \{5, 6\} = \{(5, 5), (5, 6), (6, 5), (6, 6)\} ...(1)
           B \times B = \{4, 5, 6\} \times \{4, 5, 6\} = \{(4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)\}
                                                                                                                                                   \star
           C \times C = \{5, 6, 7\} \times \{5, 6, 7\} = \{(5, 5), (5, 6), (5, 7), (6, 5), (6, 6), (6, 7), (7, 5), (7, 6), (7, 7)\}
                \therefore (B × B) \cap (C × C) = {(5, 5), (5, 6), (6, 5), (6, 6)} ...(2)
                                                                                                                                                   X
                \therefore From (1) and (2). \mathbf{A} \times \mathbf{A} = (\mathbf{B} \times \mathbf{B}) \cap (\mathbf{C} \times \mathbf{C}).
                                                                                                                                                   X
           Given A = \{1, 2, 3\}, B = \{2, 3, 5\}, C = \{3, 4\} and D = \{1, 3, 5\}, check if (A \cap C) \times (B \cap D) = \{1, 3, 5\}
   30.
                                                                                                                                                  X
           (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{C} \times \mathbf{D}) is true?
            Solution: A = \{1, 2, 3\}, B = \{2, 3, 5\}, C = \{3, 4\}, D = \{1, 3, 5\}
                                                                                              A \cap C = \{3\}, B \cap D = \{3, 5\}
                                                                                                                                                   \star
              (A \cap C) \times (B \cap D) = \{(3,3), (3,5)\} \dots (1)
                                                                                                                                                   X
               A \times B = \{(1, 2), (1, 3), (1, 5), (2, 2), (2, 3), (2, 5), (3, 2), (3, 3), (3, 5)\}
                                                                                                                                                   X
               C \times D = \{(3, 1), (3, 3), (3, 5), (4, 1), (4, 3), (4, 5)\}
            (A \times B) \cap (C \times D) = \{(3, 3), (3, 5)\} \dots (2)
                                                                                                                                                   \star
               \therefore From (1) and (2) (A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)
                                                                                                                                                   X
            If A = \{1, 3, 5\} and B = \{2, 3\} then (i) find A \times B and B \times A. (ii) Is A \times B = B \times A? If not why? (iii)
    31.
                                                                                                                                                   X
            Show that n(A \times B) = n(B \times A) = n(A) \times n(B).
            Solution: Given that A = \{1, 3, 5\} and B = \{2, 3\}
                                                                                                                                                   X
            (i) A \times B = \{1, 3, 5\} \times \{2, 3\} = \{(1, 2), (1, 3), (3, 2), (3, 3), (5, 2), (5, 3)\}
                  B \times A = \{2, 3\} \times \{1, 3, 5\} = \{(2, 1), (2, 3), (2, 5), (3, 1), (3, 3), (3, 5)\}
            (ii) (1,2) \neq (2,1) \Rightarrow A \times B \neq B \times A
                                                                                                                                                   X
             (iii) n(A \times B) = n(B \times A) = 6; n(B) \times n(A) = 2 \times 3 = 6
                             \therefore n(A × B) = n(B × A) = n(A) × n(B).
*********************
```

\*\*\*\*\*\*\*\*\* Let  $f: A \to B$  be a function define by  $f(x) = \frac{x}{2} - 1$  where  $A = \{2, 4, 6, 10, 12\}, B = \{0, 1, 2, 4, 5, 9\}.$ 32.

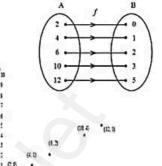
Represent f by (i) set of ordered pairs; (ii) a table; (iii) an arrow diagram; (iv) a graph

Solution: Given 
$$f(x) = \frac{x}{2} - 1$$

Solution: Given 
$$f(x) = \frac{x}{2} - 1$$
 (iii) Arrow diagram:  $x = 2 \Rightarrow f(2) = 1 - 1 = 0$   $x = 4 \Rightarrow f(4) = 2 - 1 = 1$ 

$$x = 6 \Rightarrow f(6) = 3 - 1 = 2$$
  $x = 10 \Rightarrow f(10) = 5 - 1 = 4$ 

$$x = 12 \Rightarrow f(12) = 6 - 1 = 5$$


(i) Set of order pairs :

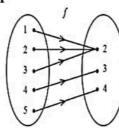
$$f = \{(2, 0), (4, 1), (6, 2), (10, 4), (12, 5)\}$$

(ii) Table:

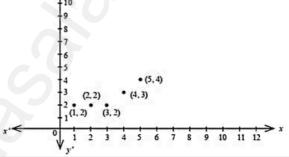
| x    | 2 | 4 | 6 | 10 | 12 |
|------|---|---|---|----|----|
| f(x) | 0 | 1 | 2 | 4  | 5  |

(iv) Graph




\*\*\*\*

\*\*


33. Represent the function  $f = \{(1, 2), (2, 2), (3, 2), (4, 3), (5, 4)\}$  through (i) an arrow diagram

(ii) a table form (iii) a graph

Solution: (i) Arrow Diagram:



(iii) Graph:



(ii) Table Form :

| , | Lubic Lorin . |   |   | _ |   |   |
|---|---------------|---|---|---|---|---|
|   | х             | 1 | 2 | 3 | 4 | 5 |
|   | f(x)          | 2 | 2 | 2 | 3 | 4 |

Let  $A = \{1, 2, 3, 4\}$  and  $B = \{2, 5, 8, 11, 14\}$  be two sets. Let  $f: A \rightarrow B$  be a function given by

f(x) = 3x - 1. Represent this function (i) by arrow diagram (ii) in a table form

(iii) as a set of ordered pairs (iv) in a graphical form

Solution :

34.

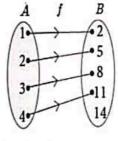
35.

$$A = \{1, 2, 3, 4\}; B = \{2, 5, 8, 11, 14\};$$

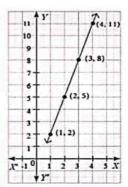
$$f(x) = 3x - 1$$

$$f(1) = 3(1) - 1 = 3 - 1 = 2$$
;

$$f(2) = 3(2) - 1 = 6 - 1 = 5$$


$$f(3) = 3(3) - 1 = 9 - 1 = 8$$
;

$$f(4) = 4(3) - 1 = 12 - 1 = 11$$




| x    | 1 | 2 | 3 | 4  |
|------|---|---|---|----|
| f(x) | 2 | 5 | 8 | 11 |

(i) Arrow diagram



(iv) Graphical form



(iii) Set of ordered pairs

$$f = \{(1, 2), (2, 5), (3, 8), (4, 11)\}$$

Given  $f(x) = 2x - x^2$ , find (i) f(1) (ii) f(x+1) (iii) f(x) + f(1)

Solution:

(i) 
$$f(1) = 2(1) - (1)^2 = 2 - 1 = 1$$

(ii) 
$$f(x+1) = 2(x+1) - (x+1)^2$$
  
=  $2x + 2 - (x^2 + 2x + 1)$   
=  $2x + 2 - x^2 - 2x - 1 = -x^2 + 1$ 

(iii) 
$$f(x) + f(1)$$

$$f(1) = 2(1) - (1)^2 = 2 - 1 = 1$$

$$f(x) + f(1) = (2x - x^2) + 1 = -x^2 + 2x + 1$$

36. Prove that the product of two consecutive positive integers is divisible by 2. X **Solution**: Let the 2 consecutive positive integers be x, x + 1 : Product of 2 integers =  $x(x + 1) = x^2 + x$ X Case (i) If x is an even number Let x = 2k  $\therefore x^2 + x = (2k)^2 + 2k = 2k(2k+1)$  divisible by 2 Case (ii) If x is an odd number, Let x = 2k + 1 :  $x^2 + x = (2k + 1)^2 + (2k + 1)$  $=4k^2+4k+1+2k+1$  $=4k^2+6k+2$ X  $= 2(2k^2 + 3k + 2)$  divisible by 2 .. Product of 2 consecutive positive integers is divisible by 2. 37. If a, b, c are three consecutive terms of an A.P. and x, y, z are three consecutive terms of a G.P. then prove that  $x^{b-c} \times y^{c-a} \times z^{a-b} = 1$ . Solution: a, b, c are three consecutive terms of an A.P.  $\Rightarrow a, a+d, a+2d, \dots$ x, y, z are three consecutive terms of a G.P.  $\Rightarrow x$ , xr,  $xr^2$ , .....  $\star$  $x^{b-c} \times y^{c-a} \times z^{a-b} = (x)^{-d} \times (xr)^{2d} \times (xr^2)^{-d} = x^0 \times r^{2d} \times r^{-2d} = x^0 \times r^0 = 1$ Hence proved. 38. Find the greatest number consisting of 6 digits which is exactly divisible by 24, 15, 36? X Solution: L.C.M of 24, 15, 36 The greatest 6 digit no. is 999999 360 999999 3 24, 15, 36 720 2 5. 12 2799 2520 2799 2 4. 5, 6 5. L.C.M =  $5 \times 3^2 \times 2^3 = 5 \times 9 \times 8 = 360$ ∴ Required greatest number = 999999 - 279 = 999720 Find the LCM and HCF of 408 and 170 by applying the fundamental theorem of arithmetic. 39. 408 Solution: 2 X 170  $408 = 2^3 \times 3 \times 17$ 204 2 5 85  $170 = 2 \times 5 \times 17$ X 2 102 17 : H.C.F =  $2 \times 17 = 34$ 3 51  $\star$ L.C.M =  $2^3 \times 17 \times 5 \times 3 = 2040$ 40. If  $p_1^{x_1} \times p_2^{x_2} \times p_3^{x_3} \times p_4^{x_4} = 113400$  where  $p_1, p_2, p_3, p_4$  are primes in ascending order and  $x_1, x_2, x_3, x_4$ X are integers, find the value of  $p_1, p_2, p_3, p_4$  and  $x_1, x_2, x_3, x_4$ . 56700 **Solution:**  $p_1^{x_1} \times p_2^{x_2} \times p_3^{x_3} \times p_4^{x_4} = 113400$ 2 28350 3 14175  $113400 = 2^3 \times 3^4 \times 5^2 \times 7^1$ 3 4725  $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7$  and 1575 3 525  $x_1 = 3, x_2 = 4, x_3 = 2, x_4 = 1$ 5 175 Find the HCF of 396, 504, 636. Solution: Using Euclid's division algorithm  $504 = 396 \times 1 + 108$  $396 = 108 \times 3 + 72$  $108 = 72 \times 1 + 36$  $72 = 36 \times 2 + 0$ To find the HCF of 636 and 36.  $636 = 36 \times 17 + 24$  $36 = 24 \times 1 + 12$  $24 = 12 \times 2 + 0$  remainder is zero. HCF of 636, 36 = 12

\*\*\*\*\*

Highest Common Factor of 396, 504 and 636 is 12.

\*\*\*\*\*

The ratio of 6th and 8th term of an A.P. is 
$$7:9 \Rightarrow \frac{t_6}{t_8} = \frac{7}{9}$$

$$\Rightarrow \frac{a+5d}{a+7d} = \frac{7}{9} \Rightarrow 9a+45d = 7a+49d \Rightarrow 2a=4d \Rightarrow a=2d \dots (1)$$

$$\therefore \frac{t_9}{t_{13}} = \frac{a+8d}{a+12d} = \frac{2d+8d}{2d+12d} = \frac{10d}{14d} = \frac{5}{7} \text{ (from (1))} \qquad \therefore t_9: t_{13} = 5: 7$$

The sum of three consecutive terms that are in A.P. is 27 and their product is 288. Find the three terms.

**Solution**: Let the 3 consecutive terms in an A.P. be a-d, a, a+d

43

Sum of 3 terms = 27  $\Rightarrow a-d+a+a+d=27 \Rightarrow 3a=27 \Rightarrow a=9$ 

Product of 3 terms = 288  $\Rightarrow$  (a-d). a.  $(a+d) = 288 <math>\Rightarrow$   $a^2$   $(a^2-d^2) = 288 <math>\Rightarrow$  9  $(81-d^2) = 288$ 

$$\Rightarrow 81 - d^2 = 32$$
$$\Rightarrow d^2 = 49$$

\*\*\*\*\*\*

\*\*\*\*\*\*

\*\*\*\*

 $a = 9, d = 7 \implies \text{the 3 terms are 2, 9, 16}$  $a = 9, d = -7 \implies \text{the 2 terms are 16, 9, 2}$ 

Find the first term of the G.P. whose common ratio 5 and whose sum to first 6 terms is 46872. Solution: Given r = 5,  $S_c = 46872$ 

$$S_n = a \cdot \frac{r^n - 1}{r - 1} \implies a \times \frac{5^6 - 1}{4} = 46872$$
  
 $\implies a \cdot (5^6 - 1) = 46872 \times 4 \implies a \cdot (15624) = 46872 \times 4 \qquad \therefore a = \frac{46872 \times 4}{15624} = 3 \times 4$ 

A mother divides  $\angle 207$  into three parts such that the amount are in A.P. and gives it to her three children. The product of the two least amounts that the children had  $\angle 4623$ . Find the amount received by each child. **Solution**: Let the amount form of A.P. a-d, a, a+d.

$$(a-d)+a+(a+d)=207 \implies 3a=207 \implies a=69$$

It is given that product of the two least amounts is 4623 (a-d) a = 4623

$$(69-d)69=4623 \Rightarrow d=2$$

Amount given by the mother to her three children are

(69-2), (69+2). That is, (67, 69) and (71).

46. In an A.P., sum of four consective terms is 28 and their sum of their squares is 276. Find the four numbers. **Solution**: four consective terms A.P. (a-3d), (a-d), (a+d) and (a+3d).

sum of the four terms is  $28 \Rightarrow a - 3d + a - d + a + d + a + 3d = 28 \Rightarrow 4a = 28 \Rightarrow a = 7$ sum of their squares is 276,  $(a - 3d)^2 + (a - d)^2 + (a + d)^2 + (a + 3d)^2 = 276$ .

. 
$$a^2 - 6ad + 9d^2 + a^2 - 2ad + d^2 + a^2 + 2ad + d^2 + a^2 + 6ad + 9d^2 = 276$$
  
 $4a^2 + 20d^2 = 276 \Rightarrow 4(7)^2 + 20d^2 = 276.$ 

$$\Rightarrow d^2 = 4 \Rightarrow d = \pm 2$$

If a = 7, d = 2 then the four numbers are 1, 5, 9 and 13

If a = 7, d = -2 then the four numbers are 13, 9, 5 and 1

Find the greatest number that will divide 445 and 572 leaving remainders 4 and 5 respectively.

**Solution:** The required number is the HCF of the number 445 - 4 = 441, 572 - 5 = 567.

Using Euclid's Division Algorithm,  $567 = 441 \times 1 + 126$ 

$$441 = 125 \times 3 + 63$$

 $126 = 63 \times 2 + 0$  The remainder is zero.

HCF of 441,567 = 63 and the required number is 63.

\*\*\*\*\*\*\*\*\*

```
**********
              The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025.
     48.
                                                                                                                                 ****
              Find the value of n.
                                      \frac{n(n+1)(2n+1)}{6} = 285
              Solution:
                                          \left(\frac{n(n+1)}{2}\right)^2 = 2025 \Rightarrow \left(\frac{n(n+1)}{2}\right) = 45\dots(2)
                             (1) \Rightarrow \frac{n(n+1)}{2} \times \frac{2n+1}{3} = 285 \Rightarrow 45 \times \frac{2n+1}{3} = 285 \Rightarrow 2n+1 = \frac{285}{15} = 19 \Rightarrow 2n=19-1
                                                                                                                                 *
                                                                                                  \Rightarrow 2n=18 : n=9
      49
                                                                                                                                 X
              If 1 + 2 + 3 + \dots + n = 666 then find n.
               Solution: 1+2+3+....+n=666
                                                                                                                                 X
                                      \frac{n(n+1)}{n} = 666 \implies n^2 + n - 1332 = 0 \implies n = -37 \text{ or } n = 36
                             n \neq -37 (Since n is a natural number); Hence n = 36.
     50.
              If nine times ninth term is equal to the fifteen times fifteenth term, show that six times twenty
              fourth term is zero.
              Solution: Given 9(t_9) = 15(t_{15})
                      To Prove: 6(t_{24}) = 0 \implies 9(t_9) = 15(t_{15}) \implies 9(a+8d) = 15(a+14d)
                                                                \Rightarrow 3 (a + 8d) = 5 (a + 14d) <math>\Rightarrow 3a + 24d = 5a + 70d
                                                                                                   2a + 46d = 0
                                                                                                                                 X
                                                                                               \Rightarrow 2(a+23d)=0
                                                                                                                                 X
                            Multiplying 3 on both sides, \Rightarrow 6 (a+23d)=0 \Rightarrow 6 (t_{24})=0
              The sum of first, n, 2n and 3n terms of an A.P. are S_1, S_2 and S_3 respectively. Prove that S_3 = 3(S_2 - S_1).
                                                                                                                                 X
     51.
               Solution: S_1 = t_1 = a, S_2 = t_1 + t_2 = a + a + d = 2a + d, S_3 = t_1 + t_2 + t_3 = a + a + d + a + 2d = 3a + 3d
                                                                                                                                 *
                                                                 S_2 - S_1 = 2a + d - a = a + d
                                                                                                                                 X
                                                                 3(S_2 - S_1) = 3a + 3d = S_3
                                                                                                                                 X
      52
               The sum of first n terms of a certain series is given as 2n^2 - 3n. Show that the series is an A.P.
                                                                                                                                 X
                                       S_n = 2n^2 - 3n  n = 1 \implies S_1 = 2 - 3 = -1
               Solution: Given
                                                       n=2 \implies S_2=2(4)-3(2)=8-6=2
                                  S_1 = t_1 = a = -1, S_2 = 2 \implies t_2 + t_1 = 2 \implies t_2 - 1 = 2 \implies t_2 = 3
                                                  a = -1, d = 3 - (-1) = 3 + 1 = 4
                                    \therefore The series is -1+3+7+\dots is an A.P.
                                                                                                                                 X
               Find the sum of all natural numbers between 300 and 600 which are divisible by 7.
      53
               Solution: 301 + 308 + 315 + ... + 595.
                                                           a = 301; d = 7; l = 595.
                         n = \left(\frac{l-a}{d}\right) + 1 = \left(\frac{595 - 301}{7}\right) + 1 = 43
\therefore S_n = \frac{n}{2}[a+l]
                         S_{57} = \frac{43}{2}[301 + 595] = 19264.
     54
               How many consecutive odd integers beginning with 5 will sum to 480?
               Solution: 5+7+9+... n=480 a=5, d=2, S=480
                      \Rightarrow \frac{n}{2} [2a + (n-1)d] = 480 \Rightarrow \frac{n}{2} [10 + (n-1)d] = 480 \Rightarrow \frac{n}{2} [5 + (n-1)] = 480
                                                        \Rightarrow n[n+4] = 480 \Rightarrow n^2 + 4n - 480 = 0
                                                       \Rightarrow (n+24)(n-20)=0 \Rightarrow n=-24, n=20
************
```

\*\*\*\*\*\*\*\*\*\* 55. In a winter season let us take the temperature of Ooty from Monday to Friday to be in A.P. The sum of temperatures from Monday to Wednesday is 0° C and the sum of the temperatures from Wednesday

to Friday is 18° C. Find the temperature on each of the five days. Solution: a, a+d, a+2d, a+3d, a+4d are temperature of Ooty from Monday to Friday to be in A.P.

Given 
$$a + (a + d) + (a + 2d) = 0 \implies 3a + 3d = 0 \implies a + d = 0 \implies a = -d$$
  
Given  $(a + 2d) + (a + 3d) + (a + 4d) = 18 \implies 3a + 9d = 18 \implies -3d + 9d = 18 \implies 6d = 18$   
 $\implies d = 3 \therefore a = -3$ 

The temperature of each of the 5 days -3° C, 0° C, 3° C, 6° C, 9° C

The houses of a street are numbered from 1 to 49. Senthil's house is numbered such that the sum of 56. numbers of the houses prior to Senthil's house is equal to the sum of numbers of the houses following Senthil's house. Find Senthil's house number?

**Solution:** Let Senthil's house number be x.

$$1 + 2 + 3 + \dots + (x - 1) = (x - 1) + (x + 2) + \dots + 49$$

$$1 + 2 + 3 + \dots + (x - 1) = [1 + 2 + 3 + \dots + 49] - [1 + 2 + 3 + \dots + x]$$

$$\frac{x - 1}{2} [1 + (x - 1)] = \frac{49}{2} [1 + 49] - \frac{x}{2} [1 + x]$$

$$\frac{x(x - 1)}{2} = \frac{49 \times 50}{2} - \frac{x(x + 1)}{2}$$

$$x^{2} - x = 2450 - x^{2} - x \Rightarrow 2x^{2} = 2450 \qquad x^{2} = 1225 \text{ gives } x = 35$$

Senthil's hosue number is 35.

A brick staircase has a total of 30 steps. The bottom step requires 100 bricks. Each successive step requires two bricks less than the previous step.

- (i) How many bricks are required for the top most step?
- (ii) How many bricks are required to build the stair case?

Solution: 
$$\therefore$$
 100, 98, 96, 94, ....... for 30 steps form an A.P. 
$$a = 100, d = -2, n = 30$$
 
$$\begin{bmatrix} t_n = a + (n-1) d \end{bmatrix}$$

- i) No. of bricks used in the top most step  $t_{30} = a + 29d = 100 + 29$  (-2) = 100 58 = 42  $\therefore S_n = \frac{n}{2}[a+l]$ ii) Total no. of bricks used to build the stair case  $S_{30} = \frac{30}{2} (100 + 42) = 15 \times 142 = 2130$

Find the sum 
$$\left[\frac{a-b}{a+b} + \frac{3a-2b}{a+b} + \frac{5a-3b}{a+b} + \dots \right]$$
 to 12 terms

58.

**Solution:** 
$$\frac{a-b}{a+b} + \frac{3a-2b}{a+b} + \frac{5a-3b}{a+b} + \dots$$
 to 12 terms  $a = \frac{a-b}{a+b}$ ,  $d = \frac{2a-b}{a+b}$   
 $S_{12} = \frac{12}{2} \left[ 2 \left( \frac{a-b}{a+b} \right) + 11 \left( \frac{2a-b}{a+b} \right) \right] = \frac{6}{a+b} \left[ 24a-13b \right]$   $(:S_n = \frac{n}{2} [2a+(n-1)d])$ 

59. If  $(m + 1)^{th}$  term of an A.P. is twice the  $(n + 1)^{th}$  term, then prove that  $(3m + 1)^{th}$  term is twice the (m + n + 1)<sup>th</sup> term.

$$a + \mathrm{md} = 2a + 2\mathrm{nd} \quad --(1)$$

To Prove: 
$$t_{3m+1} = 2 (t_{m+n+1})$$
  
 $t_{3m+1} = a + (3m+1-1)d = a + 3md = (a+md) + 2md = 2a + 2nd + 2md \text{ (from (1))}$   
 $= 2 [a + (m+n)d]$   
 $= 2 [t_{m+n+1}]$ 

Find the sum to n terms of the series 5 + 55 + 555**Solution:** 5 + 55 + 555 + .... + n terms = 5 [1 + 11 + 111 + .... + n terms] \*\*\*\*  $=\frac{5}{2}[9+99+999+...+n \text{ terms}]$  $\frac{3}{9}[(10-1)+(100-1)+(1000-1)+...+n \text{ terms}]$  $= \frac{5}{9} [(10+100+1000+...+n \text{ terms})-n]$   $= \frac{5}{9} \left[ \frac{10(10^n-1)}{(10-1)}-n \right] = \frac{50(10^n-1)}{81} - \frac{5n}{9}$   $\therefore S_n = a \cdot \frac{r^n-1}{r-1}$ In a G.P. the 9th term is 32805 and 6th term is 1215. Find the 12th term. **Solution**: Given  $t_9 = 32805$ ,  $t_6 = 1215$ ,  $t_{12} = ?$  $a \cdot r^{s} = 32805$ X The product of three consecutive terms of a Geometric Progression is 343 and their sum is Find the three terms. **Solution:** 3 consecutive terms  $\frac{a}{r}$ , a, ar. Product of the terms = 343  $\frac{a}{r} \times a \times ar = 343$   $a^{3} = 7^{3}$  a = 7 a = 7  $(1 + r + r^{2}) = \frac{91}{3}$   $\Rightarrow 3 + 3r + 3r^{2} = 13r$   $\Rightarrow 3r^{2} - 10r + 3 = 0$   $\Rightarrow (3r - 1)(r - 3) = 0$ If a = 7, r = 3 then the three terms are  $\frac{7}{3}$ , 7, 21. If a = 7,  $r = \frac{1}{3}$  then the three terms are 21, 7,  $\frac{7}{3}$ . 63. Find the sum to n terms of the series  $0.4 + 0.44 + 0.444 + \dots$  to n terms X Solution : 0.4 + 0.44 + 0.444 + ...... to *n* terms =  $\frac{4}{10} + \frac{44}{100} + \frac{444}{1000} + \dots$  to *n* terms  $= 4 \left[ \frac{1}{10} + \frac{11}{100} + \frac{111}{1000} + \dots n \text{ terms} \right]$   $A \left[ 9 \quad 99 \quad 999 \quad \dots \text{ terms} \right]$   $\therefore S_n = a \cdot \frac{r^n - 1}{r - 1}$ X X  $=\frac{4}{9}\left[\frac{9}{10} + \frac{99}{100} + \frac{999}{1000} + \dots n \text{ terms}\right]$  $= \frac{4}{9} \left[ \left( 1 - \frac{1}{10} \right) + \left( 1 - \frac{1}{100} \right) + \left( 1 - \frac{1}{1000} \right) + \dots n \text{ terms} \right]$ X X \*\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>

$$= \frac{4}{9} \begin{bmatrix} (1+1+1+\dots n \text{ terms}) \\ -\left(\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \dots n \text{ terms} \right) \end{bmatrix} = \frac{4}{9} \left[ n - \frac{1}{10} \left( \frac{1 - \left(\frac{1}{10}\right)^n}{1 - \frac{1}{10}} \right) \right] = \frac{4}{9} \left[ n - \frac{1}{9} \left( 1 - \left(\frac{1}{10}\right)^n \right) \right]$$

64. Kumar writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with the instruction that they continue the process similarly. Assuming that the process is unaltered and it costs ₹ 2 to mail one letter, spent on find the amount postage when 8th set of letters is mailed.

**Solution:** ... The total cost =  $(4 \times 2) + (16 \times 2) + (64 \times 2) + \dots 8^{th}$  set

= 8+32+28+...........8<sup>th</sup> set  

$$S_8 = 8.\frac{4^8 - 1}{3} = 8 \times \frac{65535}{3}$$
 ∴  $a = 8, r = 4, n = 8$  ∴  $S_n = a.\frac{r^n - 1}{r - 1}$   
= 8 × 21845 = ₹ 174760

\*\*\*\*\*

X

\*

X

X

\* \*

\*

\*\*\*

\*\*\*

\*

X

\*

\*

\*\*

\*\*

X

65. If  $S_n = (x + y) + (x^2 + xy + y^2) + (x^3 + x^2y + xy^2 + y^3) + \dots n$  terms then prove that

$$(x-y) S_n = \left| \frac{x^2 (x^n-1)}{x-1} - \frac{y^2 (y^n-1)}{y-1} \right|$$

Solution:  $(x-y)S_n = (x^2-y^2) + (x^3+y^3) + (x^4-y^4) + \dots n \text{ terms}$ =  $(x^2+x^3+x^4+\dots n \text{ terms}) - (y^2+y^3+y^4+\dots n \text{ terms})$ 

$$= \frac{x^2(x^n - 1)}{x - 1} - \frac{y^2(y^n - 1)}{y - 1} \left( a = x^2, r = x & a = y^2, r = y : S_n = a \cdot \frac{r^n - 1}{r - 1} \right)$$

66. Find the sum to n terms of the series 3+33+333+... to n terms

Solution 
$$3(1+11+111+.....n \text{ terms}) = \frac{3}{9}(9+99+999+.....n \text{ terms})$$
  
 $= \frac{3}{9}[(10-1)+(100-1)+(1000-1)+.....n \text{ terms}]$   $\left[S_n = a \cdot \frac{r^n-1}{r-1}\right]$   
 $= \frac{3}{9}[(10+100+1000+.....n \text{ terms}] - [(1+1+1+.....n \text{ terms}]$   
 $= \frac{3}{9}\left[10 \cdot \left(\frac{10^n-1}{n}\right) - n\right] = \frac{30}{81}(10^n-1) - \frac{3n}{9} = \frac{10}{27}(10^n-1) - \frac{n}{3}$ 

67. Find the sum of  $10^3 + 11^3 + 12^3 + \dots + 20^3$ 

$$10^{3} + 11^{3} + 12^{3} + \dots + 20^{3} = (1^{3} + 2^{3} + \dots + 20^{3}) - (1^{3} + 2^{3} + \dots + 9^{3})$$

$$= \left(\frac{20 \times 21}{2}\right)^{2} - \left(\frac{9 \times 10}{2}\right)^{2} = (210)^{2} - (45)^{2}$$

$$= (210 + 45)(210 - 45) = (255) \times (165) = 42075$$

$$\left(\sum_{k=1}^{n} K^{3}\right) = \left(\frac{n(n+1)}{2}\right)^{2}$$

68. Find the sum of all natural numbers between 602 and 902 which are not divisible by 4. Solution:

fion:  
Case (i) 
$$a = 603$$
,  $d = 1$ ,  $l = 901 \Rightarrow n = \frac{901 - 603}{1} + 1 = 298 + 1 = 299$   

$$S_{299} = \frac{299}{2} \times 1504 = 299 \times 752 = 224848$$

$$\therefore n = \frac{l - a}{d} + 1 \therefore S_n = \frac{n}{2} [a + l]$$

Case (ii) 
$$a = 604$$
,  $d = 4$ ,  $I = 900 \Rightarrow n = \frac{900 - 604}{4} + 1 = \frac{296}{4} + 1 = 74 + 1 = 75$   
$$S_{75} = \frac{75}{2} \times 1504 = 75 \times 752 = 56,400$$

 $\therefore$  Sum of all natural numbers between 602 and 902 which are not divisible by 4 = 224848 - 56400 = 168448

```
<×××××××××××××××××××××××××××××××
             Find the sum of 9^3 + 10^3 + \dots + 21^3
      69.
              Solution: 9^3 + 10^3 + .... + 21^3 = (1^3 + 2^3 + 3^3 + ..... + 21^3) - (1^3 + 2^3 + 3^3 + .... + 8^3)
                                                                                                                                                           ***********
                                      = \left\lceil \frac{21 \times (21+1)}{2} \right\rceil^2 = \left\lceil \frac{8 \times (8+1)}{2} \right\rceil^2 = (231)^2 - (36)^2 = 52065 \quad \left| \therefore \sum_{k=1}^n K^3 = \left( \frac{n(n+1)}{2} \right)^2 \right|
              Find the sum of 5^2 + 10^2 + 15^2 + ... + 105^2
       70.
              Solution: 5^2 + 10^2 + 15^2 + \dots + 105^2 = 5^2(1^2 + 2^2 + 3^2 + \dots + 21^2)
                             =25\times\frac{25\times(21+1)(2\times21+1)}{6} = \frac{25\times21\times22\times43}{6} = 82775 \quad \left| \because \sum_{k=1}^{n} K^2 = \frac{n(n+1)(2n+1)}{6} \right|
       71
             Find the sum of 15^2 + 16^2 + 17^2 + \dots 28^2
              Solution: 15^2 + 16^2 + 17^2 + \dots + 28^2 = (1^2 + 2^2 + 3^2 + \dots + 28^2) - (1^2 + 2^2 + 3^2 + \dots + 14^2)
                                = \frac{28 \times 29 \times 57}{6} - \frac{14 \times 15 \times 29}{6} = 7714 - 1015 = 6699 \qquad \left| \therefore \sum_{k=1}^{n} K^2 = \frac{n(n+1)(2n+1)}{6} \right|
              Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,..., 24 cm. How much area
      72.
              can be decorated with these colour papers?
                                                                                                               \therefore \sum_{k=1}^{n} K^{2} = \frac{n(n+1)(2n+1)}{6}
              Solution: 10 cm, 11 cm, 12 cm, ...... 24 cm
              10^{2} + 11^{2} + 12^{2} + \dots + 24^{2} = (1^{2} + 2^{2} + 3^{2} + \dots + 24^{2}) - (1^{2} + 2^{2} + \dots + 9^{2}) \begin{bmatrix} 1 & 2 \\ k=1 \end{bmatrix}
= \frac{24 \times 25 \times 49}{6} - \frac{9 \times 10 \times 19}{6} = 4900 - 285 = 4615 \text{ cm}^{2}
              Find the sum of the series to (2^3 - 1^3) + (4^3 - 3^3) + (6^3 - 5^3) + \dots to (i) n terms (ii) 8 terms
      73.
              Solution: (i) (2^3-1^3)+(4^3-3^3)+(6^3-5^3)+\dots n terms
                                            = (2^3 + 4^3 + 6^3 + \dots n \text{ terms}) - (1^3 + 3^3 + 5^3 + \dots n \text{ terms})
                                                                                                                                                            **
                                            =12\sum_{n}n^{2}-6\sum_{n}n+n = 2\left[\frac{n(n+1)(2n+1)}{6}\right]-5\left[\frac{n(n+1)}{2}\right]+n = 4n^{3}+3n^{2}
                                                                                                                                                            ***
                           (ii) S_g = 4(8^3) + 3(8^2) = 4(512) + 3(64) = 2048 + 192 = 2240
     74
              How many terms of the series 1^3 + 2^3 + 3^3 + \dots should be taken to get the sum 14400?
              Solution: 1^3 + 2^3 + 3^3 + \dots + k^3 = 14400
                                             \left(\frac{k(k+1)}{2}\right)^2 = 14400 \implies \frac{k(k+1)}{2} = 120 \implies k^2 + k - 240 = 0 \\ \implies (k+16)(k-15) = 0
                                                                                                                                                            *
                                                                                                                                                            *
                     15 terms of the series 1^3 + 2^3 + 3^3 + \dots should be taken to get the sum 14400.
      75
                                                                                                                                                            ****
              How many terms of the series 1 + 4 + 16 + \dots make the sum 1365?
              Solution:
                               a = 1, r = 4
                                                 \therefore \frac{a(r^n-1)}{r-1} = 1365
                                                     \frac{1(4^n-1)}{4-1}=1365
                                                      \frac{(4^n-1)}{2} = 1365 \Rightarrow (4^n-1) = 4095 \Rightarrow 4^n = 4096 \Rightarrow 4^n = 4^6 \Rightarrow n = 6
                                                                                                                                                            *
                                     \therefore 6 terms of the series 1 + 4 + 16 + \dots make the sum 1365
                                                                                                                                                            X
*********
```



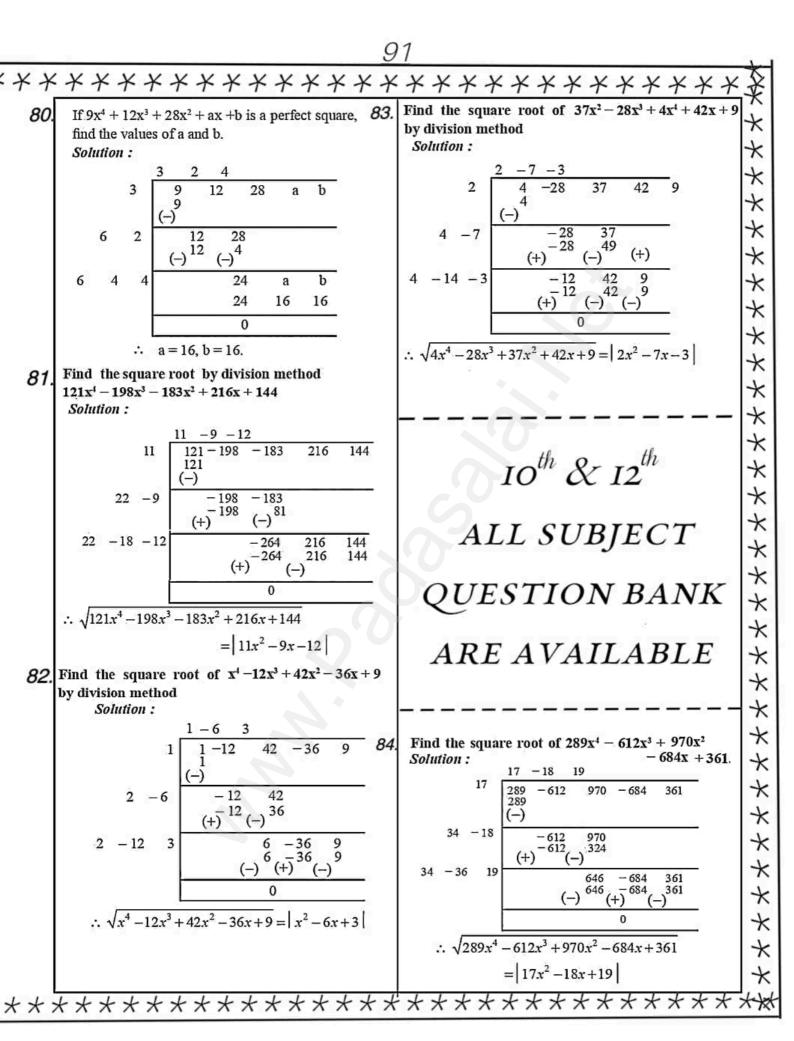


76. If  $4x^4-12x^3+37x^2+bx+a$  is perfect square, 1Find the values of a and b

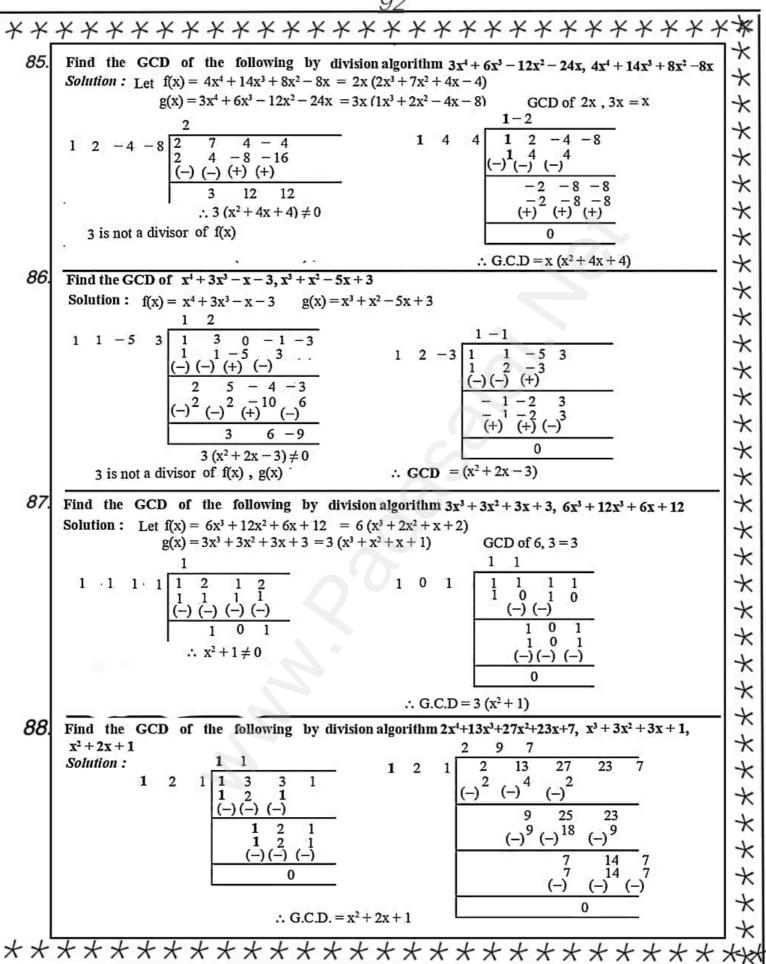
Solution:

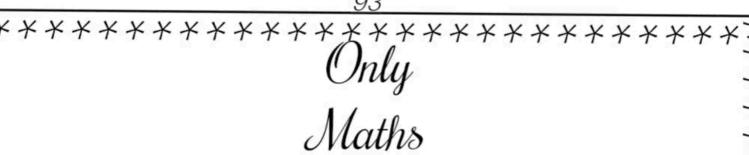
77. If  $ax^4 + bx^3 + 361x^2 + 220x + 100$  is perfect square.

Find the values of a and b


Solution:

If  $x^4 - 8x^3 + mx^2 + nx + 16$  is perfect square, Find the values of m and n


Find  $\sqrt{64x^4 - 16x^3 + 17x^2 - 2x + 1}$ **Solution**:


$$\sqrt{64x^4 - 16x^3 + 17x^2 - 2x + 1} = |8x^2 - x + 1|$$

Mathematics is the Queen of Science









Find the GCD of  $6x^3 - 30x^2 + 60x - 48$  and  $3x^3 - 12x^2 + 21x - 18$ 89.

**Solution**: Let  $f(x) = 6x^3 - 30x^2 + 60x - 48 = 6 (x^3 - 5x^2 + 10x - 8)$ 

$$g(x) = 3x^3 - 12x^2 + 21x - 18 = 3(x^3 - 4x^2 + 7x - 6)$$
 GCD of 3 and 6 is 3.

$$\begin{vmatrix}
1 & -5 & 10 & -8 \\
1 & -5 & 10 & -8 \\
(-) & (+) & (-) & (+)
\end{vmatrix}$$

$$\begin{vmatrix}
1 & -2 & 1 & -2 \\
1 & -5 & 10 & -8 \\
(-) & (+) & (-) & (+)
\end{vmatrix}$$

$$\begin{vmatrix}
1 & -2 & 1 & -5 & 10 & -8 \\
1 & -3 & 2 & 2 \\
(-) & (+) & (-)
\end{vmatrix}$$

$$\begin{vmatrix}
-2 & 8 & -8 & -2 & 6 & -4 \\
(+) & (-) & (+)
\end{vmatrix}$$

$$\begin{vmatrix}
-2 & 8 & -8 & -2 & 6 & -4 \\
(+) & (-) & (+)
\end{vmatrix}$$

$$\begin{vmatrix}
2 & -4 & -4 & -4 & -4 \\
2 & -4 & -4 & -4
\end{vmatrix}$$

GCD = 3(x-2)2 is not a divisor of g(x)

90. Find the GCD of the polynomials  $x^3 + x^2 - x + 2$  and  $2x^3 - 5x^2 + 5x - 3$ .

**Solution:** Let  $f(x) = 2x^3 - 5x^2 + 5x - 3$  and  $g(x) = x^3 + x^2 - x + 2$ 

91

-7 is not a divisor of g(x)

 $GCD = x^2 - x + 1$ 

Find the GCD of the following by division algorithm  $x^3 - 11x^2 + x - 11 \Rightarrow x^4 - 1$ 

**Solution:** Let  $f(x) = x^4 - 1$   $g(x) = x^3 - 11x^2 + x - 11$ 

 $120(x^2+0x+1)\neq 0$ 

120 is not a divisor of f(x), g(x)

 $GCD = x^2 + 1$ 

Achieve Your Target Plan Well \\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \*\*\* Sun Tuition Center \*\*\*\*\* 92. Find the square root of  $(6x^2 + x - 1)(3x^2 + 2x - 1)(2x^2 + 3x + 1)$ Solution:  $\sqrt{(6x^2+x-1)(3x^2+2x-1)(2x^2+3x+1)} = \sqrt{(3x-1)(2x+1)(3x-1)(x+1)(2x+1)(x+1)}$ = |(3x-1)(2x+1)(x+1)|93. Solution :  $\frac{1}{x^2 - 5x + 6} + \frac{1}{x^2 - 3x + 2} - \frac{1}{x^2 - 8x + 15} = \frac{1}{(x - 2)(x - 3)} + \frac{1}{(x - 2)(x - 1)} - \frac{1}{(x - 5)(x - 3)}$  $= \frac{(x-1)(x-5)+(x-3)(x-5)-(x-1)(x-2)}{(x-1)(x-2)}$ (x-1)(x-2)(x-3)(x-5) $-(x^2-6x+5)+(x^2-8x+15)-(x^2-3x+2)$ (x-1)(x-2)(x-3)(x-5) $\frac{x^2 - 11x + 8}{(x - 1)(x - 2)(x - 3)(x - 5)} = \frac{(x - 9)(x - 2)}{(x - 1)(x - 2)(x - 3)(x - 5)} = \frac{x - 9}{(x - 1)(x - 3)(x - 5)}$ 94 Find the square root of  $(4x^2-9x+2)(7x^2-13x-2)(28x^2-3x-1)$ Solution:  $\sqrt{(4x^2-9x+2)(7x^2-13x-2)(28x^2-3x-1)} = \sqrt{(4x-1)(x-2)(7x+1)(x-2).(7x+1)(4x-1)}$ = (7x+1)(4x-1)(x-2)Find the square root of the following  $\left(2x^2 + \frac{17}{6}x + 1\right)\left(\frac{3}{2}x^2 + 4x + 2\right)\left(\frac{4}{3}x^2 + \frac{11}{3}x + 2\right)$ 95 \*\*\*\*\*  $\sqrt{\frac{(2x^2+17/6x+1)(\sqrt[3]{2}x^2+4x+2)(\sqrt[4]{3}x^2+11/3x+2)}{6}} = \sqrt{\frac{(12x^2+17x+6)}{6} \cdot \frac{(3x^2+8x+4)}{2} \cdot \frac{(4x^2+11x+6)}{3}}$  $= \sqrt{\frac{(4x+3)(3x+2).(3x+2)(x+2).(4x+3)(x+2)}{36}}$  $= \frac{1}{6}\sqrt{(4x+3)^2.(3x+2)^2.(x+2)^2}$  $=\frac{1}{6}\left[(4x+3)(3x+2)(x+2)\right]$ \*\*\*\*\*\* 10th & 12th ONLY ALL SUBJECT **MATHS DUESTION BANK** TUITIONARE AVAILABLE \\*\*\*\*\*\*\*\*\*\*

```
*******
                                                                                                                         Find X and Y if X + Y = \begin{pmatrix} 7 & 0 \\ 3 & 5 \end{pmatrix} and X-Y=\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}
                                                                                                                                                                                                                                                                                X+Y=\begin{pmatrix} 7 & 0 \\ 3 & 5 \end{pmatrix} .....(1) X-Y=\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} .....(2)
                                                                                                                                                          (1) + (2) \ \Rightarrow \ 2X = \begin{pmatrix} 10 & 0 \\ 3 & 9 \end{pmatrix} \ \Rightarrow \ X = \begin{pmatrix} 5 & 0 \\ \frac{3}{2} & \frac{9}{2} \end{pmatrix} \qquad (1) - (2) \ \Rightarrow \ 2Y = \begin{pmatrix} 4 & 0 \\ 3 & 1 \end{pmatrix} \ \Rightarrow \ Y = \begin{pmatrix} 2 & 0 \\ \frac{3}{2} & \frac{1}{2} \end{pmatrix} 
                                                                                                             If A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} find AB and BA. Check if AB = BA.

Solution: AB = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} \frac{2}{1} & \frac{1}{2} & \frac{2}{1} & \frac{1}{3} & 0 \\ \frac{1}{1} & \frac{3}{1} & \frac{1}{3} & \frac{3}{1} & \frac{3}{1
                                                                                                                                                                                                                                                                BA = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{3}{2} & \frac{1}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{1}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{1}{3} & \frac{3}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} \\ \frac{1}{3} & \frac{3}{3} & \frac{3}{3}
                                                                                                                               If A = \begin{pmatrix} 1 & -1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix} and C = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} show that (AB)C = A(BC).
                                                                                                                                                                                                                                                                 (AB) = \begin{pmatrix} 1 & -1 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1-1}{2} & \frac{1-1}{2} & \frac{1-1}{2} \\ \frac{1}{2} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1-2+2-1-1+6 \end{pmatrix} = \begin{pmatrix} 1 & 4 \end{pmatrix}
                                                                                                                                                                                                                                     (AB) C = (1 \ 4) \times \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 \ 4 \\ 2 & \\ 2 & \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \ 4 \\ 2 & \\ -1 \end{pmatrix} = (1+8 \ 2-4) = (9 \ -2) \dots (1)
                                                                                                                    BC = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 & 2 \\ 2 & 1 &

\begin{bmatrix}
1 & 3 & 1 & 3 \\
2 & & & & \\
2 & & & & \\
2 & & & & \\
2 & & & & \\
1 & & & & \\
2 & & & & \\
1 & & & & \\
2 & & & & \\
1 & & & \\
2 & & & & \\
1 & & & \\
2 & & & \\
1 & & & \\
2 & & & \\
3 & & & \\
7 & & & & \\
1 & & & \\
2 & & & \\
3 & & & \\
7 & & & & \\
1 & & & \\
2 & & & \\
3 & & & \\
7 & & & & \\
1 & & & \\
2 & & & \\
3 & & \\
7 & & & & \\
1 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & & & \\
2 & &
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ****
                                                                                                                                                                                                                                                                                        Life is a Good Circle,
                                                                                                      You Choose the Best Radius...
```

+\*\*\*\*\*\*\*

3-3-2) = (9-2).....(2) From (1) and (2), (AB)C = A(BC). X If  $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix}$ ,  $C = \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix}$  verify that A(B + C) = AB + AC. 99. \*  $B+C=\begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix} + \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} -6 & 8 \\ -1 & 4 \end{pmatrix}$ X X  $A(B+C) = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} -6 & 8 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & -6 & \frac{1}{1} & \frac{1}{1} & 8 \\ -1 & 3 & -6 & \frac{1}{1} & \frac{3}{1} & \frac{1}{1} & \frac{1}{1}$ X X \*  $AB = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{2} \\ \frac{-1}{3} & 1 & \frac{-1}{3} & 2 \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{2} & 2 \end{pmatrix} = \begin{pmatrix} 1-4 & 2+2 \\ -1-12 & -2+6 \end{pmatrix} = \begin{pmatrix} -3 & 4 \\ -13 & 4 \end{pmatrix}$ \* X X  $AC = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & -7 & \frac{1}{3} & 6 \\ \frac{-1}{3} & \frac{-1}{3} & \frac{3}{6} \\ -7 & \frac{1}{3} & \frac{-1}{3} & \frac{3}{6} \end{pmatrix} = \begin{pmatrix} -7+3 & 6+2 \\ 7+9 & -6+6 \end{pmatrix} = \begin{pmatrix} -4 & 8 \\ 16 & 0 \end{pmatrix}$ X X X X  $AB + AC = \begin{pmatrix} -3 & 4 \\ -13 & 4 \end{pmatrix} + \begin{pmatrix} -4 & 8 \\ 16 & 0 \end{pmatrix} = \begin{pmatrix} -7 & 12 \\ 3 & 4 \end{pmatrix} \dots (2)$ X From (1) and (2), A (B + C)

If  $A = \begin{pmatrix} 1 & 2 & 1 \ 2 & -1 & 1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & -1 \ -1 & 4 \ 0 & 2 \end{pmatrix}$  show that  $(AB)^{T} = B^{T} A^{T}$ .

Solution:  $AB = \begin{pmatrix} 1 & 2 & 1 \ 2 & -1 & 1 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \ -1 & 4 \ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \ -1 & 4 \ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \ -1 & 4 \ 2 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 - 2 + 0 & -1 + 8 + 2 \ 4 + 1 + 0 & -2 - 4 + 2 \end{pmatrix} = \begin{pmatrix} 0 & 9 \ 5 & -4 \end{pmatrix}$   $(AB)^{T} = \begin{pmatrix} 0 & 5 \ 9 & -4 \end{pmatrix}$  ......(1) X X X \* \*  $B^{T} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 4 & 2 \end{pmatrix}, A^{T} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \end{pmatrix}$ \* \*\*\*  $B^{T}A^{T} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2-1}{1} & 0 & \frac{2-1}{1} & 0 \\ \frac{2}{1} & \frac{1}{1} & \frac{2}{1} \\ -\frac{1}{1} & 4 & 2 & \frac{2}{1} & \frac{2}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{2}{1} & \frac{2}{1} \\ \frac{1}{1} & \frac{2}{1} & \frac{2}{1} & \frac{2}{1} & \frac{2}{1} \\ \frac{1}{1} & \frac{2}{1} & \frac{2}{1} & \frac{2}{1} \\ \frac{1}{1} & \frac{2}{1} & \frac{2}{1} & \frac{2}{1} \\ \frac{2}{1} & \frac{2}{1} & \frac$ \* \* From (1) and (2),  $(AB)^T = B^T A^T$ . \*

*\*\*\*\*\*\*\*\*\*\*\** 101. If  $A = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix}$  find AB, BA and check if AB = BA? \*\*\*\*\*  $AB = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{5}{3} & \frac{2}{3} & \frac{5}{3} \\ \frac{4}{3} & \frac{3}{3} & \frac{4}{3} & \frac{3}{5} \\ \frac{3}{3} & \frac{3}{3} & \frac{3}{3} & \frac{3}{5} \end{pmatrix} = \begin{pmatrix} 2+10 & -6+25 \\ 4+6 & -12+15 \end{pmatrix} = \begin{pmatrix} 12 & 19 \\ 10 & 3 \end{pmatrix}$  $BA = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1 & -3}{2} & \frac{1 & -3}{3} & \frac{1}{3} \\ 2 & 5 & 4 & 2 & 5 & 3 \\ 2 & 5 & 2 & 5 & 5 \end{pmatrix} = \begin{pmatrix} 2 - 12 & 5 - 9 \\ 4 + 20 & 10 + 15 \end{pmatrix} = \begin{pmatrix} -10 & -4 \\ 24 & 25 \end{pmatrix} \dots (2)$ ∴ From (1) & (2) AB ≠ BA \* If  $A = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4 \end{pmatrix}$ ,  $B = \begin{pmatrix} 2 & 3 & 4 \\ 1 & 9 & 2 \\ -7 & 1 & -1 \end{pmatrix}$  and  $C = \begin{pmatrix} 8 & 3 & 4 \\ 1 & -2 & 3 \\ 2 & 4 & -1 \end{pmatrix}$ X 102. \*\* Solution :  $B+C = \begin{pmatrix} 10 & 6 & 8 \\ 2 & 7 & 5 \\ -5 & 5 & -2 \end{pmatrix} \qquad A+(B+C) = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4 \end{pmatrix} + \begin{pmatrix} 10 & 6 & 8 \\ 2 & 7 & 5 \\ -5 & 5 & -2 \end{pmatrix} = \begin{pmatrix} 14 & 9 & 9 \\ 4 & 10 & -3 \\ -4 & 5 & -6 \end{pmatrix} \dots (1)$ \*\*\*\*\*\*  $A+B=\begin{pmatrix}6&6&5\\3&12&-6\\-6&1&-5\end{pmatrix} \therefore (A+B)+C=\begin{pmatrix}6&6&5\\3&12&-6\\-6&1&-5\end{pmatrix}+\begin{pmatrix}8&3&4\\1&-2&3\\2&4&-1\end{pmatrix}=\begin{pmatrix}14&9&9\\4&10&-3\\-4&5&-6\end{pmatrix}......(2)$ :. From (1) & (2) A + (B + C) = (A + B) + CGiven that  $A = \begin{pmatrix} 1 & 3 \\ 5 & -1 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{pmatrix}$ ,  $C = \begin{pmatrix} 1 & 3 & 2 \\ -4 & 1 & 3 \end{pmatrix}$  verify that A(B + C) = AB + ACSolution :  $A = \begin{pmatrix} 1 & 3 \\ 5 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 & 2 \\ -4 & 1 & 3 \end{pmatrix}$  $(B+C) = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 3 & 2 \\ -4 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 4 \\ -1 & 6 & 5 \end{pmatrix}$  $\mathbf{A}(\mathbf{B}+\mathbf{C}) = \begin{pmatrix} 1 & 3 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 4 \\ -1 & 6 & 5 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3$  $AB = \begin{pmatrix} 1 & 3 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} &$  $= \begin{pmatrix} 1+9 & -1+15 & 2+6 \\ 5-3 & -5-5 & 10-2 \end{pmatrix} = \begin{pmatrix} 10 & 14 & 8 \\ 2 & -10 & 8 \end{pmatrix}$ +\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>

```
**<del>**********</del>
                                                 \therefore AC - BC = \begin{pmatrix} 4 & 4 \\ 5 & 6 \end{pmatrix} - \begin{pmatrix} 8 & 0 \\ 7 & 10 \end{pmatrix} = \begin{pmatrix} -4 & 4 \\ -2 & -4 \end{pmatrix} \dots (2) \qquad \therefore \text{ From (1) \& (2), (A - B) C} = AC - BC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *
                                      Solve for x, y \begin{pmatrix} y^2 \end{pmatrix}^{+2} \begin{pmatrix} y \end{pmatrix}^{-} \begin{pmatrix} 8 \end{pmatrix} \Rightarrow x^2 - 4x = 5 \Rightarrow x^2 - 2y = 8 \Rightarrow y^2 - 2y = 8 \Rightarrow 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ×
                                    If A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} and I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} show that A^2 - (a + d) A = (bc - ad) I_2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *
                                                                                       A^{2} = A \cdot A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{pmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ***
                                                               (a+d)A = \begin{pmatrix} a^2 + ad & ab + bd \\ ca + cd & ad + d^2 \end{pmatrix}
                                          A^{2} - (a+d)A = \begin{pmatrix} a^{2} + bc & ab + bd \\ ac + cd & bc + d^{2} \end{pmatrix} - \begin{pmatrix} a^{2} + ad & ab + bd \\ ca + cd & ad + d^{2} \end{pmatrix} = \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix} = (bc - ad) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            X
                                    If A = \begin{pmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 5 & -1 \end{pmatrix} verify that (AB)^T = B^T A^T
                                     Solution :
                                                                          AB = \begin{pmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{pmatrix} \begin{pmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{pmatrix} = \begin{pmatrix} 5+2+45 & 35+4-9 \\ 1+2+40 & 7+4-8 \end{pmatrix} = \begin{pmatrix} 52 & 30 \\ 43 & 3 \end{pmatrix}
                                                                                                                    \therefore (AB)^T = \begin{pmatrix} 52 & 43 \\ 30 & 3 \end{pmatrix} \dots \dots \dots \dots (1)
                                                              B^{T}A^{T} = \begin{pmatrix} 1 & 1 & 5 \\ 7 & 2 & -1 \end{pmatrix} \begin{pmatrix} 5 & 1 \\ 2 & 2 \\ 9 & 8 \end{pmatrix} = \begin{pmatrix} 5+2+45 & 1+2+40 \\ 35+4-9 & 7+4-8 \end{pmatrix} = \begin{pmatrix} 52 & 43 \\ 30 & 3 \end{pmatrix} \dots (2)
                                                                                                                                                                                                               Hence proved.
                                                                   :. From (1) & (2), (AB)^T = B^T A^T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ***
                                     A = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix}, B = \begin{pmatrix} 6 & 3 \\ 8 & 5 \end{pmatrix}, C = \begin{pmatrix} 3 & 6 \\ 1 & 1 \end{pmatrix} find the matrix D, such that CD-AB = 0
                                                                                             Given CD - AB = 0 \Rightarrow \begin{pmatrix} 3 & 6 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 6 & 3 \\ 8 & 5 \end{pmatrix} \Rightarrow \begin{pmatrix} 3a+6c & 3b+6d \\ a+c & b+d \end{pmatrix} = \begin{pmatrix} 18 & 9 \\ 64 & 37 \end{pmatrix}
                                                   3a + 6c = 18
                                                                                                         .....(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ***
                                                                                                                                                                                                                                                                                                             \therefore a = 122, b = 71, c = -58, d = -34
                                                      a + c = 64 .....(2)
                                                                                                                                                                                                   b + d = 37
                                                           (1) \Rightarrow a + 2c = 6
                                                                                                                                                                                                   (3) \Rightarrow b+2d=
                                                                                                                                                                                                                                                                                                                               \therefore D = \begin{pmatrix} 122 & 71 \\ -58 & -34 \end{pmatrix}
                                                                                               a + c = 64
                                                                                                               c = -58
                                                                                                        a - 58 = 64
                                                                                                                      a = 122
                                                                                                                                                                                                                                                                  b = 71
```

The area of a triangle is 5 sq.units. Two of its vertices are (2,1) and (3,-2). The third vertex is (x,y)111. where y = x + 3. Find the coordinates of the third vertex.

∴ Area of  $\Delta = \frac{1}{2} \begin{bmatrix} 2 & 3 & x & 2 \\ 1 & -2 & y & 1 \end{bmatrix} = 5 \implies (-4 + 3y + x) - (3 - 2x + 2y) = 10$ ⇒  $x + 3y - 4 - 3 + 2x - 2y = 10 \implies 3x + y = 17$ Solution: Sub,  $x = \frac{7}{2}$  in (2)  $3x + y = 17 \dots (1)$  $\frac{7}{2} - y = -3$  $y = \frac{7}{2} + 3 = \frac{13}{2}$  :: Third vertex is  $(\frac{7}{2}, \frac{13}{2})$ 

\*

X

X \*

\*

X

X

X

\*

X

\*

\*

X

X

X

\*

\*\*\*

×

\*\*\*\*\*

Find the area of a triangle formed by the lines 3x + y - 2 = 0, 5x + 2y - 3 = 0 and 2x - y - 3 = 0. 112.

**Solution**: 3x + y - 2 = 0..... (1) 5x + 2y - 3 = 0..... (2)  $\Rightarrow$  5x + 2y = 3 2x - y - 3 = 0 $(3) \times 2 \implies 4x - 2y = 6$ 3x+y=2 $(1) \times 2 \implies 6x + 2y = 4$  $\Rightarrow$  5x + 2y = 3 2x-y=3 $\therefore (3) \Rightarrow 2 - y - 3 = 0$ x=1  $\therefore y=-1$ -y=1 : y=-1Sub. in (1)  $3+y-2=0 \Rightarrow y=-1$  $\therefore$  B is (1, -1) $\therefore A(1,-1)$  $\therefore$  C is (1, -1)

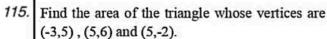
 $\therefore$  A (1, -1), B (1, -1), C (1, -1)  $\therefore$  All point line on the same line  $\therefore$  Area of  $\Delta = 0$  sq. units

If vertices of a quadrilateral are at A(-5,7), B(-4,k), C(-1,-6) and D(4,5) and its area is 72 sq.units. Find the value of k.

**Solution**: A(-5, 7), B(-4, k), C(-1, -6), D(4, 5) & its area = 72 sq.units

 $\Rightarrow \frac{1}{2} \begin{bmatrix} -5 & -4 & -1 & 4 & -5 \\ 7 & 2 & 1 & -6 & 5 & 7 \end{bmatrix} = 72$ (-5k+24-5+28) - (-28-k-24-25) = 144(-5k+47)-(-k-77)=144-4k + 124 = 144 $-4k = 20 \implies k = -5$ 

113.


114.

Without using distance formula, show that the points (-2,-1), (4, 0), (3, 3) and (-3,2) are vertices of a parallelogram.

Slope of  $AB = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 + 1}{4 + 2} = \frac{1}{6}$  Slope of  $CD = \frac{3 - 2}{3 + 3} = \frac{1}{6}$  : AB & CD are parallel Solution:

Slope of  $AD = \frac{2+1}{-3+2} = \frac{3}{-1} = -3$  Slope of  $BC = \frac{0-3}{4-3} = \frac{-3}{1} = -3$  : AD & BC are parallel .. ABCD is a parallelogram

\*\*\*<del>\*\*\*\*\*\*\*\*\*</del>



Solution: The area of the triangle  $= \frac{1}{2} \begin{cases} x_1 & x_2 \\ y_1 & y_2 \end{cases}$   $= \frac{1}{2} \begin{cases} -3 & 5 \\ 5 & 6 \end{cases}$   $= \frac{1}{2} \{ (-18-10+25) - (25+30+6) \}$ 

$$=\frac{1}{2}\{-3-61\}=\frac{1}{2}(-64)=32$$
 sq. units

116. Show that the points P(-1.5, 3), Q(6, -2), R(-3, 4) are collinear.

Solution: The area of the triangle  $= \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$  $= \frac{1}{2} \begin{cases} -1.5 & 6 & -3 & -3 \\ 3 & -2 & 4 & 5 \end{cases}$  $= \frac{1}{2} \{ (3 + 24 - 9) - (18 + 6 - 6) \} = \frac{1}{2} \{ 18 - 18 \} = 0$ 

$$= \frac{1}{2} \{ (3+24-9) - (18+6-6) \} = \frac{$$

.. The given points are collinear.

If the points P(-1, -4), Q (b, c) and R(5, -1) are collinear and if 2b + c = 4, then find the values of b and c.

117.

**Solution:** Since the three points are collinear, Area of triangle PQR = 0

$$\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases} = 0$$

$$\frac{1}{2} \begin{cases} -1 & b & 5 & -1 \\ -4 & c & -1 & -4 \end{cases} = 0$$

$$\frac{1}{2} \{ (-c - b - 20) - (-4b + 5c + 1) \} = 0$$

$$-c - b - 20 + 4b - 5c - 1 = 0$$

$$b - 2c = 7 & -(1)$$

$$2b + c = 4 & -(2)$$
Solving (1) and (2) we get b = 3, c = -2

118. If the area of the triangle formed by the vertices A(-1, 2), B(k, -2) and C(7, 4) (taken in order) is 22 sq. units, find the value of k.

Solution: Area of triangle ABC is 22 sq.units

$$\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases} = 22$$

$$\frac{1}{2} \begin{cases} -1 & k & 7 & -1 \\ 2 & -2 & 4 & 2 \end{cases} = 22$$

$$\frac{1}{2} \{ (2+4k+14) - (2k-14-4) \} = 22$$

$$\frac{1}{2}\{(2+4k+14)-(2k-14-4)\} = 22$$

$$\{(2+4k+14)-(2k-14-4)\} = 44$$

$$\{2+4k+14-2k+14+4\} = 44$$

$$\Rightarrow 2k+34=44 \Rightarrow 2k=10 \Rightarrow k=5$$

X

X

X

X

X

X

X

X

X

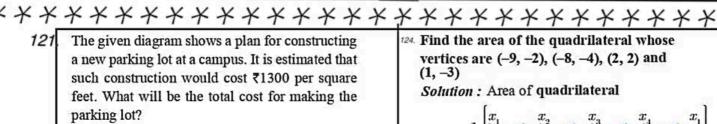
X

X

119. The floor of a hall is covered with identical tiles which are in the shapes of triangles. One such triangle has the vertices at (-3, 2), (-1, -1) and (1, 2). If the floor of the hall is completely covered by 110 tiles, find the area of the floor.

Solution:
Area of this tile  $=\frac{1}{2}\begin{bmatrix} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{bmatrix}$   $=\frac{1}{2}\begin{bmatrix} -3 & -1 & 1 & -3 \\ 2 & -1 & 2 & 2 \end{bmatrix}$   $=\frac{1}{2}\{(3-2+2)-(-2-1-6)\} \text{ sq. units}$   $=\frac{1}{2}(12)=6 \text{ sq. units}$ 

Area of floor =  $110 \times 6 = 660$  sq.units Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5,12) and (-4, 3). **Solution:** The area of the quadrilateral


$$= \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$$

$$= \frac{1}{2} \begin{cases} 8 & 5 & -5 & -4 & 8 \\ 6 & 11 & 12 & 3 & 6 \end{cases}$$

$$= \frac{1}{2} \{ (88 + 60 - 15 - 24) - (30 - 55 - 48 + 24) \}$$

$$= \frac{1}{2} \{ 109 + 49 \} = \frac{1}{2} \{ 158 \} = 79 \text{ sq. units}$$

\*\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>



Solution: Area of parking lot

$$= \frac{1}{2} \left\{ \sum_{y_1}^{x_1} \sum_{y_2}^{x_2} \sum_{y_3}^{x_4} \sum_{y_4}^{x_1} \sum_{y_4}^{x_1} \sum_{y_4}^{x_4} \sum$$

Total cost for constructing the parking lot = 16 × 1300 = ₹20800

122 Find the area of the triangle formed by the points (1,-1), (-4,6) and (-3,-5)

Solution: .. Area of triangle

$$= \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$$

$$= \frac{1}{2} \begin{cases} 1 & -4 & 3 \\ -1 & 6 & -5 & 1 \end{cases}$$

$$= \frac{1}{2} \{ (6+20+3) - (4-18-5) \}$$

$$= \frac{1}{2} [29+19] = \frac{1}{2} (48) = 24 \text{ sq. units}$$

123. Find the area of the triangle formed by the points (-10, -4), (-8, -1) and (-3, -5)

Solution: .. Area of triangle

$$= \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$$

$$= \frac{1}{2} \begin{cases} -10 & -3 & -8 & -10 \\ -4 & -5 & -1 & -4 \end{cases}$$

$$= \frac{1}{2} [(50+3+32) - (12+40+10)]$$

$$= \frac{1}{2} [85-62] = \frac{23}{2} = 11.5 \text{ sq.units}$$

124. Find the area of the quadrilateral whose vertices are (-9, -2), (-8, -4), (2, 2) and (1, -3)

Solution: Area of quadrilateral

$$= \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$$

$$= \frac{1}{2} \begin{bmatrix} -9 & -8 & 1 & 2 & -9 \\ -2 & -4 & -3 & 2 & -2 \end{bmatrix}$$

$$= \frac{1}{2} [(36 + 24 + 2 - 4) - (16 - 4 - 6 - 18)]$$

$$= \frac{1}{2} [58 - (-12)] = \frac{1}{2} [70] = 35 \text{ sq. units}$$

X

X

\*

\*

X

X

X

\*

X

X

X

X

X X

(-6, -3)

Solution: Area of quadrilateral

$$= \frac{1}{2} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} -8 & -9 & -6 & -1 & -8 \\ 6 & 0 & -3 & -2 & 6 \end{bmatrix}$$

$$= \frac{1}{2} [(0 + 27 + 12 - 6) - (-54 + 0 + 3 + 16)]$$

$$= \frac{1}{2} [33 - (-35)] = \frac{1}{2} [68] = 34 \text{ sq. units}$$

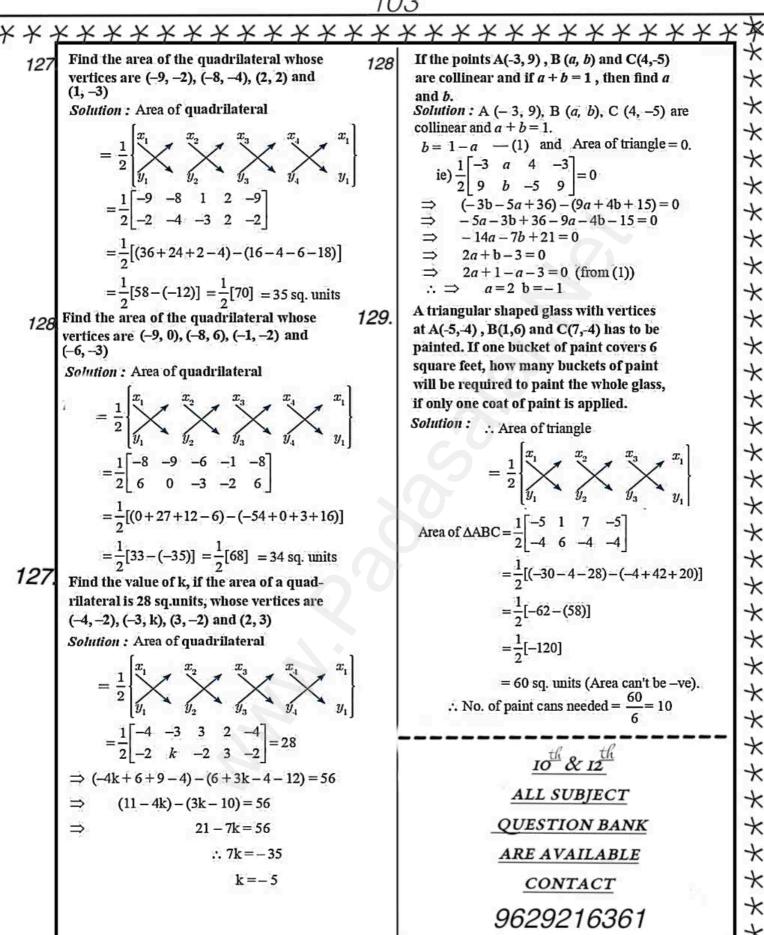
126. Find the value of k, if the area of a quadrilateral is 28 sq.units, whose vertices are (-4, -2), (-3, k), (3, -2) and (2, 3)

Solution: Area of quadrilateral

$$= \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$$

$$= \frac{1}{2} \begin{bmatrix} -4 & -3 & 3 & 2 & -4 \\ -2 & k & -2 & 3 & -2 \end{bmatrix} = 28$$

$$\Rightarrow (-4k + 6 + 9 - 4) - (6 + 3k - 4 - 12) = 56$$


$$\Rightarrow (11 - 4k) - (3k - 10) = 56$$

$$\Rightarrow 21 - 7k = 56$$

$$\therefore 7k = -35$$

$$k = -5$$

\*\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>



\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### 104 \*\*\*\*\*\*\*\*\*\*\*\* Only Maths Juition

Find the equation of a line passing through (6,-2) and perpendicular to the line joining the points (6,7) and (2,-3).

Solution:  $\therefore$  Slope of the line joining (6, 7) and (2, -3) =  $\frac{y_2 - y_1}{x_2 - x_1} = \frac{(-3) - (7)}{(2) - (6)} = \frac{-3 - 7}{2 - 6} = \frac{-10}{-4} = \frac{5}{2}$ 

 $\therefore$  Slope of the line perpendicular to  $\frac{5}{2}$  is  $\frac{-2}{5}$ 

here  $m = \frac{-2}{5}$ ,  $(x_1, y_1) = (6, -2)$ : Equation of the required line is  $\Rightarrow y - y_1 = m(x - x_1)$ 

$$\Rightarrow y + 2 = \frac{-2}{5}(x - 6) \Rightarrow 5y + 10 = -2x + 12 \Rightarrow 2x + 5y - 2 = 0$$

131. Find the equation of a straight line passing through the point P(-5,2) and parallel to the line joining the points Q(3,-2) and R(-5,4).

Slope of QR =  $\frac{y_2 - y_1}{x_2 - x_1} = \frac{(4) - (-2)}{(-5) - (3)} = \frac{4 + 2}{-5 - 3} = \frac{6}{-8} = \frac{-3}{4}$ Solution:

:. Equation of the required line is  $\Rightarrow y - y_1 = m(x - x_1)$  here  $m = \frac{-3}{2}$ ,  $(x_1, y_1) = (-5, 2)$ 

$$y-2=\frac{-3}{4}(x+5) \Rightarrow 4y-8=-3x-15 \Rightarrow 3x+4y+7=0$$

132 A(-3, 0) B(10,-2) and C(12, 3) are the vertices of ΔABC . Find the equation of the altitude through A and B. Solution: A(-3, 0) B(10,-2) and C(12, 3) are the vertices of  $\triangle$ ABC.

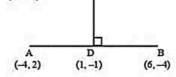
Equation of the altitude through A is AD

Slope of BC =  $\frac{y_2 - y_1}{x_2 - x_1} = \frac{(3) - (-2)}{(12) - (10)} = \frac{3 + 2}{12 - 10} = \frac{5}{2}$  : Slope of AD is  $= \frac{-2}{5}$  (AD  $\perp$  BC)

 $\therefore \text{ Equation of AD is } \Rightarrow y - y_1 = m (x - x_1) \text{ here } m = \frac{-2}{5} \text{ , } (x_1, y_1) = (-3, 0)$ 

$$y-0=\frac{-2}{5}(x+3) \Rightarrow 5y=-2x-6 \Rightarrow 2x+5y+6=0$$

:. Equation of the altitude through A and B is BE  
Slope of AC = 
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{(3) - (0)}{(12) - (-3)} = \frac{3 - 0}{12 + 3} = \frac{3}{15} = \frac{1}{5}$$
 :: Slope of BE = -5 (:: BE  $\perp$  AC)


: Equation of BE is 
$$\Rightarrow y - y_1 = m (x - x_1)$$
 here  $m = -5$ ,  $(x_1, y_1) = (10, -2)$   
 $y + 2 = -5 (x - 10) \Rightarrow y + 2 = -5x + 50 \Rightarrow 5x + y - 48 = 0$ 

133. Find the equation of the perpendicular bisector of the line joining the points A(-4,2) and B(6,-4)

D is the midpoint of AB 
$$\therefore D = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{-4 + 6}{2}, \frac{2 - 4}{2}\right) = (1, -1)$$

Slope of AB = 
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{(-4) - (2)}{(6) - (-4)} = \frac{-4 - 2}{6 + 4} = \frac{-6}{10} = \frac{-3}{5}$$

∴ Slope of CD =  $\frac{5}{3}$  (∵CD  $\perp$  AB)



\*\*\*\*\*

\*\*

\* \*

\*

× \*

X

\*

\*\*

\* ×

\*

\*\*

X X

\*

\*

\*\*\*

 $\therefore \text{ Equation of perpendicular bisector } \text{CD is } \Rightarrow y - y_1 = m (x - x_1) \text{ here } m = \frac{5}{3} \text{ , } (x_1, y_1) = (1, -1)$   $y + 1 = \frac{5}{3}(x - 1) \Rightarrow 3y + 3 = 5x - 5 \Rightarrow 5x - 3y - 8 = 0$   $\cancel{X} \times \cancel{X} \times$ 

144. If the circumference of a conical wooden piece is 484 cm then find its volume when its height is 105 cm.

Solution: Given circumference of a cone = 484 cm and h = 105 cm

$$2\pi r = 484 \implies 2 \times \frac{22}{7} \times r = 484 \implies r = \frac{484 \times 7}{2 \times 22} = 77 \text{ cm}$$

$$\therefore \text{ Volume of cone} = \frac{1}{3} \pi r^2 h = \frac{1}{3} \times \frac{22}{3} \times 77 \times 77 \times 105^5 = 652190 \text{ cm}^3$$

A capsule is in the shape of a cylinder with two hemisphere stuck to each of its ends. If the length 145. of the entire capsule is 12 mm and the diameter of the capsule is 3 mm, how much medicine it can hold?

Cylinder  $\Rightarrow$  H = 9 mm, r = 1.5 mm =  $\frac{3}{2}$ 

Hemisphere 
$$\Rightarrow$$
 r = 1.5 mm =  $\frac{3}{2}$ 

... Volume of the Capsule = Vol. of Cylinder + 2 (Vol. of hemisphere)

$$= \pi r^2 H + 2\left(\frac{2}{3}\pi r^3\right) = \frac{22}{7}\left[\frac{9}{4} \times 9 + \frac{4}{3} \times \frac{27}{8}\right] = \frac{22}{7}\left[\frac{81}{4} + \frac{9}{2}\right] = \frac{22}{7}\left[\frac{81+18}{4}\right]$$
$$= \frac{22 \times 99}{28} = \frac{11 \times 99}{14}$$
$$= 77.78 \text{ mm}^3$$

146. The outer and the inner surface areas of a spherical copper shell are  $576\pi$  cm<sup>2</sup> and  $324\pi$  cm<sup>2</sup> respectively. Find the volume of the material required to make the shell.

**Solution:** Given  $4\pi R^2 = 576\pi | 4\pi r^2 = 324\pi$  $R^2 = 144$ R = 12 cm r = 9 cm

... Volume of the material 
$$=\frac{4}{3}\pi(R^3-r^3)=\frac{4}{3}\times\frac{22}{7}(1728-729)=\frac{4}{3}\times\frac{22}{7}\times999=\frac{88\times333}{7}=4186.29 \text{ cm}^3$$

Nathan, an engineering student was asked to make a model shaped like a cylinder with two cones attached at its two ends. The diameter of the model is 3 cm and its length is 12 cm. If each cone has a height of 2 cm, find the volume of the model that Nathan made.

Solution:

Cone 
$$\Rightarrow$$
 h=2cm , r=1.5cm= $\frac{3}{2}$ 

Cylinder 
$$\Rightarrow$$
 H = 8cm,  $r = 1.5 \text{ cm} = \frac{3}{2}$ 

:. Volume of the model = 2 (Vol. of Cone) + Vol. of Cylinder

$$\begin{aligned} & = 1.5 \text{ cm} = \frac{9}{2} \\ & = 2 \text{ (Vol. of Cone)} + \text{ Vol. of Cylinder} \\ & = \frac{2}{3} \pi r^2 h + \pi r^2 H = \pi r^2 \left[ \frac{2h}{3} + H \right] = \frac{22}{7} \times \frac{9}{4} \left[ \frac{4}{3} + 8 \right] = \frac{11 \times 9}{7 \times 2} \left[ \frac{28}{3} \right] = \frac{11 \times 3 \times 14}{3} \end{aligned}$$

 $=66 \, \mathrm{cm}^3$ 

\*\*\*

X

X

\*\*\*\*\*\*\*

\*\*\*\*\*\*

The radius of a sphere increases by 25%. Find the percentage increase in its surface area.

\*\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>

**Solution**: sphere surface area =  $4\pi r^2$ 

old surface area  $= 4\pi \left[ 100 \right]$ 

If the radius increases by 25% ⇒ New radius = 125 %

New surface area =  $4\pi$  125

$$\therefore \text{Increment in SA} = 4\pi \left(125\right)^2 - 4\pi \left(100\right)^2 = 4\pi \left(\left(125\right)^2 - \left(100\right)^2\right) = 4\pi \left(\left(125\right)^2 - \left(100\right)^2\right) = 4\pi 225 \times 25$$

### only maths

∴ Percentage inc. in SA = 
$$\frac{4\pi 225 \times 25}{4\pi \left(100\right)^2}$$
 ×100 =  $\frac{225}{4}$  = 56.25%

If the radii of the circular ends of a frustum which is 45 cm high are 28 cm and 7 cm, find the volume of the 149. frustum.

Solution: Given that, h = 45 cm, R = 28 cm, r = 7 cm

Volume = 
$$\frac{1}{3}\pi[R^2 + Rr + r^2]h = \frac{1}{3}\times\frac{22}{7}\times[28^2 + (28\times7) + 7^2]\times45 = 48510 \text{ cm}^3$$



X

X

\*

X

X

X

X

X

X

X

X

X

X

X

A girl wishes to prepare birthday caps in the form of right circular cones for her birthday party, *150*l using a sheet of paper whose area is 5720 cm2, how many caps can be made with radius 5 cm and height 12 cm.

Given r = 5 cm, h = 12 cm in a cone  $\therefore l = \sqrt{h^2 + r^2} = \sqrt{144 + 25} = \sqrt{169} = 13$ Solution:

$$\therefore \text{ CSA of cone} = \pi r l = \frac{22}{7} \times 5 \times 13 = \frac{110 \times 13}{7} \text{ cm}^2$$

$$\therefore \text{ CSA of cone} = \pi r l = \frac{22}{7} \times 5 \times 13 = \frac{110 \times 13}{7} \text{ cm}^2$$
Area of sheet of paper = 5720 cm<sup>2</sup> 
$$\therefore \text{ Number of caps} = \frac{5720 \times 7}{110 \times 3} = 28 \text{ caps}$$

151 Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tanks will rise by 21 cm.

Cylindrical Pipe ⇒ Speed of water in the pipe = 15 Km/hr ⇒ H = 15000 m Solution:

Radius of pipe 
$$r = 7 \text{ cm} = \frac{7}{100} \text{ m}$$

Rectangular Tank  $\Rightarrow l = 50 \text{ m}$  b = 44 m  $h = 21 \text{cm} = \frac{21}{100} m$ 

$$\therefore \text{ Required time} = \frac{\text{Volume of tank}}{\text{Volume of pipe}} = \frac{lbh}{\pi r^2 H} = \frac{50 \times 44 \times 21/100}{\frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} \times 15000} = 2 \text{ hrs}$$

152 An aluminium sphere of radius 12 cm is melted to make a cylinder of radius 8 cm. Find the height of the cylinder:

Solution: Radius of sphere  $\Rightarrow$  R = 12 cm & Radius of cylinder  $\Rightarrow$  r = 8 cm

Volume of sphere = Volume of Cylinder 
$$\Rightarrow \frac{4}{3}\pi R^3 = \pi r^2 h$$

$$\frac{4}{3} \times 12 \times 12 \times 12 = 8 \times 8 \times h \implies h = 36 \text{ cm}$$
 : Height of the cylinder = 36 cm

153. A cone of height 24 cm is made up of modeling clay. A child reshapes it in the form of a cylinder of same radius as cone. Find the height of the cylinder.

Solution: height of the cone h, = 24 cm; same radius of the cone and cylinder

let  $h_2$  be the height of the cylinder.

Volume of cylinder = Volume of cone 
$$\Rightarrow \pi r^2 h_2 = \frac{1}{3} \pi r^2 h_1 \Rightarrow h_2 = \frac{1}{3} \times h_1 \Rightarrow h_2 = \frac{1}{3} \times 24 = 8$$
  
Height of cylinder is 8 cm.

into a cylindrical flask of base radius xr units. Find the height of water in the cylindrical flask.

Solution: Volume of Cylindrical Flask = Volume of Conical Flask

$$\Rightarrow \pi(xr)^2 H = \frac{1}{3} \pi r^2 h \quad \Rightarrow \quad x^2 r^2 H = \frac{1}{3} r^2 h \quad \Rightarrow \quad H = \frac{h}{3x^2}$$

\*\*\*\*\*

\*\*\*\*\*

\*\*\*\*\*\*\*

:. Height of the Cylindrical Flask =  $\frac{h}{2r^2}$  cm

A solid right circular cone of diameter 14 cm and height 8 cm is melted to form a hollow sphere. If the 155 external diameter of the sphere is 10 cm, find the internal diameter.

Solution: Right Circular Cone  $\Rightarrow$  r=7 cm and h=8 cm

Hollow Sphere  $\Rightarrow$  R = 5 cm and r = ?

Volume of Hollow Sphere = Vol. of Right Circular Cone 
$$\Rightarrow \frac{4}{3}\pi(R^3 - r^3) = \frac{1}{3}\pi r^2 h$$
  
 $\Rightarrow 4(125 - r^3) = 49 \times 8 \Rightarrow 125 - r^3 = 49 \times 2 \Rightarrow r^3 = 125 - 98 \Rightarrow r^3 = 27 \Rightarrow \therefore r = 3$ 

$$\Rightarrow 4(125 - r^3) = 49 \times 8 \Rightarrow 125 - r^3 = 49 \times 2 \Rightarrow r^3 = 125 - 98 \Rightarrow r^3 = 27 \Rightarrow \therefore r = 3$$
The proof of bollow sphere = 6 cm

:. Internal diameter of hollow sphere = 6 cm

A solid sphere of radius 6 cm is melted into a hollow cylinder of uniform thick ness. If the external radius of the base of the cylinder is 5 cm and its height is 32 cm, then find the thickness of the cylinder Solution: Solid Sphere  $\Rightarrow$  r = 6 cm

Hollow Cylinder  $\Rightarrow$  R = 5 cm H = 32 cm

Volume of Hollow Cylinder = Volume of Solid Sphere  $\Rightarrow \pi(R^2 - r^2) H = \frac{4}{3} \pi r^3$ 

$$(25-r^2)32 = \frac{4}{\cancel{3}} \times \cancel{6} \times 6 \times 6 \Rightarrow 25-r^2 = \frac{\cancel{4} \times \cancel{2} \times \cancel{6} \times \cancel{6}}{\cancel{3}} \Rightarrow 25-r^2 = 9 \Rightarrow r^2 = 16 \Rightarrow r = 4$$

$$\therefore \text{ Thickness} = R-r = 5-4 = 1 \text{ cm}$$

157 Seenu's house has an overhead tank in the shape of a cylinder. This is filled by pumping water from a sump (under ground tank) which is in the shape of a cuboid. The sump has dimensions 2 m  $\times$  1.5 m  $\times$ 1 m. The overhead tank has its radius of 60 cm and height 105 cm. Find the volume of the water left in the sump after the overhead tank has been completely filled with water from the sumpwhich has been full, initially.

Solution: Over head tank (Cylinder)  $\Rightarrow R = 60 \text{ cm}$ H = 105 cm

Sump (Cuboid) 
$$\Rightarrow l = 2 \text{ m} = 200 \text{ cm}$$
  $b = 1.5 \text{ m} = 150 \text{ cm}$   $h = 1 \text{ m} = 100 \text{ cm}$ 

Volume of water left = Volume of Sump - Volume of tank =  $lbh - \pi R^2H$ 

$$= 200 \times 150 \times 100 - \frac{22}{\cancel{7}} \times 60 \times 60 \times \cancel{105}^{15} = 3000000 - 1188000 = 2812000 \text{ cm}^3$$

158. A right circular cylindrical container of base radius 6 cm and height 15 cm is full of ice cream. The ice cream is to be filled in cones of height 9 cm and base radius 3 cm, having a hemispherical cap. Find the number of cones needed to empty the container.

Solution: Cylinder  $\Rightarrow h_1 = 15 \text{ cm}, r_1 = 6 \text{ cm}$ 

cones (Cone+hemispherical cap)  $\Rightarrow r_2 = 3 \text{ cm}, h_2 = 9 \text{ cm}$  Also,  $r_2 = 3 \text{ cm}$  is the radius hemispherical cap

Volume of the cylinder Number of ice cream cones needed =  $\frac{1}{\text{Volume of the cone} + \text{Volume of the hemispherical cap}}$ 

$$\frac{\pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2} + \frac{2}{3} \pi r_{2}^{3}} = \frac{\frac{22}{7} \times 6 \times 6 \times 15}{\frac{22}{3} \times 27 \times 3 \times 3 \times 9 + \frac{2}{3} \times 27 \times 3 \times 3} = \frac{\frac{22}{7} \times 6 \times 6 \times 15}{\frac{22}{7} \times 9(3+2)} = \frac{\frac{22}{7} \times 6 \times 6 \times 15}{\frac{22}{7} \times 45} = 12$$

159 A hemispherical bowl is filled to the brim with juice. The juice is poured into a cylindrical vessel whose radius is 50% more than its height. If the diameter is same for both the bowl and the cylinder then find the percentage of juice that can be transferred from the bowl into the cylindrical vessel.

Solution: Hemisphere \Rightarrow Radius = r

Cylinder  $\Rightarrow$  Radius =  $r = h + \frac{1}{2}h = \frac{3}{2}h$ 

 $\therefore \text{ Volume of hemisphere} = \frac{2}{3} \pi r^3 = \frac{2}{3} \pi \times \left(\frac{3}{2} h\right)^3 = \frac{2}{3} \pi \times \frac{27}{8} h^3 = \frac{9}{4} \pi h^2$ 

 $\therefore$  Volume of Cylinder =  $\pi r^2 h = \pi \times \left(\frac{3}{2}h\right)^2 h = \pi \times \frac{9}{4}h^2 h = \frac{9}{4}\pi h^3$ 

... Vol. of Hemisphere = Vol. of Cylinder

... % of juice that can be transferred to the cylindrical vessel = 100 %

Ahemi-spherical hollow bowl has material of volume  $\frac{436\pi}{2}$  cubic cm. Its external diameter is 14 cm. 160 Find its thickness.

Solution: hemi-spherical hollow bowl has material of volume  $\frac{436\pi}{3}$  D = 14 cm  $\Rightarrow$  R = 7 cm  $\Rightarrow \frac{2}{3}\pi(R^3-r^3) = \frac{436\pi}{3} \Rightarrow 7^3-r^3 = 218 \Rightarrow 343-r^3 = 218 \therefore r^3 = 125 \therefore r = 5$  cm

 $\therefore \text{ thickness} = R - r = 7 - 5 = 2 \text{ cm}$ 

161. A hollow metallic cylinder whose external radius is 4.3 cm and internal radius is 1.1 cm and whole length is 4 cm is melted and recast into a solid cylinder of 12 cm long. Find the diameter of solid cylinder.

Solution: Solid cylinder. h = 12 cm

> R = 4.3 cm r = 1.1 cmHollow Cylinder H = 4 cm

Volume of hollow cylinder = Volume of solid cylinder

$$\Rightarrow fH(R^2 - r^2) = fr^2 h \Rightarrow 4[(4.3)^2 - (1.1)^2] = r^2 \times 12 \Rightarrow r^2 = \frac{4(17.28)}{12} = 5.76$$

r = 2.4 : Diameter of solid cylinder = 2r = 4.8 cm

A solid iron cylinder has total surface area of 1848 sq.m. Its curved surface area is five - sixth 162. of its total surface area. Find the radius and height of the iron cylinder.

Solution: A solid iron cylinder has total surface area = 1848 sq.m. & CSA =  $\frac{5}{6}$  (TSA)  $\Rightarrow 2\pi \text{Th} = \frac{5}{6} \times 1848 = 5 \times 308 \Rightarrow 2\pi \text{Th} = 1540 \dots (1)$ 

 $2\pi r (h+r) = 1848 \implies 2\pi r h + 2\pi r^2 = 1848 \implies 1540 + 2\pi r^2 = 1848 \implies 2\pi r^2 = 308 \implies 2 \times \frac{22}{7} \times r^2 = 308$ 

 $\Rightarrow r^2 = \frac{\cancel{308} \times 7}{\cancel{2} \times \cancel{22}} \Rightarrow r^2 = 49 \Rightarrow r = 7m$ 

X

X

X

X

\*

\*\*\*

\*

\*\*\*\*

X

\* \*

\*

\*

\*

\*

\*

\* X

X

Sub r = 7 in (1)  $\Rightarrow 2 \times \frac{22}{7} \times 7 \times h = 1540 \Rightarrow h = \frac{1540}{2 \times 22} \Rightarrow h = 35$   $\therefore$  Radius = 7 m, Height = 35 m.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*

10th & 12th ALL SUBJECT QUESTION BANK ARE AVAILABLE

*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\** Arul has to make arrangements for the accommodation of 150 persons for his family function. For this purpose, he plans to build a tent which is in the shape of cylinder surmounted by a cone. Each person

occupies 4 sq. m of the space on ground and 40 cu. meter of air to breathe. What should be the height of the conical part of the tent if the height of cylindrical part is 8 m?.

Solution: Let h, and h, be the height of cylinder and cone

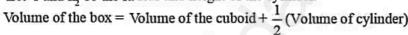
Area for one person = 4 sq. m and Total number of persons = 150

Total base area = 
$$150 \times 4 \Rightarrow \pi r^2 = 600$$
  
 $r^2 = 600 \times \frac{7}{22} = \frac{2100}{11}$  .....(1)

Volume of air required for 1 person = 40 m

Total Volume of air required for 150 persons =  $150 \times 40 = 6000 \text{ m}^3$ 

$$\pi r^2 h_1 + \frac{1}{3} \pi r_2 h_2 = 6000 \implies \pi r^2 \left( h_1 + \frac{1}{3} h_2 \right) = 6000$$


$$\frac{22}{7} \times \frac{2100}{11} \left( 8 + \frac{1}{3} h_2 \right) = 6000 \quad \text{[using (1)]}$$

$$8 + \frac{1}{3} h_2 = \frac{6000 \times 7 \times 11}{22 \times 2100} \implies \frac{1}{3} h_2 = 10 - 8 = 2$$

Therefore, the height of the conical tent h, is 6 m

A jewel box is in the shape of a cuboid of dimensions 30 cm × 15 cm × 10 cm surmounted by a half part of a 164 cylinder. Find the volume and T.S.A. of the box.

Solution: Let l, b and h, be the length, breadth and height of the cuboid. Let r and h, be the radius and height of the cylinder.



$$= (l \times b \times h_1) + \frac{1}{2} (\pi r^2 h_2) \text{ cu. units}$$

= 
$$(30 \times 15 \times 10) + \frac{1}{2} \left( \frac{22}{7} \times \frac{15}{2} \times \frac{15}{2} \times 30 \right) = 4500 + 2651.79 = 7151.79 \text{ cm}^3$$

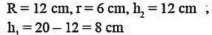
T.S.A. of the box = C.S.A. of the cuboid  $+\frac{1}{2}$  (C.S.A. of the cylinder) =  $2(l+b)h_1 + \frac{1}{2}(2\pi rh_2)$ 

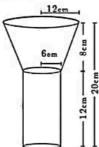
= 
$$2(45 \times 10) + \left(\frac{22}{7} \times \frac{15}{2} \times 30\right) = 900 + 707.14 = 1607.14 \text{ cm}^2$$

A funnel consists of a frustum of a cone attached to a cylindrical portion 12 cm long attached at the bottom. If the total height be 20 cm, diameter of the cylindrical portion be 12 cm and the diameter of the top of the funnel be 24 cm. Find the outer surface area of the funnel.

Solution: Let R, r be the top and bottom radii of the frustum. Let h,, h, be the heights of the frustum and cylinder.

165.


Slant height of the frustum 
$$I = \sqrt{(R-r)^2 + h_1^2} = \sqrt{36+64} = 10$$


$$l=10 \text{ cm}$$
  
Outer surface area  $=2\pi rh_1 + \pi (R+r) I \text{ sq. units}$ 

$$= \pi[2rh_2 + (R+r) I]$$
  
=  $\pi[(2 \times 6 \times 12) + (18 \times 10)]$ 

$$=\pi[144+180]$$

$$=\frac{22}{7}\times324=1018.28$$
 cm<sup>2</sup>





\*

\*

\*

\*

X

\*

X

X

X

X

X

X

X

X

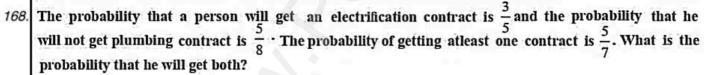
X

\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

166. The volume of a cone is  $1005\frac{5}{7}$  cu. cm. The area of its base is  $201\frac{1}{7}$  sq. cm. Find the slant height of the

Solution: Given volume of a cone =  $1005 \frac{5}{7}$  cm<sup>3</sup> & base area =  $201 \frac{1}{7}$  cm<sup>2</sup>


An oil funnel of tin sheet consists of a cylindrical portion 10 cm long attached to a frustum of a cone. If the total height is 22 cm, the diameter of the cylindrical portion be 8cm and the diameter of the top of the funnel be 18 cm, then find the area of the tin sheet required to make the funnel.

Solution: 
$$R = 9 \text{ cm r} = 4 \text{ cm}, H = 10 \text{ cm}$$

$$l = \sqrt{(R-r)^2 + h^2} = \sqrt{25 + 144} = \sqrt{169} = 13$$

Area of tin sheet required to make the funnel

= CSA of Frustum + CSA of Cylinder  
= 
$$\pi$$
 (R+r)  $I + 2\pi$ rH =  $\pi$  [13 × 13 + 2 × 4 × 10]  
=  $\frac{22}{7}$  [169+80] =  $\frac{22}{7}$  × 249 =  $\frac{5478}{7}$  = 782.57 cm<sup>3</sup>



Solution: Let A - electrification contract 
$$\overline{B}$$
 - not p

$$P(A) = \frac{3}{5}, P(\overline{B}) = \frac{5}{8}, P(A \cup B) = \frac{5}{7}$$

$$\Rightarrow P(B) = 1 - \frac{5}{8} = \frac{3}{8}$$

$$\therefore P(A \cap B) = P(A) + P(B) - P(A \cup B) = \frac{3}{5} + \frac{3}{8} - \frac{5}{7} = \frac{73}{280}$$

$$P(A \cap B) = P(A) + P(B) - P(A \cup B) = \frac{3}{5} + \frac{3}{8} - \frac{5}{7} = \frac{73}{280}$$

X

X

X

X

X

X

X

X

X

X X \*

\* X

X

X X X X

×

\*

\*

\*

\*

22cm

169. In a town of 8000 people, 1300 are over 50 years and 3000 are females. It is known that 30% of the females are over 50 years. What is the probability that a chosen individual from the town is either a female or over 50 years?

$$n(S) = 8000, n(A) = 3000, n(B) = 1300$$
  $n(A \cap B) = \frac{30}{100} \times 3000 = 900$ 

$$\therefore P(A) = \frac{3000}{8000}, P(B) = \frac{1300}{8000}, P(A \cap B) = \frac{900}{8000}$$

# 170. The total marks scored by two students Sathya and Vidhya in 5 subjects are 460 and 480 with standard deviation 4.6 and 2.4 respectively. Who is more consistent in performance?

Sathya Solution:  $\sum x_1 = 460 \quad n = 5$ 

 $\sum x_1 = 460 \quad n = 5$   $\therefore x_1 = \frac{460}{5} = 92$   $\sigma_1 = 4.6$   $\therefore C.V_1 = \frac{\sigma_1}{x_1} \times 100 = \frac{4.6}{92} \times 100 = \frac{460}{92} = 5$   $\sum x_2 = 480 \quad n = 5$   $\therefore x_2 = \frac{480}{5} = 96$   $\sigma_2 = 2.4$   $\therefore C.V_2 = \frac{\sigma_2}{x_2} \times 100 = \frac{2.4}{96} \times 100 = \frac{240}{96} = 2.5$ Vidhya is more consistent than Sathya.

X

X

\*\*\*\*

×

## Find the coefficient of variation of 24, 26, 33, 37, 29, 31.

**Solution:** Given data is 24, 26, 33, 37, 29, 31.  $\bar{x} = \frac{24 + 26 + 33 + 37 + 29 + 31}{6} = \frac{180}{6} = 30$ 

| x        | d = x - 30 | d²  |
|----------|------------|-----|
| 24       | -6         | 36  |
| 24<br>26 | _4         | 16  |
| 29       | -1         | 1   |
| 31       | 1          | 1   |
| 33       | 3          | 9   |
| 37       | 7          | 49  |
|          | .0         | 112 |

$$\therefore \sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} = \sqrt{\frac{112}{6} - \left(\frac{0}{6}\right)^2} = 4.31$$
$$\therefore \text{C.V} = \frac{4.31}{30} \times 10 = 14.36$$

### The number of televisions sold in each day of a week are 13, 8, 4, 9, 7, 12, 10. Find its standard deviation. 172. Solution :

| x  | d = x - 9 | d <sup>2</sup> |
|----|-----------|----------------|
| 4  | 5         | 2.5            |
| 7  | -2        | 4              |
| 8  | - 1       | 1              |
| 9  | 0         | 0              |
| 10 | 1         | 1              |
| 12 | 3         | ġ              |
| 13 | 4         | 16             |
| 7  | .0        | 56             |

$$\therefore \sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2}$$
$$\sigma = \sqrt{\frac{56}{7} - \left(\frac{0}{7}\right)^2} = \sqrt{8} = 2.83$$

### The time taken (in minutes) to complete a homework by 8 students in a day are given by 38, 40, 47, 173. 44, 46, 43, 49, 53. Find the coefficient of variation.

Solution: Given data is 38, 40, 47, 44, 46, 43, 49, 53.

$$\frac{-}{x} = \frac{38 + 40 + 47 + 44 + 46 + 43 + 49 + 53}{8} = \frac{360}{8} = 45$$

| x  | d = x - 45 | d²       |
|----|------------|----------|
| 38 | -7         | 49       |
| 40 | 5          | 49<br>25 |
| 43 | -2         | 4        |
| 44 | - 1        | 1        |
| 46 | 1          | 1        |
| 47 | 2          | 4        |
| 49 | 4          | 16       |
| 53 | 8          | 64       |
| 8  | .0         | 172      |

$$\therefore \sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} = \sqrt{\frac{164}{8} - \left(\frac{.0}{8}\right)^2} = 4.53$$

$$\therefore$$
 C.V =  $\frac{\sigma}{x} \times 100 = \frac{4.53}{45} \times 100 = 10.07$ 

\*\*\*\*\*\*\*

The marks scored by 10 students in a class test are 25, 29, 30, 33, 35, 37, 38, 40, 44, 48. Find the standard deviation.

Solution:

| x      | d = x - 35 | d <sup>2</sup> |
|--------|------------|----------------|
| 25     | -10        | 100            |
| 29     | 6          | 36             |
| 30     | 5          | 25             |
| 33     | -2         | 4              |
| 35     | 0          | 0              |
| 37     | 2          | 4              |
| 38     | 3          | 9              |
| 40     | 5          | 25             |
| 44     | 9          | 81             |
| 48     | 13         | 169            |
| n = 10 | 9          | : 453          |

$$\therefore \sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2}$$
$$= \sqrt{\frac{453}{10} - \left(\frac{9}{10}\right)^2}$$
$$= 6.67$$

\*\*\*\*\*

\*\*\*\*\*

\*\*\*\*\*\*

175. The amount of rainfall in a particular season for 6 days are given as 17.8 cm, 19.2 cm, 16.3 cm, 12.5 cm, 12.8 cm and 11.4 cm. Find its standard deviation.

Solution:

Mean = 
$$\frac{11.4 + 12.5 + 12.8 + 16.3 + 17.8 + 19.2}{6} = \frac{90}{6} = 15$$

|   |      |            | 7.7   |
|---|------|------------|-------|
|   | х    | d = x - 15 | d²    |
|   | 11.4 | -3.6       | 12.96 |
|   | 12.5 | -2.5       | 6.25  |
|   | 12.8 | -2.2       | 4.84  |
|   | 16.3 | 1.3        | 1.69  |
|   | 17.8 | 2.8        | 7.84  |
|   | 19.2 | 4.2        | 17.64 |
| ĺ | 6    | 0          | 51.22 |

$$\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2}$$
$$= \sqrt{\frac{51.22}{.6} - \left(\frac{0}{6}\right)^2}$$
$$= .2.9$$

176 The frequency distribution is given below.

| ſ | x | k | 2 <i>k</i> | 3 <i>k</i> | 4 <i>k</i> | 5k | 6 <i>k</i> |
|---|---|---|------------|------------|------------|----|------------|
| ı | ſ | 2 | 1          | 1          | 1          | 1  | 1          |

In the table, k is a positive integer, has a variance of 160. Determine the value of k.

Solution:

| x          | ſ | $d = \frac{x - A}{k}$ | ď | f.d | f.d |
|------------|---|-----------------------|---|-----|-----|
| k          | 2 | -3                    | 9 | -6  | 18  |
| 2 <i>k</i> | 1 | -2                    | 4 | -2  | 4   |
| 2k<br>3k   | 1 | -1                    | 1 | -1  | 1   |
| 4k         | 1 | 0                     | 0 | 0   | 0   |
| 5k         | 1 | 1                     | 1 | 1   | 1   |
| 5k<br>6k   | 1 | 2                     | 4 | 2   | 4   |
|            | 7 |                       |   | -   | 20  |

177. The mean and variance of seven observations are 8 and 16 respectively. If five of these are 2, 4, 10, 12 and 14, then find the remaining two observations.

**Solution:** Given n = 7,  $\bar{x} = 8$ ,  $\sigma^2 = 16$ 

5 of the observerations are 2, 4, 10, 12, 14

Let the remaining 2 observations be a, b.  $\therefore x = 8 \Rightarrow \frac{\sum x}{x} = 8$ 

$$\Rightarrow \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2 = \sigma^2 \Rightarrow \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2 = 16 \Rightarrow \frac{\sum x^2}{7} - 8^2 = 16 \Rightarrow \frac{\sum x^2}{7} - 64 = 16 \Rightarrow \frac{\sum x^2}{7} = 80$$

$$\Rightarrow 2^2 + 4^2 + 10^2 + 12^2 + 10^2 + a^2 + b^2 = 560$$

$$\Rightarrow \sum x^2 = 560$$

$$\Rightarrow 460 + a^2 + b^2 = 560 \Rightarrow a^2 + b^2 = 100 \Rightarrow 8^2 + 6^2 = 100 \therefore a = 8, b = 6$$

Find the standard deviation of the following data 7, 4, 8, 10, 11. Add 3 to all the values then find the standard deviation for the new values.

Solution:

| x  | d = x - 8 | d² |
|----|-----------|----|
| 4  | -4        | 16 |
| 7  | -1        | 1  |
| 8  | .0        | .0 |
| 10 | 2         | 4  |
| 11 | 3         | 9  |
| 5  | .0        | 30 |

$$\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} = \sqrt{\frac{30}{5} - \left(\frac{0}{5}\right)^2} = \sqrt{6}$$

| x  | d=x-11 | d <sup>2</sup> | , |
|----|--------|----------------|---|
| 7  | -4     | 16             |   |
| 10 | -1     | 1.             |   |
| 11 | .0     | .0             |   |
| 13 | 2      | 4              |   |
| 14 | 3      | 9              |   |
| 5  | .0     | 30             |   |

$$\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} = \sqrt{\frac{30}{5} - \left(\frac{0}{5}\right)^2} = \sqrt{6}$$

standard deviation will not change

Find the standard deviation of the data 2, 3, 5, 7, 8. Multiply each data by 4. Find the standard deviation of the new values.

Solution :

| х | d=x-5 | d²  |
|---|-------|-----|
| 2 | -3    | 9   |
| 3 | -2    | 4   |
| 5 | .0    | 0   |
| 7 | 2     | 4   |
| 8 | 3     | .9  |
| 5 | 0     | -26 |

$$\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} = \sqrt{\frac{26}{5} - \left(\frac{.0}{5}\right)^2} = \sqrt{\frac{26}{5}} \qquad \sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} = \sqrt{\frac{416}{5}} - \sqrt{\frac{100}{5}} = \sqrt$$

$$\begin{array}{c|ccccc}
x & d=x-20 & d^2 \\
8 & -12 & 144 \\
12 & -8 & 64 \\
20 & .0 & .0 \\
28 & 8 & 64 \\
32 & 12 & 144 \\
5 & .0 & 416
\end{array}$$

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

$$\sigma = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} = \sqrt{\frac{416}{5} - \left(\frac{0}{5}\right)^2} = 4\sqrt{\frac{26}{5}}$$

standard deviation also multiplied by 4.

180. The amount that the children have spent for purchasing some eatables in one day trip of a school are 5, 10, 15 20, 25, 30, 35, 40. Using step deviation method, find the standard deviation of the amount they have spent. Solution :

| x        | $d = \frac{x - 20}{5}$ | d²                |
|----------|------------------------|-------------------|
| 5        | -3                     | 9                 |
| 10       | -2                     | 4                 |
| 10       | -1                     | 1                 |
| 20       | .0                     | 0                 |
| 20<br>25 | 1                      | 1                 |
| 30       | 2                      | 4                 |
| 35       | 3                      | 9                 |
| 35<br>40 | 4                      | 16                |
|          | $\nabla d = A$         | $\Sigma d^2 = 44$ |

$$\sigma = \sqrt{\frac{\sum d_i^2}{n} - \left(\frac{\sum d_i}{n}\right)^2} \times c$$
$$= \sqrt{\frac{44}{8} - \left(\frac{4}{8}\right)^2} \times 5 = 11.45$$

181. If A, B, C are any three events such that probability of B is twice as that of probability of A and probability of C is thrice as that of probability of A and if  $P(A \cap B) = \frac{1}{6}$ ,  $P(B \cap C) = \frac{1}{4}$ ,  $P(A \cap C) = \frac{1}{8}$ ,  $P(A \cup B \cup C) = \frac{9}{10}$ ,  $P(A \cap B \cap C) = \frac{1}{15}$ , then find P(A), P(B) and P(C)?

# ONLY MATHS TUITION

\*\*\*\*\*\*\*

\*\*\*\*\*\*\*\*\*\*<del>\*</del>\* Solution:  $P(B) = 2 \cdot P(A), P(C) = 3 \cdot P(A), P(A \cap B) = \frac{1}{6}, P(B \cap C) = \frac{1}{4}, P(A \cap C) = \frac{1}{8}$  $P(A \cup B \cup C) = \frac{9}{10}$ ,  $P(A \cap B \cap C) = \frac{1}{15}$  $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$ 

$$\frac{9}{10} = P(A) + 2.P(A) + 3.P(A) - \frac{1}{6} - \frac{1}{4} - \frac{1}{8} + \frac{1}{15} \qquad \therefore P(A) = \frac{11}{48} \qquad \therefore P(B) = 2 \cdot P(A) = 2 \times \frac{11}{48} = \frac{11}{24}$$

$$\therefore P(C) = 2 \cdot P(A) = 2 \times \frac{11}{48} = \frac{11}{11}$$

$$\therefore P(C) = 3 \cdot P(A) = 3 \times \frac{11}{48} = \frac{11}{16}$$

X

X

X

X X

X

X

X

X

X

X

X

X

X X

X

\*

X

X X

X

\*

\*

X

\*

\*

\*

\* \*

X

In a class of 35, students are numbered from 1 to 35. The ratio of boys to girls is 4:3. The roll numbers of students begin with boys and end with girls. Find the probability that a student selected is either a boy with prime roll number or a girl with composite roll number or an even roll number:

**Solution:** n(S) = 35 and ratio of boys and girls=4:3

No. of girls = 
$$\frac{3}{7} \times 35 = 15$$
  
No. of boys =  $\frac{4}{7} \times 35 = 20$ 

Let A - a boy with prime roll no

A = {2, 3, 5, 7, 11, 13, 19} , 
$$n(A) = 7 \implies P(A) = \frac{7}{35}$$

Let B - a girl with composite roll no.

Eet B - a girl with composite roll no.  
B={21,22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35} , n(B) = 12 
$$\Rightarrow$$
 P(B) =  $\frac{12}{25}$ 

Let C - even roll no.

182.

C= {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34} 
$$n(C) = 17 \implies P(C) = \frac{17}{35}$$

$$A \cap B = \{ \}, n(A \cap B) = 0, P(A \cap B) = 0$$

$$B \cap C = \{22, 24, 26, 28, 30, 32, 34\}, \quad n(B \cap C) = 7 \Rightarrow P(B \cap C) = \frac{7}{35}$$

$$C \cap A = \{2\}$$
,  $n(C \cap A) = 1 \Rightarrow P(C \cap A) = \frac{1}{35}$   $\therefore P(A \cap B \cap C) = 0$ 

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$

$$= \frac{7}{12} + \frac{12}{17} - 0 - \frac{7}{12} - \frac{1}{12} + 0 = \frac{28}{12} = \frac{4}{12}$$

$$= \frac{7}{35} + \frac{12}{35} + \frac{17}{35} - 0 - \frac{7}{35} - \frac{1}{35} + 0 = \frac{28}{35} = \frac{4}{5}$$

183 Two dice are rolled once. Find the probability of getting an even number on the first die or a total of face sum 8.

Solution: 
$$S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$$
  $n(S) = 36$ 

Let A even number on the 1st die.

$$A = \{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6),$$

$$(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)$$
  $n(A) = 18 \implies P(A) = \frac{18}{36}$ 

Let B - Total of face sum as 8.

B = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} 
$$n(B) = 5 \implies P(B) = \frac{5}{36}$$

$$A \cap B = \{(2, 6), (4, 4), (6, 2)\}, n(A \cap B) = 3 \implies P(A \cap B) = \frac{3}{36}$$

$$\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{18}{36} + \frac{5}{36} - \frac{3}{36} = \frac{20}{36} = \frac{5}{9}$$

\*\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>

from a deck of 52 playing cards and then well shuffled. Now one card is drawn at random from the re-maining cards. Determine the probability that the card is (i) a clavor (ii) a queen of red card (iii) a king of black card

**Solution:** By the data given, n(S) = 52 - 2 - 2 - 2 = 46

- i) Let A clubber card.  $n(A) = 13 \implies P(A) = \frac{13}{46}$
- ii) Let B queen of red card.  $n(B) = 0 \Rightarrow P(B) = 0$  (queen diamond and heart are included in S)
- iii) Let C King of black cards n(C) = 1 (encluding spade king)  $\therefore P(C) = \frac{1}{46}$

In a game, the entry fee is ₹150. The game consists of tossing a coin 3 times. Dhana bought a ticket for entry. If one or two heads show, she gets her entry fee back. If she throws 3 heads, she receives double the entry fees. Otherwise she will lose. Find the probability that she (i) gets double entry fee (ii) just gets her entry fee (iii) loses the entry fee.

\*\*\*

\*\*\*

X

×

×

\*

Solution:  $S = \{(HHH), (HHT), (HTH), (THH), (HTT), (THT), (HTT), (TTT)\}$  n(S) = 8

- i) P (gets double entry fee) =  $\frac{1}{8}$  (: 3 heads) ii) P (just gets for her entry fee) =  $\frac{6}{8} = \frac{3}{4}$  (: 1 (or) 2 heads)
- iii) P (loses the entry fee) =  $\frac{1}{8}$  (: 3 no heads (TTT) only)

Two dice are rolled together. Find the probability of getting a doublet or sum of faces as 4.

Solution:  $S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$  n(S) = 36

Let A a doublet

186

A = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} 
$$n(A) = 6$$
,  $P(A) = \frac{6}{36}$ 

Let B face sum 4.

B = {(1,3),(2,2),(3,1)} n(B) = 3, 
$$P(B) = \frac{3}{36}$$

$$A \cap B = \{(2,2)\}\ , \ n(A \cap B) = 1 . \ P(A \cap B) = \frac{1}{36}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{6}{36} + \frac{3}{36} - \frac{1}{36} = \frac{8}{36} = \frac{2}{9}$$

187. A card is drawn from a pack of 52 cards. Find the probability of getting a king or a heart or a red card.

**Solution:** Total number of cards = 52; n (S) = 52

Let A king card. Let B heart card. Let C red card.

$$P(A) = \frac{4}{52}$$
,  $P(B) = \frac{13}{52}$ ,  $P(C) = \frac{26}{52}$ ,  $P(A \cap C) = \frac{2}{52}$ ,  $P(A \cap B) = \frac{1}{52}$ ,  $P(B \cap C) = \frac{13}{52}$ 

$$P(A \cap B \cap C) = \frac{1}{52}$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)$$
$$= \frac{4}{52} + \frac{13}{52} + \frac{26}{52} - \frac{1}{52} - \frac{13}{52} - \frac{2}{52} + \frac{1}{52} = \frac{28}{52} = \frac{7}{13}$$

10th & 12th All Subject Question Bank are available

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

 $\star$ 

X

X X

 $\star$ 

X \*

X

\*

X

X

\*

X

Two dice are numbered 1,2,3,4,5,6 and 1,1,2,2,3,3 respectively. They are rolled and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 9 separately.

Solution:  $S = \{(1,1),(1,1),(1,2),(1,2),(1,3),(1,3),(2,1),(2,1),(2,2),(2,2),(2,3),(2,3)\}$ (3,1),(3,1),(3,2),(3,2),(3,3),(3,3),(4,1),(4,1),(4,2),(4,2),(4,3),(4,3)(5,1),(5,1),(5,2),(5,2),(5,3),(5,3),(6,1),(6,1),(6,2),(6,2),(6,3),(6,3)

i) Let A - Sum of 2 n(A) = 2 :: 
$$P(A) = \frac{2}{36}$$
 v) Let E - Sum of 6 n(E) = 6  $P(E) = \frac{6}{36}$   
ii) Let B - Sum of 3 n(B) = 4  $P(B) = \frac{4}{36}$  vi) Let F - Sum of 7 n(F) = 6  $P(F) = \frac{6}{36}$ 

ii) Let B - Sum of 3 
$$n(B) = 4$$
  $P(B) = \frac{4}{36}$  vi) Let F - Sum of 7  $n(F) = 6$   $P(F) = \frac{6}{36}$ 

iii) Let C - Sum of 4 n(C) = 6 
$$P(C) = \frac{6}{36}$$
 vii) Let G - Sum of 8 n(G) = 4  $P(G) = \frac{4}{36}$ 

iv) Let D - Sum of 5 n(D) = 6 
$$P(D)$$
  $\frac{6}{36}$  viii) Let H - Sum of 9 n(H) = 2  $P(H) = \frac{2}{36}$ 

A bag contains 5 red balls, 6 white balls, 7 green balls, 8 black balls. One ball is drawn at random from the bag. Find the probability that the ball drawn is (i) white (ii) black or red (iii) not white (iv) neither white nor black

**Solution:**  $S = \{5R, 6W, 7G, 8B\}$ 

189.

191.

i) Let A - White ball 
$$n(A) = 6 \implies P(A) = \frac{6}{26} = \frac{3}{13}$$

ii) Let B - Black (or) red 
$$n(B) = 5 + 8 = 13 \implies P(B) = \frac{13}{26} = \frac{1}{2}$$

iii) Let C - not white 
$$n(C) = 20 \implies P(C) = \frac{20}{26} = \frac{10}{13}$$

iv) Let D - Neither white nor black 
$$n(D) = 12 \implies P(D) = \frac{12}{26} = \frac{6}{13}$$

190. What is the probability of drawing either a king or a queen in a single draw from a well shuffled pack of 52 cards?

**Solution:** Total number of cards = 52

Let A king card 
$$n(A) = 4$$
  $P(A) = \frac{4}{52}$  | Let B queen card  $n(B) = 4$   $P(B) = \frac{4}{52}$  |  $P(A \cap B) = \frac{0}{52}$ 

$$\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{4}{52} + \frac{4}{52} - \frac{0}{52} = \frac{2}{13}$$

Two unbiased dice are rolled once. Find the probability of getting

(i) a doublet (equal numbers on both dice) (ii) the product as a prime number

(iii) the sum as a prime number (iv) the sum as 1

Solution: 
$$S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$$
  $n(S) = 36$ 

i) Let A a doublet 
$$A = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$$
  $n(A) = 6$   $\therefore P(A) = \frac{6}{36} = \frac{1}{6}$ 

ii) Let B the product as a prime number.  
B = {(1, 2), (1, 3), (1, 5), (2, 1), (3, 1), (5, 1)} n(B) = 6 
$$\therefore P(B) = \frac{6}{36} = \frac{1}{6}$$

iii) Let C be the sum of numbers on the dice is prime.

$$C = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2), (5, 6), (6, 1), (6, 5)\}$$

$$n(C) = 14 \therefore P(C) = \frac{7}{36}$$

\*\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>

X

×

 $\star$ 

X

\*

iv) Let D be the sum of numbers is 1. n(D) = 0  $\therefore P(D) = 0$ 

192. The King, Queen and Jack of the suit spade are removed from a deck of 52 cards. One card is selected from the remaining cards. Find the probability of getting (i) a diamond (ii) a queen (iii) a spade (iv) a heart card bearingthe number 5.

**Solution:** n(S) = 52 - 3 = 49

- i) Let A a diamond card n(A) = 13  $\therefore P(A) = \frac{13}{49}$
- ii) Let B a queen card n(B) = 3 (except spade queen out of 4)  $\therefore P(B) = \frac{3}{49}$
- iii) Let C a spade card n(C) = 10 (13 3 = 10) ::  $P(C) = \frac{10}{49}$
- iv) Let D 5 of heart n(D) = 1 ::  $P(D) = \frac{1}{49}$

A game of chance consists of spinning an arrow which is equally likely to come to rest pointing to one of the numbers 1, 2, 3, ...12. What is the probability that it will point to (i) 7 (ii) a prime number (iii) a composite number?

Solution:

 $S = \{1,2,3,4,5,6,7,8,9,10,11,12\}; n(S) = 12$ 

- (i) Let A be 7. n(A)=1,  $P(A)=\frac{1}{12}$
- (ii) Let B a prime number.  $B = \{2,3,5,7,11\}; n(B) = 5$ ,  $P(B) = \frac{5}{12}$
- (iii) Let C composite number.  $C = \{4,6,8,9,10,12\}; n(C)=6, P(C)=\frac{6}{12}=\frac{1}{2}$

194. If for a distribution,  $\sum (x-5) = 3$ ,  $\sum (x-5)^2 = 43$ , and total number of observations is 18, find the mean and standard deviation.

Solution: Given  $\Sigma(x-5)=3$ ,  $\Sigma(x-5)^2=43$ , n=18 $\Rightarrow \Sigma x - \Sigma 5 = 3$   $\Rightarrow \Sigma x - 5.\Sigma 1 = 3$   $\Rightarrow \Sigma x - 5(18) = 3$   $\Rightarrow \Sigma x = 93$   $\sum x^2 - 10(93) + 25(18) = 43$   $\Rightarrow \Sigma x^2 = 523$ 

i) Mean:  $\bar{x} = \frac{\sum x}{n} = \frac{93}{18} = 5.17$  ii) SD:  $\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2} = \sqrt{\frac{523}{18} - \left(\frac{93}{18}\right)^2} = 1.536$ 

195. The mean and standard deviation of marks obtained by 40 students of a class in three subjects Mathematics, Science and Social Science are given below.

| Subject        | Mean | SD |
|----------------|------|----|
| Mathematics    | 56   | 12 |
| Science        | 65   | 14 |
| Social Science | 60   | 10 |

Which of the three subjects shows highest variation and which shows lowest variation in marks?

Solution:  $C.V = \frac{\sigma}{x} \times 100$  For Maths,  $C.V = \frac{12}{56} \times 100 = 21.428$ 

For Science, C.V =  $\frac{14}{65} \times 100 = 21.538$  For Social Science, C.V =  $\frac{10}{60} \times 100 = 16.67$ 

\*\*<del>\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*</del>

Highest variation in Science. Lowest variation in Social Science.

If two dice are rolled, then find the probability of getting the product of face value 6 or the difference of face values 5.

\*\*\*

X

X

 $\star$ 

X

X

 $\star$ 

×

\*

X X

X \*

Solution: 
$$S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$$

$$n(S) = 36$$

Let A - Product of face value is 6.

Let A - Product of face value is 6.  

$$A = \{(1, 6), (2, 3), (3, 2), (6, 1)\}$$
  $n(A) = 4$   $P(A) = \frac{4}{36}$ 

Let B - Difference of face value is 5.  $B = \{(6, 1)\}$  n(B) = 1  $P(B) = \frac{1}{26}$ 

$$A \cap B = \{(6, 1)\}$$
  $n(A \cap B) = 1$   $P(A \cap B) = \frac{1}{36}$ 

∴P(A∪B) = P(A) + P(B) - P(A∩B) = 
$$\frac{4}{36} + \frac{1}{36} - \frac{1}{36} = \frac{4}{36} = \frac{1}{9}$$

197.

In a class of 50 students, 28 opted for NCC, 30 opted for NSS and 18 opted both NCC and NSS.

One of the students is selected at random. Find the probability that

- (i) The student opted for NCC but not NSS. (ii) The student opted for NSS but not NCC.
- (iii) The student opted for exactly one of them.

Solution: Total number of students n(S)= 50. Let A and B be NCC and NSS

$$n(A) = 28$$
,  $n(B) = 30$ ,  $n(A \cap B) = 18$   $P(A) = \frac{28}{50}$   $P(B) = \frac{30}{50}$   $P(A \cap B) = \frac{18}{50}$ 

- Probability of the students opted for NCC but not NSS  $P(A \cap \overline{B}) = P(A) P(A \cap B) = \frac{28}{50} \frac{18}{50} = \frac{1}{50}$
- (ii) Probability of the students opted for NSS but not NCC.  $P(A \cap \overline{B}) = P(B) P(A \cap B) = \frac{30}{50} \frac{18}{50} = \frac{6}{25}$
- (iii) Probability of the students opted for exactly one of them  $P(A \cap \overline{B}) + P(\overline{A} \cap B) = \frac{1}{5} + \frac{6}{25} = \frac{11}{25}$

198.

A bag contains 12 blue balls and x red balls. If one ball is drawn at random (i) what is the probability that it will be a red ball? (ii) If 8 more red balls are put in the bag, and if the probability of drawing a red ball will be twice that of the probability in (i) then find x.

**Solution:** Total number of balls in the bag n(S) = x + 12.  $(x \rightarrow red 12 \rightarrow black)$ 

- Let A red balls n(A) = x,  $P(A) = \frac{x}{x+12}$
- If 8 more red balls are added in the bag. n(S) = x + 20

By the problem,  $\frac{x+8}{x+20} = 2\left(\frac{x}{x+12}\right) \Rightarrow (x+8)(x+12) = 2x^2 + 40x \Rightarrow x^2 + 20x - 96 = 0$   $\Rightarrow (x+24)(x-4) = 0 \Rightarrow x = -24, 4$ 

$$\Rightarrow (x+24)(x-4)$$

$$\therefore x=4 \qquad \therefore P(A) = \frac{4}{16} = \frac{1}{4}$$

199.

A and B are two candidates seeking admission to IIT. The probability that A getting selected is 0.5 and the probability that both A and B getting selected is 0.3. Prove that the probability of B being selected is atmost

Solution: P(A) = 0.5,  $P(A \cap B) = 0.3$ 

$$P(A \cup B) \le 1$$
  $P(A) + P(B) - P(A \cap B) \le 1$   
0.5 + P(B) - 0.3 \le 1

$$P(B) \le 1 - 0.2$$
  
 $P(B) \le 0.8$ 

Therefore, probability of B getting selected is atmost 0.8.

200 From a well-shuffled pack of 52 cards, a card is drawn at random. Find the probability of it being either a red king or a black queen.

Solution: n(S) = 52

Let A - Red King 
$$n(A) = 2 \implies P(A) = \frac{2}{52}$$
 Let B - Black Queen  $n(B) = 2 \implies P(B) = \frac{2}{52}$ 

X

\*

X

X

$$n(A \cap B) = 0 \Rightarrow P(A \cap B) = \frac{0}{52} \quad \therefore P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{2}{52} + \frac{2}{52} - \frac{0}{52} = \frac{4}{52} = \frac{1}{13}$$

201 Two dice are rolled. Find the probability that the sum of outcomes is (i) equal to 4 (ii) greater than 10 (iii) less than 13

Solution:  $S = \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)\}$ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)n(S) = 36(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)

Let A the sum of outcome values equal to 4.

A = {(1,3),(2,2),(3,1)}; n(A) = 3. 
$$P(A) = \frac{3}{36} = \frac{1}{12}$$

(ii)Let B the sum of outcome values greater than 10.

B = {(5,6),(6,5),(6,6)}; n (B) = 3 
$$P(B) = \frac{3}{36} = \frac{1}{12}$$

(iii) Let C the sum of outcomes less than 13.

$$n(C) = n(S) = 36$$
  $P(C) = \frac{36}{36} = 1$ 

From a well shuffled pack of 52 cards, one card is drawn at random. Find the probability of getting (i) red 202. card (ii) heart card (iii) red king (iv) face card (v) number card

Solution: n(S) = 52

(i) Let A red card. 
$$n(A) = 26 \implies P(A) = \frac{26}{52} = \frac{1}{2}$$

(ii) Let B heart card. 
$$n(B) = 13 \implies P(B) = \frac{13}{52} = \frac{1}{4}$$

(iii) Let C red king card. 
$$n(C) = 2 \implies P(C) = \frac{2}{52} = \frac{1}{26}$$

(iv) Let D face card.

The face cards are Jack (J), Queen (Q), and King (K). 
$$n(D) = 4 \times 3 = 12 \implies P(D) = \frac{12}{52} = \frac{3}{13}$$

(v) Let E a number card.

The number cards are 2, 3, 4, 5, 6, 7, 8, 9 and 10.  $n(E) = 4 \times 9 = 36 \implies P(E) = \frac{36}{52} = \frac{9}{13}$ 

Three fair coins are tossed together. Find the probability of getting (i) all heads (ii) atleast one tail 203. (iii) atmost one head (iv) atmost two tails

Solution: When 3 fair coins are tossed,

$$S = \{(HHH), (HHT), (HTH), (HTT), (THH), (THT), (TTH), (TTT)\}$$
  $n(S) = 8$ 

i) Let A all heads. 
$$A = \{(HHH)\}$$
  $n(A) = 1$   $\therefore P(A) = \frac{1}{8}$ 

ii) Let B atleast one tail.

B={(HHT),(HTH),(HTT),(THH),(THT),(TTH),(TTT)} 
$$n(B) = 7 \Rightarrow P(B) = \frac{7}{8}$$

iii) Let C at most one head.

C = {(HTT), (THT), (TTH), (TTT)} 
$$n(C) = 4 \implies P(C) = \frac{4}{8} = \frac{1}{2}$$

iv) Let D - atmost 2 tails

D = {(HHH), (HHT), (HTT), (HTH), (THH), (THT), (TTH)} 
$$n(D) = 7 \implies P(D) = \frac{7}{8}$$

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

```
A box contains cards numbered 3, 5, 7, 9, ... 35, 37. A card is drawn at random from the box.
            Find the probability that the drawn card have either multiples of 7 or a prime number.
            Solution: S = \{3, 5, 7, 9, \dots, 35, 37\}, n(S) = 18
              Let A - multiple of 7. A = \{7, 14, 21, 28, 35\} n(A) = 5 \implies P(A) = \frac{5}{18}
              Let B - a prime number
              B = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37} n(B) = 11 \implies P(B) = \frac{11}{18}
              A \cap B = \{7\}, n(A \cap B) = 1, P(A \cap B) = 1
              :. P(A \cup B) = P(A) + P(B) - P(A \cup B) = \frac{5}{18} + \frac{11}{18} - \frac{1}{18} = \frac{15}{18} = \frac{5}{6}
           Three unbiased coins are tossed once. Find the probability of getting atmost 2 tails or atleast 2 heads.
    205.
                                                                                                                                    X
           Solution: S = \{(HHH), (HHT), (HTH), (THH), (HTT), (THT), (TTH), (TTT)\} n(S) = 8
             Let A - at most 2 tails
             A = \{(HHT), (HTH), (THH), (HTT), (THT), (TTH), (HHH)\} n(A) = 7 \Rightarrow P(A) =
             Let B - atleast 2 heads
             B = {(HHH), (HHT), (HTH), (THH)} n(B) = 4 \implies P(B) = \frac{4}{8}
             \therefore A \cap B = \{(HHH), (HHT), (HTH), (THH)\} \quad n(A \cap B) = 4 \quad \Rightarrow \quad P(A \cap B) = 4
                :. P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{7}{8} + \frac{4}{8} - \frac{4}{8} = \frac{7}{8}
            A coin is tossed thrice. Find the probability of getting exactly two heads or atleast one tail or two
    206
            consecutive heads.
            Solution: S = \{(HHH), (HHT), (HTH), (THH), (TTH), (THT), (HTT), (TTT)\}
            Let A - exactly 2 heads, A = \{(HHT), (HTH), (THH)\}
            Let B - at least one tail B = \{(HHT), (HTH), (THH), (TTH), (TTT), (HTT), (TTT)\} n(B) = 7 \Rightarrow P(B) = \frac{7}{9}
            Let C - Consecutively 2 heads, C = \{(HHH), (HHT), (THH)\} n(C) = 3 \Rightarrow P(C) = \frac{3}{2}
            A \cap B = \{(HHT), (HTH), (THH)\} n(A \cap B) = 3 \Rightarrow P(A \cap B) = \frac{3}{8}
            B \cap C = \{(HHT), (THH)\} n(B \cap C) = 2 \Rightarrow P(B \cap C) = \frac{2}{8}
            C \cap A = \{(HHT), (THH)\}, n(C \cap A) = 2 \Rightarrow P(C \cap A) = \frac{2}{8}
            P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A \cap B \cap C)
                         =\frac{3}{8}+\frac{7}{8}+\frac{3}{8}-\frac{3}{8}-\frac{2}{8}-\frac{2}{8}+\frac{2}{8}=\frac{8}{8}=1
    207.
           The probability that atleast one of A and B occur is 0.6. If A and B occur simultaneously with
           probability 0.2, then find P(\overline{A}) + P(\overline{B}).
           Solution: Given P(A \cup B) = 0.6, P(A \cap B) = 0.2
               \therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)
                    \Rightarrow 0.6 = P(A) + P(B) - 0.2
                    \Rightarrow 0.6+0.2 = P(A) + P(B)
                   P(A) + P(B) = 0.8
           P(\overline{A}) + P(\overline{B}) = 1 - P(A) + 1 - P(B) = 2 - (P(A) + P(B)) = 2 - 0.8 = 1.2
```

208. Find the mean and variance of the first n natural numbers.

Solution :

Mean 
$$\bar{x} = \frac{\sum x_i}{n} = \frac{n(n+1)}{2 \times n} = \frac{n+1}{2}$$

Variance 
$$\sigma^2 = \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 = \frac{n(n+1)(2n+1)}{6 \times n} - \left[\frac{n(n+1)}{2}\right]^2 = \frac{(n+1)(2n+1)}{6} - \left[\frac{n(n+1)}{2}\right]^2 = \frac{n^2 - 1}{12}$$

209. 48 students were asked to write the total number of hours per week they spent on watching television. With this information find the standard deviation of hours spent for watching television.

| x | 6 | 7 | 8 | 9  | 10 | 11 | 12 |
|---|---|---|---|----|----|----|----|
| f | 3 | 6 | 9 | 13 | 8  | 5  | 4  |

Solution :

| x  | 5  | d = x - 9 | d <sup>2</sup> | f.d | f.d |
|----|----|-----------|----------------|-----|-----|
| 6  | 3  | -3        | 9              | - 9 | 27  |
| 7  | 6  | -2        | 4              | -12 | 24  |
| 8  | 9  | -1        | 1              | - 9 | 9   |
| 9  | 13 | 0         | 0              | 0   | 0   |
| 10 | 8  | 1         | 1              | 8   | 8   |
| 11 | 5  | 2         | 4              | 10  | 20  |
| 12 | 4  | 3         | 9              | 12  | 36  |
|    | 48 |           |                | 0   | 124 |

$$\sigma = \sqrt{\frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2}$$

$$= \sqrt{\frac{124}{48}}$$

$$= 1.6$$

210. The marks scored by the students in a slip test are given below.

| х | 4 | 6 | 8 | 10 | 12 |
|---|---|---|---|----|----|
| ſ | 7 | 3 | 5 | 9  | 5  |

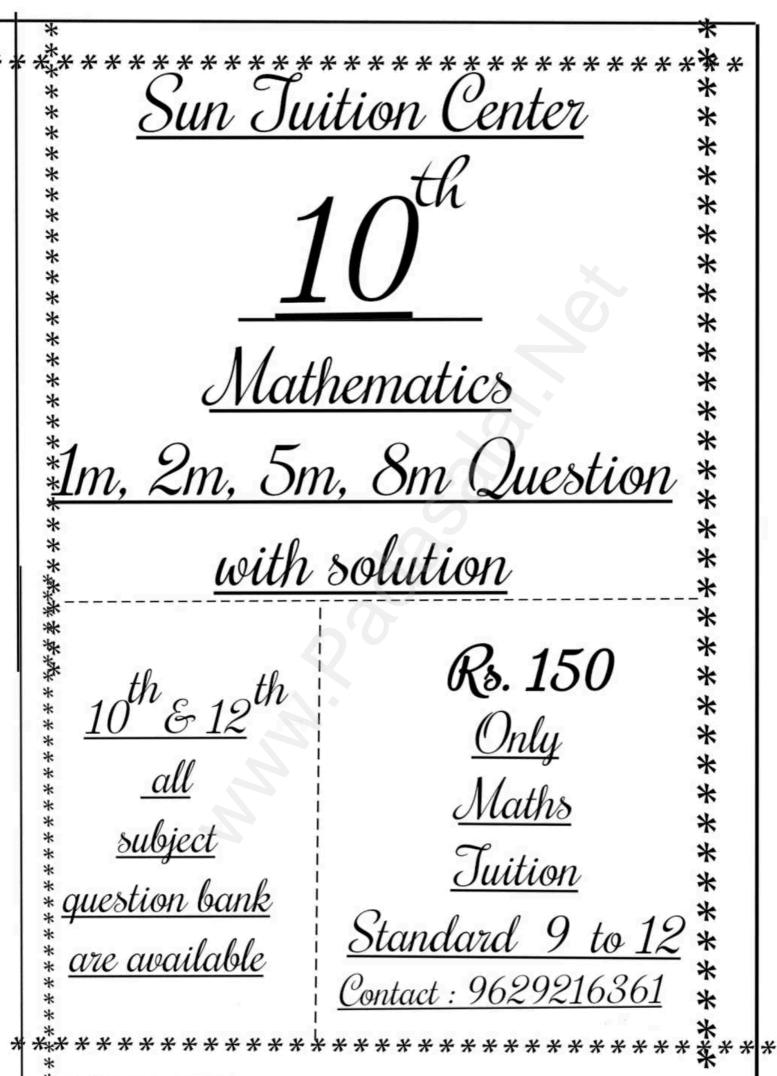
Find the standard deviation of their marks.

Solution:

| х  | f | d = x - 8 | ď  | f.d | f.d² |
|----|---|-----------|----|-----|------|
| 4  | 7 | -4        | 16 | -28 | 112  |
| 6  | 3 | -2        | 4  | -6  | 12   |
| 8  | 5 | 0         | 0  | 0   | 0    |
| 10 | 9 | 2         | 4  | 18  | 36   |
| 12 | 5 | 4         | 16 | 20  | 80   |
|    | 7 |           | 1  | 4   | 240  |

$$\sigma = \sqrt{\frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2}$$
$$= \sqrt{\frac{240}{29} - \left(\frac{4}{29}\right)^2} = 2.87$$

211. Find the variance and standard deviation of the wages of 9 workers given below: ₹310, ₹290, ₹320, ₹280, ₹300, ₹290, ₹320, ₹310, ₹280.


Solution :

| x   | d = x - 300    | d <sup>2</sup>      |
|-----|----------------|---------------------|
| 280 | -20            | 400                 |
| 280 | -20            | 400                 |
| 290 | -10            | 100                 |
| 290 | -10            | 100                 |
| 300 | 0              | O                   |
| 310 | 10             | 100                 |
| 310 | 10             | 100                 |
| 320 | 20             | 400                 |
| 320 | 20             | 400                 |
|     | $\Sigma d = 0$ | $\Sigma d^2 = 2000$ |

variance 
$$\sigma^2 = \frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2$$
  
=  $\frac{2000}{9} - \left(\frac{0}{9}\right)^2$   
=  $\frac{2000}{9} = 222.2$   
S.D =  $\sqrt{222.2} = 14.91$ 

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com

