MATHS SPECIAL ONE WORD TEST - CLASS 12-Vol-1

1.	If A is a 3×3 non-singular m (1) A	atrix such that $AA^{T} =$ (2) B	$A^T A$ and $B = A^{-1}A^T$, the (3) I_3	then $BB^T =$ $(4) B^T$		
2.	If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$	then $ \operatorname{adj}(AB) =$				
	(1) -40	(2) -80	(3) -60	(4) -20		
3.	If $A^T A^{-1}$ is symmetric, then A	$1^2 =$				
	(1) A^{-1}	(2) $(A^T)^2$	$(3) A^T$	$(4) (A^{-1})^2$		
4.	If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that λ	$A^{-1} = A$, then λ is				
	(1) 17	(2) 14	(3) 19	(4) 21		
5.	The augmented matrix of a system of linear equations is $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda - 7 & \mu + 5 \end{bmatrix}$. The system					
	has infinitely many solutions			4.5]		
			(3) $\lambda \neq 7, \mu \neq -5$	(4) $\lambda = 7, \mu = -5$		
6.	The area of the triangle formed by the complex numbers z,iz , and $z+iz$ in the Argand's diagram is					
	$(1) \frac{1}{2} z ^2 \qquad (2) z ^2$	(3) $\frac{3}{2} z ^2$	(4) $2 z ^2$			
7.	If $ z =1$, then the value of $\frac{1}{1}$	$\frac{+z}{z}$ is				
	$(1) z \qquad (2) \overline{z}$	$+\overline{z}$	(4) 1			
0						
8.	If z is a complex number such that $z \in \mathbb{C} \setminus \mathbb{R}$ and $z + \frac{1}{z} \in \mathbb{R}$, then $ z $ is					
	(1) 0 (2) 1	(3) 2	(4) 3			
9.	If $(1+i)(1+2i)(1+3i)\cdots(1+ni) = x+iy$, then $2\cdot 5\cdot 10\cdots(1+n^2)$ is					
	(1) 1 (2) <i>i</i>	(3) $x^2 + y$	r^2 (4) $1+n^2$			
10.	2-		$z+1$ ω ω^2			
	(1) 1 (2) i If $\omega = cis \frac{2\pi}{3}$, then the number	er of distinct roots of	$\begin{bmatrix} \omega & z + \omega^2 & 1 \\ \omega^2 & 1 & z + \alpha \end{bmatrix}$	=0		
	(1) 1 (2) 2	(3) 3	(4) 4			
11.	If f and g are polynomials of	f degrees m and n r	respectively,			
and if $h(x) = (f \circ g)(x)$, then the degree of h is						
	(1) mn (2) $m+n$ (3) m^n (4) n^m					

12.	According to the rational root theorem, which number is not possible rational zero of			
	$4x^7 + 2x^4 - 10x^3 - 5$ (1) -1	$(2)\frac{5}{4}$	$(3)\frac{4}{5}$	(4) 5
13.	The polynomial x^3 –	$kx^2 + 9x$ has three rea	l zeros if and only if, k	satisfies
	$(1) k \le 6$	(2) k = 0	(3) k > 6	(4) $ k \ge 6$
14.	If $x^3 + 12x^2 + 10ax +$	1999 definitely has a	positive zero, if and on	ly if
	$(1) a \ge 0$	(2) a > 0	(3) a < 0	(4) $a \le 0$
15.	The number of posit	tive zeros of the polyno	omial $\sum_{j=0}^{n} {^{n}C_{r}(-1)^{r}x^{r}}$ is	S
	(1)0	(2)n	(3) < n	(4) r
16.	If $\sin^{-1} x + \sin^{-1} y =$	$\frac{2\pi}{3}$; then $\cos^{-1}x + \cos^{-1}x$	os ⁻¹ y is equal to	
	(1) $\frac{2\pi}{3}$	5	(3) $\frac{\pi}{6}$	(4) π
17.	If $\cot^{-1} x = \frac{2\pi}{5}$ for s	some $x \in R$, the value	of $\tan^{-1} x$ is	
	$(1) - \frac{\pi}{10}$	_	(3) $\frac{\pi}{10}$	(4) $-\frac{\pi}{5}$
18.	$\sin^{-1}\left(\tan\frac{\pi}{4}\right) - \sin^{-1}$	$\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$. Then x is	a root of the equation	
	(1) $x^2 - x - 6 = 0$	(2) $x^2 - x - 12 = 0$	0 (3) $x^2 + x - 12$	$= 0 (4) x^2 + x - 6 = 0$
19.		$\frac{5}{4} = \frac{\pi}{2}$, then the value of		
	(1) 4	(2) 5	(3) 2	(4) 3
20.	$\sin(\tan^{-1}x), x < 1$. ,
	$(1) \frac{x}{\sqrt{1-x^2}}$		(3) $\frac{1}{\sqrt{1+x^2}}$	$(4) \ \frac{x}{\sqrt{1+x^2}}$
21.	The eccentricity of t		tus rectum is 8 and con	jugate axis is equal to half
	(1) $\frac{4}{3}$	(2) $\frac{4}{\sqrt{3}}$	(3) $\frac{2}{\sqrt{3}}$	(4) $\frac{3}{2}$
22.	The radius of the cir and $x+2y=4$ is	rcle passing through the	ne point (6,2) two of w	hose diameter are $x + y = 6$
	(1) 10	(2) $2\sqrt{5}$	(3) 6	(4) 4
23.	Area of the greatest	rectangle inscribed in	the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ i	s
	(1) 2 <i>ab</i>	(2) <i>ab</i>	(3) \sqrt{ab}	(4) $\frac{a}{b}$

www.Padasalai.Net - No.1 Educational Website in Tamilnadu

24.	The circle passing	The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ passing through the point		
	(1) (-5,2)	(2) (2,-5)	(3) (5,-2)	(4) (-2,5)
25.	The values of m for	or which the line $y = mx + 2$	$2\sqrt{5}$ touches the hyp	perbola $16x^2 - 9y^2 = 144$ are
	the roots of $x^2 - (a+b)x - 4 = 0$, then the value of $(a+b)$ is			
	(1) 2	(2) 4	(3) 0	(4) -2
26.	If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{c}$	$\vec{a} = 0$, then the value of $[\vec{a}]$	$[\vec{b}, \vec{c}]$ is	
	(1) $ \vec{a} \vec{b} \vec{c} $	(2) $\frac{1}{3} \vec{a} \vec{b} \vec{c} $	(3) 1	(4) -1
27.	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{j} + \hat{k}$	$=\hat{i}+\hat{j}, \ \vec{c}=\hat{i} \ \text{and} \ (\vec{a}\times\vec{b})\times$	$\vec{c} = \lambda \vec{a} + \mu \vec{b}$, then t	the value of $\lambda + \mu$ is
	(1) 0	(2) 1	(3) 6	(4) 3
28.	If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$,	$\vec{b} = \hat{i} + 2\hat{j} - 5\hat{k}, \vec{c} = 3\hat{i} + 5$	$\hat{j} - \hat{k}$, then a vector	perpendicular to \vec{a} and lies
	in the plane contain	ning \vec{b} and \vec{c} is		
	(1) $-17\hat{i} + 21\hat{j} - 97\hat{k}$ (2) $17\hat{i} + 21\hat{j} - 123\hat{k}$			$123\hat{k}$
	$(3) -17\hat{i} - 21\hat{j} + 97$	\hat{k}	(4) $-17\hat{i} - 21\hat{j}$	$-97\hat{k}$
29.	Distance from the	origin to the plane $3x - 6y$	+2z+7=0 is	
	(1) 0	(2) 1	(3) 2	(4) 3
30.	If the planes $\vec{r} \cdot (2\hat{i})$	$-\lambda \hat{j} + \hat{k} = 3$ and $\vec{r} \cdot (4\hat{i} + \hat{j})$	$(\hat{j} - \mu \hat{k}) = 5$ are para	llel, then the value of λ and
	μ are		0	
	$(1) \frac{1}{2}, -2$	$(2) -\frac{1}{2}, 2$	$(3) -\frac{1}{2}, -2$	$(4) \frac{1}{2}, 2$

Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com

MATHS SPECIAL ONE WORD TEST - CLASS 12-Vol-2

1. The volume of a sphere is increasing in volume at the rate of $3\pi \,\mathrm{cm}^3/\mathrm{sec}$. The rate of change of its radius when radius is $\frac{1}{2}$ cm (3) 1 cm/s (4) $\frac{1}{2}$ cm/s (1) 3 cm/s(2) 2 cm/s 2. The tangent to the curve $y^2 - xy + 9 = 0$ is vertical when (2) $y = \pm \sqrt{3}$ (3) $y = \frac{1}{2}$ (4) $y = \pm 3$ (1) y = 0The number given by the Rolle's theorem for the function $x^3 - 3x^2$, $x \in [0,3]$ is 3. (2) $\sqrt{2}$ (3) $\frac{3}{2}$ The curve $y = ax^4 + bx^2$ with ab > 04. (1) has no horizontal tangent (2) is concave up (3) is concave down (4) has no points of inflection The minimum value of the function |3-x|+9 is 5. (1) 0(2) 3(4)9A circular template has a radius of 10 cm. The measurement of radius has an approximate 6. error of 0.02 cm. Then the percentage error in calculating area of this template is (2) 0.4%(3) 0.04% (1) 0.2%If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our 7. calculation of the volume is (2) 0.45 cu.cm (3) 2 cu.cm (1) 0.4 cu.cm (4) 4.8 cu.cm 8. If $f(x) = \frac{x}{x+1}$, then its differential is given by $(1) \frac{-1}{(x+1)^2} dx \qquad (2) \frac{1}{(x+1)^2} dx \qquad (3) \frac{1}{x+1} dx \qquad (4) \frac{-1}{x+1} dx$ If $w(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$ is 9. (1) xy + yz + zx (2) x(y+z) (3) y(z+x)(4) 010. If $g(x, y) = 3x^2 - 5y + 2y^2$, $x(t) = e^t$ and $y(t) = \cos t$, then $\frac{dg}{dt}$ is equal to (2) $6e^{2t} - 5\sin t + 4\cos t\sin t$ (1) $6e^{2t} + 5\sin t - 4\cos t\sin t$ (3) $3e^{2t} + 5\sin t + 4\cos t\sin t$ (4) $3e^{2t} - 5\sin t + 4\cos t\sin t$ 11. The value of $\int_{0}^{\frac{2}{3}} \frac{dx}{\sqrt{4-9x^2}}$ is (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{4}$ (4) π

12.	If $f(x) = \int_0^x t \cos t dt$, then $\frac{df}{dx}$ =		
	$(1)\cos x - x\sin x$	$(2) \sin x + x \cos x$	(3) $x \cos x$	(4) $x \sin x$
13.	The value of $\int_0^{\frac{\pi}{6}} \cos^3 3$	3x dx is		
	(1) $\frac{2}{3}$	9	(3) $\frac{1}{9}$	(4) $\frac{1}{3}$
14.	The value of $\int_0^\infty e^{-3x} x$	$x^2 dx$ is		
4.5	(1) $\frac{7}{27}$	(2) $\frac{5}{27}$	(3) $\frac{4}{27}$	(4) $\frac{2}{27}$
15.	If $\int_0^x f(t) dt = x + \int_x^1 t$	tf(t) dt, then the value	of $f(1)$ is	
	$(1) \frac{1}{2}$	(2) 2	(3) 1	$(4) \frac{3}{4}$
16.	are parameters, is			$A\cos(x+B)$, where A and B
	CLU	$(2) \frac{d^2y}{dx^2} + y = 0$	Cist	uy
17.	The solution of the d	ifferential equation 2x	$\frac{dy}{dx}$ $y = 3$ represent	S
	(1) straight lines	(2) circles	(3) parabola	(4) ellipse
18.	The solution of the d	ifferential equation $\frac{dy}{dx}$	$\frac{y}{x} + \frac{1}{\sqrt{1 - x^2}} = 0$ is	
	(1) $y + \sin^{-1} x = c$	(2) $x + \sin^{-1} y = 0$	(3) $y^2 + 2\sin^{-1} x =$	$C(4) x^2 + 2\sin^{-1} y = 0$
19.	If $\sin x$ is the integral	ating factor of the linea	ar differential equation	on $\frac{dy}{dx} + Py = Q$, then P is
	(1) $\log \sin x$	(2) $\cos x$	(3) $\tan x$	(4) $\cot x$
20.		differential equation $\frac{a}{a}$	$\frac{dy}{dx} = \frac{ax+3}{2y+f}$ represer	nts a circle, then the value of
	<i>a</i> is (1) 2	(2) _2	(3) 1	(4) -1
21.	Consider a game whe	ere the player tosses a si	x-sided fair die. If the	e face that comes up is 6, the
		t to win at this game in		comes up $k = \{1, 2, 3, 4, 5\}.$
		10	2	3
	$(1) \frac{19}{6}$	$(2) - \frac{19}{6}$	(3) $\frac{3}{2}$	$(4) -\frac{3}{2}$

$www. Padasalai. Net \ \ \textbf{-} \ No. 1 \ Educational \ Website \ in \ Tamilnadu$

22.	Two coins are to be flipped. The first coin will land on heads with probability 0.6, the second with Probability 0.5. Assume that the results of the flips are independent, and let X equal the total number of heads that result. The value of $E[X]$ is				
	(1) 0.11	2) 1.1	(3)11		(4)1
23.	Suppose that X takes on	one of the valu	es 0, 1, and 2. If for	some consta	nt k,
	P(X=i) = k P(X=i-1)		4		
		2) 2	(3) 3		(4) 4
24.	If $f(x) = \begin{cases} 2x & 0 \le x \le a \\ 0 & \text{otherwise} \end{cases}$	is a probab	oility density function	on of a rando	m variable, then the
	value of a is				
	(1) 1 (2	2) 2	(3) 3		(4) 4
25. If in 6 trials, X is a binomial variate which follows the relation $9P(X=4) = P(X=2)$, probability of success is				= P(X=2), then the	
	(1)0.125 (2	2) 0.25	(3) 0.375		(4) 0.75
26.	26. A binary operation on a set S is a function from (1) $S \to S$ (2) $(S \times S) \to S$ (3) $S \to (S \times S)$ (4) $(S \times S) \to (S \times S)$				(5, 5)
27				$(4)(S\times S)$	\rightarrow $(S \times S)$
27.	If $a*b = \sqrt{a^2 + b^2}$ on the				*
	(1) commutative but not (3) both commutative an				
28.	 (3) both commutative and associative (4) neither commutative nor associative In the last column of the truth table for ¬(p∨¬q) the number of final outcomes of the value 'F' are 				
	(1) 1 (2) 2		(3) 3	(4) 4	
29.	The dual of $\neg (p \lor q) \lor [p]$	$p \lor (p \land \neg r)$] is			
	$(1) \neg (p \land q) \land [p \lor (p \land q) \land [p \lor (p \land q) \land q])$	$\neg r)]$	(2) $(p \wedge q) \wedge [p \wedge (p \wedge q)]$	$o \lor \neg r)]$	
$(3) \neg (p \land q) \land [p \land (p \land r)] \tag{4} -$			$(4) \neg (p \land q) \land [p \land (p \lor \neg r)]$		
30.	The proposition $p \land (\neg p)$	$p \vee q$) is			
	(1) a tautology		(2) a contradiction		
	(3) logically equivalent	to $p \wedge q$	(4) logically equiva	alent to $p \vee q$	1
****** ALL THE BEST ******					