COMMON FIRST REVISION TEST - 2023

*	Standard XII	Reg.No.
	MATHEMATICS	
Time: 3.00 hours	Part - I	Marks: 9
I. Choose the correct answer	er:	20 x 1 = 2
1. If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$	then adj (AB) =	
a) -40 b) -80	c) -60	d) –20
2. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that	$\lambda A^{-1} = A$, then λ is	
a) 17 b) 14	c) 19	d) 21
3. The principal argument of (s	sin40° + i cos40°) ⁵ is	
	o c) 70°	d) 110°
4. If α and β are the roots of x^2	•	
a) -2 b) -1	c) 1	d) 2
5. The minimum number of image	aginary roots for the polynom	$ \mathbf{a} 9x^9 + 2x^5 - x^4 - 7x^2 + 2 $
a) 3 b) 6	c) 4	d) 9
The domain of the function	defined by $f(x) = \sin^{-1} \sqrt{x-1}$	is
a) [1,2] b) [–1,	1] c) [0,1]	d) [–1,0]
7. If $\sin^{-1}\frac{x}{5} + \cos ec^{-1}\frac{5}{4} = \frac{\pi}{2}$,	then the value of x is	
a) 4 · b) 5	c) 2	d) 3
a) 4 b) 5 8. If the coordinates at one er	nd of a diameter of the circle	$x^2 + y^2 - 8x - 4y + c = 0$ are
(11,2), the coordinates of the	ne other end are	
	-5) c) (5,–2)	
9. Identify the type of the conic		
		d) hyperbola
10. The distance between the	planes x + 2y + 3z + 7 = 0 an	d 2x + 4y + 6z + 7 = 0 is
a) $\frac{\sqrt{7}}{2\sqrt{2}}$ b) $\frac{7}{2}$	c) $\frac{\sqrt{7}}{2}$	d) $\frac{7}{2\sqrt{2}}$
11. The shortest distance betw	een the two given straight line	— • — j
$\vec{r} = (2\hat{i} + 3\hat{j} + 4\hat{k}) + t(-2\hat{i} + \hat{j})$	$-2\hat{k}$) and $\frac{x-3}{2} = \frac{y}{-1} = \frac{z+2}{2}$	is
a) $\frac{365}{3}$ b) $\frac{\sqrt{3}}{3}$	c) $\frac{365}{4}$	d) $\frac{365}{\sqrt{3}}$
12. The position of a particle material $s(t) = 3t^2 - 2t - 8$. The time	oving along a horizontal line of at which the particle is at res	
a) $t = 0$ b) $t = 0$	$\frac{1}{3}$ c) t = 1	d) t = 3

c)(1,0)

13. The point of inflection of the curve $y = (x - 1)^3$ is

b) (0,1)

a) (0,0)

(2)

XII Mathematics

14.	The percentage error of the fifth root of 31 is approximately how many times the percentage error in 31?									
	a)	¹ / ₃₁	b)	1/5	ċ) 5	• •	d)	31		
		e value of $\int_{0}^{\infty} e^{-3x}$								
	a)	7/27	b)	5/ 27	c) 4/27		d)	² / ₂₇	• •	
16.	The	e integrating fact	or of	the differential e	quation	$\frac{dy}{dx} + y = \frac{1+y}{\lambda}$	is			
	a)	$\frac{x}{e^{\lambda}}$	b)	$\frac{e^{\lambda}}{x}$	c) λe ^x		d)	e ^x		
17.	The	e order and degr	ee of	f the differential e	quation	$\left(\frac{d^4y}{dx^4}\right)^3 + 4\left(\frac{dy}{dx}\right)^4$	() 7 H	- 6y = 5	cos 3x are	
	res a) If in	pectively 2,3	b) inom	3,3 nial variable whicl	c) 2,6		d)	4,3		
19.	If a the	truth table is	eme	0.25 nt involves 3 sim	ple state	5 ements, then t	he r	umber o	of rows in	
	a)	** As	b)		c) 6	- - -	d)	3 ·		
20.	The	operation * def	ined	by $a * b = \frac{ab}{3}$ is	not a bin	ary operation o	on			
	a) _.	Q ⁺ ,	b)	Z Part	c) R		d)	C -		
H.	Ans	swer any 7 que	stio	ns. (Q.No.30 is d		ory)			7 x 2 = 14	
21.	If ^a	$dj(A) = \begin{bmatrix} 0 & -2 \\ 6 & 2 \\ -3 & 0 \end{bmatrix}$	0 -6 6	, find A^{-1} .	· ;	· ·			•	
22. 23.	Sim If α	plify: i i ² i ³ , β and γ are th	i ²⁰⁰⁰ e ro	ots of the equat	ion x ³ +	px ² ,+ qx + r	= 0,	find the	value of	
	\sum_{i}	$\frac{1}{3r}$ in terms of th	e co	efficients.		,			; ·	
24.	Sim	nplify: cos-1 cos	$5\left(\frac{13}{3}\right)$	$\left(\frac{\pi}{2}\right)$						

25. If $2\hat{i} - \hat{j} + 3\hat{k}$, $3\hat{i} + 2\hat{j} + \hat{k}$, $\hat{i} + m\hat{j} + 4\hat{k}$ are coplanar, find the value of m.

(3) XII Mathematics

- 26. Find the value in the interval $\left(\frac{1}{2}, 2\right)$ satisfied by the Rolle's theorem for the function $f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2}, 2\right]$
- 27. A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find the approximate change in the volume.
- 28. Evaluate: $\int_{-\pi/2}^{\pi/2} x \cos x \, dx$
- 29. Show that $x^2 + y^2 = r^2$ where r is a constant, is a solution of the differential equation $\frac{dy}{dx} = \frac{-x}{y}$
- 30. The probability density function of X is given by $f(x) = \begin{cases} k \times e^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$ Find the value of k

Part - III

III. Answer any 7 questions. (Q.No.40 is compulsory)

 $7 \times 3 = 21$

31. if
$$A = \begin{bmatrix} 8 & -4 \\ -5 & 3 \end{bmatrix}$$
, verify that $A(adj A) = (adj A) A = |A| I_2$.

- 32. Show that the points 1, $\frac{-1}{2} + i \frac{\sqrt{3}}{2}$ and $\frac{-1}{2} i \frac{\sqrt{3}}{2}$ are the vertices of an equilateral triangle.
- 33. Solve the equation : $x^3 5x^2 4x + 20 = 0$
- 34. Find the value of $\sin^{-1}(-1) + \cos^{-1}(\frac{1}{2}) + \cot^{-1}(2)$
- 35. Find the equation of the ellipse with foci (0, \pm 4) and end points of major axis (0, \pm 5)
- 36. Find the torque of the resultant of the three forces represented by $-3\hat{i} + 6\hat{j} 3\hat{k}$, $4\hat{i} 10\hat{j} + 12\hat{k}$ and $4\hat{i} + 7\hat{j}$ acting at the point with position vector $8\hat{i} 6\hat{j} 4\hat{k}$, about the point with position vector $18\hat{i} + 3\hat{j} 9\hat{k}$
- 37. Find the intervals of monotonicity and hence find the local extremum for the function $f(x) = 2x^3 + 3x^2 12x$
- 38. Evaluate: $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$
- 39. Define an operation * on Q as follows $a * b = \left(\frac{a+b}{2}\right)$; $a,b \in Q$. Examine the closure, commutative and associative properties satisfied by * on Q.

XII Mathematics

40. If μ and σ^2 are the mean and variance of the discrete random variable X, and E(X + 3) = 10 and $E(X + 3)^2 = 116$, find μ and σ^2 .

Part - IV

IV. Answer all the questions.

 $7 \times 5 = 35$

- Solve the following system of linear equations of Gaussian elimination method 2x 2y + 3z = 2, x + 2y z = 3, 3x y + 2z = 1 (OR)
 - b) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.
- 42. a) Solve the equation $Z^3 + 27 = 0$ (OR)
 - b) Solve: $tan^{-1} 2x + tan^{-1} 3x = \frac{\pi}{4}$, if $6x^2 < 1$
- 43. a) Assume that water issuing from the end of a horizontal pipe 7.5 m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground? (OR)
 - b) By Vector method, prove that $cos(\alpha + \beta) = cos\alpha cos\beta sin\alpha sin\beta$
- 44. a) Find the non-parametrics form of vector equation, and cartesian equations of the plane $\mathbf{r} = (6\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}) + \mathbf{s}(-\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}) + \mathbf{t}(-5\hat{\mathbf{i}} 4\hat{\mathbf{j}} 5\hat{\mathbf{k}})$ (OR)
 - b) Show that the line x y + 4 = 0 is a tangent to the ellipse $x^2 + 3y^2 = 12$. Also find the coordinates of the point of contact.
- 45. a) Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile with a circular base whose height and diameter of base are always equal. How fast is the height of the pile increasing when the pile 10 metre high?

b) If
$$V(x, y) = log\left(\frac{x^2 + y^2}{x + y}\right)$$
, prove that $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} = 1$

- 46. a) Prove that among all the rectangles of the given perimeter, the square has the maximum area. (OR)
 - b) Find the area of the region bounded between the curves $y = \sin x$ and $y = \cos x$ and the lines x = 0 and $x = \pi$.
- 47. a) The mean and standard deviation of a binomial variate X are respectively 6 and 2. Find (i) the probability mass function (ii) P(X = 3) (iii) $P(X \ge 2)$ (OR)
 - b) Prove that $p \to (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$ using truth table.
