www.Padasalai.Net - Centum Special Question Paper 2023

Model Exam (2022 – 23) – Question CLASS – XII - MATHEMATICS

Time Allowed : 3 Hrs Maximum Marks : 90

PART - I

I. Answer ALL question		20x1 = 20						
1) If $f(x) = \frac{x}{x+1}$, then								
$(1) \frac{-1}{(x+1)^2} dx$	$(2) \frac{1}{(x+1)^2} dx$	$(3) \ \frac{1}{x+1} dx$	(4) -	$\frac{-1}{x+1}dx$				
2) If $f(x, y, z) = xy + y$	$+yz+zx$, then f_x	f_z is equal to						
(1) $z-x$	(2) y-z	(3) x	- z	(4) y -	- x			
3) If $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and	$B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix} $ then add	j(AB) =						
(1) -40	(2) -8	0	(3) -60		(4) –20			
4) The number of art (1) $n-1$, n	pitrary constants in to (2) n , $n+1$					respectively		
5) If $x + y = k$ is a	normal to the par	abola $y^2 =$	12x, then the	ne value	of k is			
(1) 3	(2) -1		(3) 1			(4) 9		
6) P is the amount of certain substance left in after time t . If the rate of evaporation of the substance is proportional to the amount remaining, then (1) $P = Ce^{kt}$ (2) $P = Ce^{-kt}$ (3) $P = Ckt$ (4) $Pt = C$								
7) The product of all				(+)	11-0			
	,	- /	15					
(1) -2		(3) 1	(4	4) 2				
8) The dual of \neg (p)	$(q) \vee [p \vee (p \wedge \neg r)]$ if	is						
$(1) \neg (p \land q) \land [p$	$\lor (p \land \neg r)]$	(2) $(p \wedge q)$	$) \wedge [p \wedge (p \vee \neg$	$\neg r)]$				
$(3) \neg (p \land q) \land [p$	$\wedge (p \wedge r)$]	$(4) \neg (p \land $	$q) \wedge [p \wedge (p)]$	$(\neg r)$]				
9) Let <i>X</i> have a Bern	noulli distribution w	vith mean 0.4	, then the va	riance of	(2X-3) is			
(1) 0.24	b) 0.48		(3) 0.6		(4) 0.96			
10) If z is a non zero complex number, such that $2iz^2 = \overline{z}$ then $ z $ is								
(1) $\frac{1}{2}$	(2) 1	(3) 2		(4) 3				

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

11) The angle between	the lines $\frac{x-2}{3} = \frac{y}{3}$	$\frac{+1}{-2}$, $z = 2$ and	$1 \frac{x-1}{1} = \frac{2y+3}{3}$	$\frac{3}{2} = \frac{z+3}{2}$ is				
(1) $\frac{\pi}{6}$	$(2) \ \frac{\pi}{4}$	(3)	$\frac{\pi}{3}$	(4) $\frac{\pi}{2}$				
12) If we measure the calculation of the v		be 4 cm with	an error of 0.	1 cm, then the error in our				
(1) 0.4 cu.cm	(2) 0.45 cu.cm	(3) 2	cu.cm	(4) 4.8 cu.cm				
	X has binomial distr	ribution with	n = 25 and $p = 0$	0.8 then standard deviation				
of <i>X</i> is (1) 6	(2) 4	(3	3) 3	(4) 2				
14) $\sin^{-1}\left(\tan\frac{\pi}{4}\right) - \sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$. Then x is a root of the equation								
$(1) \ x^2 - x - 6 = 0$	(2) $x^2 - x - 1$	$2 = 0 \qquad \qquad (3)$	3) $x^2 + x - 12 =$	$= 0 (4) x^2 + x - 6 = 0$				
15) The polynomial $x^3 - kx^2 + 9x$ has three real zeros if and only if, k satisfies								
$(1) \mathbf{k} \leq 6$	(2) $k = 0$	(3)	k > 6	(4) $ k \ge 6$				
16) The value of $\int_0^1 (\sin x) dx$	$n^{-1}x$) ² dx is							
$(1) \frac{\pi^2}{4} - 1$	(2) $\frac{\pi^2}{4} + 2$		(3) $\frac{\pi^2}{4} + 1$	(4) $\frac{\pi^2}{4}$ - 2				
17) The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is								
(1) [1, 2]	(2) [-1, 1]		(0, 1]	$(4) \left[-1, \ 0 \right]$				
18) If $f(x, y, z) = xy + yz + zx$, then $f_x - f_z$ is equal to								
(1) z-x	(2) y-z	(3) $x-z$	(4) y-x				
19) If a compound state table is	tement involves 3 s	imple stateme	ents, then the r	number of rows in the tru				
(1) 9	(2) 8	(3) 6	(4) 3					

20) A computer salesperson knows from his past experience that he sells computers to one in every twenty customers who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers?

57

57

 19^3

57

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

PART - II

II. Answer any SEVEN questions. Question number 30 is Compulsory

7x2 = 14

- 21) The probability density function of *X* is given by $f(x) = \begin{cases} k x e^{-2x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$. Find the value of *k*.
- 22) Determine the order and degree (if exists) of the following differential equations:

$$3\left(\frac{d^2y}{dx^2}\right) = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$$

- 23) If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$
- 24) Evaluate the following: $\int_{0}^{\frac{\pi}{4}} \sin^{6} 2x \, dx$
- 25) Find the value in the interval $\left(\frac{1}{2},2\right)$ satisfied by the Rolle's theorem for th function $f(x) = x + \frac{1}{x}, x \in \left[\frac{1}{2},2\right]$.
- 26) If $2\hat{i} \hat{j} + 3\hat{k}$, $3\hat{i} + 2\hat{j} + \hat{k}$, $\hat{i} + m\hat{j} + 4\hat{k}$ are coplanar, find the value of m.

27) If
$$adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$$
, find A^{-1} .

- 28) Obtain the equation of the circle for which (3,4) and (2,-7) are the ends of a diameter.
- 29) Verify whether the following compound proposition is tautology or contradiction or contingency $(p \lor q) \land \neg p) \rightarrow q$

Ph: 948 99 00 886

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

30) Draw the graph of the function $y = \cos^{-1} x$ in the interval $[0, \pi]$ and also write its principal domain and range.

PART - III

II. Answer any SEVEN questions. Question 40 is compulsory

7x3 = 21

- 31) For any two complex numbers z_1 and z_2 , such that $|z_1| = |z_2| = 1$ and $z_1 z_2 \neq -1$, then show that $\frac{z_1 + z_2}{1 + z_1 z_2}$ is a real number.
- 32) The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation $T = 2\pi \sqrt{\frac{l}{g}}$, where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of l.
- 33) Check whether the following system of equations can be solved by matrix inversion method or not. If not state the reason. 4x-2y+6z=8, x+y-3z=-1, 15x-3y+9z=21.
- 34) Find the equations of tangent and normal to the parabola $x^2 + 6x + 4y + 5 = 0$ at (1, -3).
- 35) Write down the (i) conditional statement (ii) converse statement (iii) inverse statement, and (iv) contrapositive statement for the two statements *p* and *q* given below. *p*: The number of primes is infinite. *q*: Ooty is in Kerala.
- 36) Evaluate the following limit, if necessary use l'Hôpital Rule : $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$
- 37) If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the probabilities that among 12 such lights
 - (i) exactly 10 will have a useful life of at least 600 hours;
 - (ii) at least 2 will not have a useful life of at least 600 hours.
- 38) Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$.

Ph: 948 99 00 886 E-mail: berkmansja@gmail.com

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

39) Solve
$$\frac{dy}{dx} + 2y = e^{-x}$$
.

40) Evaluate the following definite integral:

$$\int_{0}^{\frac{\pi}{2}} e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$$

PART - IV

IV. Answer ALL the questions.

7x5 = 35

41) a) Find the intervals of monotonicities and hence find the local extremum for the following function: $f(x) = \frac{e^x}{1 - e^x}$

ΔD

b) If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution and $p \neq a, q \neq b, r \neq c$, prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$.

42) a) If X is the random variable with probability density function

$$f(x) \text{ given by,} \qquad f(x) = \begin{cases} x-1, & 1 \le x < 2 \\ -x+3, & 2 \le x < 3 \\ 0 & \text{otherwise} \end{cases}$$

find (i) the distribution function F(x)

(ii) $P(1.5 \le X \le 2.5)$

OR

b) Find the area of the region bounded between the curves $y = \sin x$ and $y = \cos x$ and the lines x = 0 and $x = \pi$.

following: $\frac{(x+3)^2}{225} - \frac{(y-4)^2}{64} = 1$

OR

Ph: 948 99 00 886

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

- b) Solve the equation $z^3 + 8i = 0$, where $z \in \mathbb{C}$.
- 44) a) Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1,-2,4) and perpendicular to the plane x+2y-3z=11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}.$

OR

- b) Solve the equation $7x^3 43x^2 = 43x 7$.
- 45) a) Verify De-Morgans Laws using Truth Table:

OR

- b)On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Find the angle of projection.
- 46) a) Let $U(x, y) = e^x \sin y$, where $x = st^2$, $y = s^2t$, $s, t \in \mathbb{R}$. Find $\frac{\partial U}{\partial s}, \frac{\partial U}{\partial t}$ and evaluate them at s = t = 1.

ΩR

b) If a_1 , a_2 , a_3 , ... a_n is an arithmetic progression with common difference d, prove:

$$\tan \left[\tan^{-1} \left(\frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{d}{1 + a_2 a_3} \right) + \dots + \tan^{-1} \left(\frac{d}{1 + a_n a_{n-1}} \right) \right] = \frac{a_n - a_1}{1 + a_1 a_n}.$$

47) a) The equation of electromotive force for an electric circuit containing resistance and self-inductance is $E = Ri + L\frac{di}{dt}$, where E is the electromotive force is given to the circuit, R the resistance and L, the coefficient of induction. Find the current i at time t when E = 0.

OR

b) If D is the midpoint of the side BC of a triangle ABC, show by vector method that $|\overline{AB}|^2 + |\overline{AC}|^2 = 2(|\overline{AD}|^2 + |\overline{BD}|^2)$.

Ph: 948 99 00 886 E-mail: berkmansja@gmail.com Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com