CENTUM ACHIEVERS' ACADEMY 56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.NO.7667761819 **TIME: 2 ½ Hrs** XII STD(MATHS) **FULL PORTION - 2 MARKS: 90** PART-I

Choose the correct answer from the given four alternatives:

 $(20 \times 1 = 20)$

- (1)15
- (2) 12
- (3) 14

2. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 and $A(\text{adj }A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = 0$

- (1) 0
- (2) $\sin \theta$

3. If
$$|z| = 1$$
, then the value of $\frac{1+z}{1+\bar{z}}$ is

- (1) Z
- $(2) \bar{Z}$
- (4) 1

4. If z is a complex number such that $z \in \mathbb{C} \setminus \mathbb{R}$ and $z + \frac{1}{z} \in \mathbb{R}$, then |z| is

- (1) 0
- (2) 1
- (3)2
- (4) 3

5. If α , β , and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum_{\alpha=0}^{\infty} x^{\alpha} = 1$

- (1) $-\frac{q}{r}$ (2) $-\frac{p}{r}$ (3) $\frac{q}{r}$ (4) $-\frac{q}{p}$

6. If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, the value of $x^{2017} + y^{2018} + z^{2019} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is

- (1) 0
- (2)1
- (3) 2
- (4)3

7. If $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha}) = u$, then $\cos 2u$ is equal to

- (1) $tan^2 \alpha$
- (2)0
- (3) -1
- (4) $\tan 2\alpha$

8. The radius of the circle passing through the point (6,2) two of whose diameter are x + y = 6

and
$$x + 2y = 4$$
 is
(1) 10
(2) $2\sqrt{5}$
(3) 6

9. If \vec{a} , \vec{b} , \vec{c} are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}] = 3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is equal to

- (1)81
- (2)9
- (4) 18

10. If the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is

- (1)(-5,5)
- (2)(-6,7)
- (3)(5,-5)

11.	The maximum sl	lope of the tang	gent to the curv	$e y = e^x \sin x$, x	$\in [0,2\pi]$ is at	
	$(1) x = \frac{\pi}{4}$	$(2) x = \frac{\pi}{2}$	(3) x	$=\pi$	$(4) x = \frac{3\pi}{2}$	
12. The number given by the Rolle's theorem for the function $x^3 - 3x^2$, $x \in [0,3]$ is						
	(1) 1	$(2)\sqrt{2}$	$(3)\frac{3}{2}$		(4) 2	
13. If $f(x) = \frac{x}{x+1}$, then its differential is given by						
	$(1)\frac{-1}{(x+1)^2}dx$	$(2){(x)}$	$\frac{1}{(x+1)^2}dx$	$(3)\frac{1}{x+1}dx$	$(4)\frac{-1}{x+1}$	-dx
14.	4. If $f(x, y, z) = xy + yz + zx$, then $f_x - f_z$ is equal to					
	(1) z - x	(2) y - z	(3) x	- z	(4) y - x	
15.	If $f(x) = \int_0^x t \cos x$	os $t dt$, then $\frac{df}{dx}$	=	9 9 9		4
	$(1)\cos x - x\sin$	x	$(2)\sin x + x$	cos x	$(3) x \cos x$	$(4) x \sin x$
16.	If $\frac{\Gamma(n+2)}{\Gamma(n)} = 90$ the	en <i>n</i> is	1			
	(1) 10	(2) 5	(3) 8	(4) 9		
17. The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is						
	(1) xy = k	(2) y	$y = k \log x$	(3) y = kx	(4) log	y = kx
18.	18. If sin x is the integrating factor of the linear differential equation $\frac{dy}{dx} + Py = Q$, then P is					
	(1) $\log \sin x$	(2) c	os x	(3) $\tan x$	(4) cot	x
19. If $P(X = 0) = 1 - P(X = 1)$. If $E(X) = 3Var(X)$, then $P(X = 0)$ is						
$(1)\frac{2}{3} \qquad (2)\frac{2}{5} \qquad (3)\frac{1}{5} \qquad (4)\frac{1}{3}$						
20. Which one is the contrapositive of the statement $(p \lor q) \rightarrow r$?						
$(1) \neg r \to (\neg p \land \neg q) \qquad (2) \neg r \to (p \lor q)$						
	$(3) r \to (p \land q)$	6	$(4) p \to (q \vee$	r)		110,000
PART-II						
(i)	Answer any	SEVEN questi	ons.		:. exc	$(7\times2=14)$
(ii)	Qn.No.30 is o	compulsory	Tr a	caden	nuc	
(1) $\neg r \rightarrow (\neg p \land \neg q)$ (2) $\neg r \rightarrow (p \lor q)$ (3) $r \rightarrow (p \land q)$ (4) $p \rightarrow (q \lor r)$ PART-II (i) Answer any SEVEN questions. (7× 2 = 14) (ii) Qn.No.30 is compulsory 21. If A is symmetric, prove that adj A is also symmetric.						
22. Find the domain of $\cos^{-1}\left(\frac{2+\sin x}{3}\right)$.						
23. Find the equation of the ellipse with foci ($\pm 2,0$), vertices ($\pm 3,0$).						
24. Let \vec{a} , \vec{b} , \vec{c} be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, show that $[\vec{a}, \vec{b}, \vec{c}]^2 = \frac{1}{4} \vec{a} ^2 \vec{b} ^2$.						

25. Find the values in the interval (1,2) of the mean value theorem satisfied by the function $f(x) = x - x^2$ for

 $1 \le x \le 2$.

- 26. An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and radius to the outside of the shell is 5.3 mm, find the volume of the shell approximately.
- 27. Evaluate : $\int_{-\log 2}^{\log 2} e^{-|x|} dx$.
- 28. Show that $y = e^{-x} + mx + n$ is a solution of the differential equation $e^{x} \left(\frac{d^{2}y}{dx^{2}}\right) 1 = 0$.
- 29. Three fair coins are tossed simultaneously. Find the probability mass function for number of heads occurred.
- 30. State and prove the uniqueness of identity.

PART-III

(i) Answer any SEVEN questions.

$$(7 \times 3 = 21)$$

- (ii) Qn.No.40 is compulsory
- 31. Find the inverse of the non-singular matrix $A = \begin{bmatrix} 0 & 5 \\ -1 & 6 \end{bmatrix}$, by Gauss-Jordan method
- 32. If z = x + iy, find in rectangular form Im $(3z + 4\bar{z} 4i)$
- 33. Show that the line x y + 4 = 0 is a tangent to the ellipse $x^2 + 3y^2 = 12$. Also find the coordinates of the point of contact.
- 34. For any vector \vec{a} , prove that $\hat{\imath} \times (\vec{a} \times \hat{\imath}) + \hat{\jmath} \times (\vec{a} \times \hat{\jmath}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$.
- 35. Find the equations of the tangents to the curve $y = 1 + x^3$ for which the tangent is orthogonal with the line x + 12y = 12.
- 36. If $w(x,y) = x^3 3xy + 2y^2$, $x,y \in \mathbb{R}$, find the linear approximation for w at (1,-1).
- 37. Evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{5+4\sin^2 x}$
- 38. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq'-p'q}{q-q'}$ or $\frac{q-q'}{p'-p}$.
- 39. In a binomial distribution consisting of 5 independent trials, the probability of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the mean and variance of the random variable.
- 40. Find the differential equation corresponding to the family of curves represented by the equation $y = Ae^{8x} + Be^{-8x}$, where A and B are arbitrary constants.

PART-IV

Answer the following questions.

$$(7\times 5=35)$$

- 41. a) If $A = \frac{1}{7} \begin{bmatrix} 6 & -3 & a \\ b & -2 & 6 \\ 2 & c & 3 \end{bmatrix}$ is orthogonal, find a, b and c, and hence A^{-1} . **(OR)**
 - b) Solve the equation $x^3 9x^2 + 14x + 24 = 0$ if it is given that two of its roots are in the ratio 3: 2.
- 42. a) Find the equations of tangent and normal to the ellipse $x^2 + 4y^2 = 32$ when $\theta = \frac{\pi}{4}$. (OR)
 - b) If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z < 1, show that $x^2 + y^2 + z^2 + 2xyz = 1$
- 43. a) For the ellipse $4x^2 + y^2 + 24x 2y + 21 = 0$, find the centre, vertices, and the foci. Also prove that the length of latus rectum is 2 . **(OR)**

b) Solve the equation $z^3 + 8i = 0$, where $z \in \mathbb{C}$.

44. a) If
$$w(x, y, z) = \log\left(\frac{5x^3y^4 + 7y^2xz^4 - 75y^3z^4}{x^2 + y^2}\right)$$
, find $x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y} + z\frac{\partial w}{\partial z}$. (OR)

- b) Solve: $(x^2 + y^2)dy = xy dx$. It is given that y(1) = 1 and $y(x_0) = e$. Find the value of x_0 .
- 45. a) Evaluate $\int_{1}^{2} (4x^2 1) dx$ (OR)
 - b) Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point (2,3,6) and parallel to the straight lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-3}{1}$ and $\frac{x+3}{2} = \frac{y-3}{-5} = \frac{z+1}{-3}$
- 46. a) Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to 4,00,000. **(OR)**
- b) A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?
- 47. a) Verify (i) closure property, (ii) commutative property, (iii) associative property, (iv) existence of identity, and (v) existence of inverse for the operation x_{11} on a subset $A = \{1,3,4,5,9\}$ of the set of remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$. (OR)
 - b) A retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 5%. The inspector of the retailer randomly picks 10 items from a shipment. What is the probability that there will be (i) at least one defective item (ii) exactly two defective items?

SARATH KUMAR.S P.G.ASSISTANT, COIMBATORE-6.