CENTUM ACHIEVERS' ACADEMY		
XII STD(MATHS)	FULL PORTION - 2	TIME: $21 / 2 \mathrm{Hrs}$
		MARKS : 90

PART-I

Choose the correct answer from the given four alternatives :
$(20 \times 1=20)$

1. If $P=\left[\begin{array}{ccc}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then x is
(1) 15
(2) 12
(3) 14
(4) 11
2. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $A(\operatorname{adj} A)=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, then $k=$
(1) 0
(2) $\sin \theta$
(3) $\cos \theta$
(4) 1
3. If $|z|=1$, then the value of $\frac{1+z}{1+\bar{z}}$ is
(1) Z
(2) \bar{Z}
(3) $\frac{1}{Z}$
(4) 1
4. If z is a complex number such that $z \in \mathbb{C} \backslash \mathbb{R}$ and $z+\frac{1}{z} \in \mathbb{R}$, then $|z|$ is
(1) 0
(2) 1
(3) 2
(4) 3
5. If α, β, and γ are the zeros of $x^{3}+p x^{2}+q x+r$, then $\sum \frac{1}{\alpha}$ is
(1) $-\frac{q}{r}$
(2) $-\frac{p}{r}$
(3) $\frac{q}{r}$
(4) $-\frac{q}{p}$
6. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, the value of $x^{2017}+y^{2018}+z^{2019}-\frac{9}{x^{101}+y^{101}+z^{101}}$ is
(1) 0
(2) 1
(3) 2
(4) 3
7. If $\cot ^{-1}(\sqrt{\sin \alpha})+\tan ^{-1}(\sqrt{\sin \alpha})=u$, then $\cos 2 u$ is equal to
(1) $\tan ^{2} \alpha$
(2) 0
(3) -1
(4) $\tan 2 \alpha$
8. The radius of the circle passing through the point $(6,2)$ two of whose diameter are $x+y=6$ and $x+2 y=4$ is
(1) 10
(2) $2 \sqrt{5}$
(3) 6
(4) 4
9. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}]=3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^{2}$ is equal to
(1) 81
(2) 9
(3) 27
(4) 18
10. If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$, then (α, β) is
(1) $(-5,5)$
(2) $(-6,7)$
(3) $(5,-5)$
(4) $(6,-7)$
11. The maximum slope of the tangent to the curve $y=e^{x} \sin x, x \in[0,2 \pi]$ is at
(1) $x=\frac{\pi}{4}$
(2) $x=\frac{\pi}{2}$
(3) $x=\pi$
(4) $x=\frac{3 \pi}{2}$
12. The number given by the Rolle's theorem for the function $x^{3}-3 x^{2}, x \in[0,3]$ is
(1) 1
(2) $\sqrt{2}$
(3) $\frac{3}{2}$
(4) 2
13. If $f(x)=\frac{x}{x+1}$, then its differential is given by
(1) $\frac{-1}{(x+1)^{2}} d x$
(2) $\frac{1}{(x+1)^{2}} d x$
(3) $\frac{1}{x+1} d x$
(4) $\frac{-1}{x+1} d x$
14. If $f(x, y, z)=x y+y z+z x$, then $f_{x}-f_{z}$ is equal to
(1) $z-x$
(2) $y-z$
(3) $x-z$
(4) $y-x$
15. If $f(x)=\int_{0}^{x} t \cos t d t$, then $\frac{d f}{d x}=$
(1) $\cos x-x \sin x$
(2) $\sin x+x \cos x$
(3) $x \cos x$
(4) $x \sin x$
16. If $\frac{\Gamma(n+2)}{\Gamma(n)}=90$ then n is
(1) 10
(2) 5
(3) 8
(4) 9
17. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ is
(1) $x y=k$
(2) $y=k \log x$
(3) $y=k x$
(4) $\log y=k x$
18. If $\sin x$ is the integrating factor of the linear differential equation $\frac{d y}{d x}+P y=Q$, then P is
(1) $\log \sin x$
(2) $\cos x$
(3) $\tan x$
(4) $\cot x$
19. If $P(X=0)=1-P(X=1)$. If $E(X)=3 \operatorname{Var}(X)$, then $P(X=0)$ is
(1) $\frac{2}{3}$
(2) $\frac{2}{5}$
(3) $\frac{1}{5}$
(4) $\frac{1}{3}$
20. Which one is the contrapositive of the statement $(p \vee q) \rightarrow r$?
(1) $\neg r \rightarrow(\neg p \wedge \neg q)$
(2) $\neg r \rightarrow(p \vee q)$
(3) $r \rightarrow(p \wedge q)$
(4) $p \rightarrow(q \vee r)$

PART-II

(i) Answer any SEVEN questions.
(ii) Qn.No. 30 is compulsory
21. If A is symmetric, prove that adj A is also symmetric.
22. Find the domain of $\cos ^{-1}\left(\frac{2+\sin x}{3}\right)$.
23. Find the equation of the ellipse with foci $(\pm 2,0)$, vertices $(\pm 3,0)$.
24. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, show that $[\vec{a}, \vec{b}, \vec{c}]^{2}=\frac{1}{4}|\vec{a}|^{2}|\vec{b}|^{2}$.
25 . Find the values in the interval $(1,2)$ of the mean value theorem satisfied by the function $f(x)=x-x^{2}$ for $1 \leq x \leq 2$.
26. An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 mm and radius to the outside of the shell is 5.3 mm , find the volume of the shell approximately.
27. Evaluate : $\int_{-\log 2}^{\log 2} e^{-|x|} d x$.
28. Show that $y=e^{-x}+m x+n$ is a solution of the differential equation $e^{x}\left(\frac{d^{2} y}{d x^{2}}\right)-1=0$.
29. Three fair coins are tossed simultaneously. Find the probability mass function for number of heads occurred.
30. State and prove the uniqueness of identity.

PART-III

(i) Answer any SEVEN questions.
(ii) Qn.No. 40 is compulsory
31. Find the inverse of the non-singular matrix $A=\left[\begin{array}{cc}0 & 5 \\ -1 & 6\end{array}\right]$, by Gauss-Jordan method
32. If $z=x+i y$, find in rectangular form $\operatorname{Im}(3 z+4 \bar{z}-4 i)$
33. Show that the line $x-y+4=0$ is a tangent to the ellipse $x^{2}+3 y^{2}=12$. Also find the coordinates of the point of contact.
34. For any vector \vec{a}, prove that $\hat{\imath} \times(\vec{a} \times \hat{\imath})+\hat{\jmath} \times(\vec{a} \times \hat{\jmath})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$.
35. Find the equations of the tangents to the curve $y=1+x^{3}$ for which the tangent is orthogonal with the line $x+12 y=12$.
36. If $w(x, y)=x^{3}-3 x y+2 y^{2}, x, y \in \mathbb{R}$, find the linear approximation for w at $(1,-1)$.
37. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{5+4 \sin ^{2} x}$
38. If the equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root, show that it must be equal to $\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}$ or $\frac{q-q^{\prime}}{p^{\prime}-p^{\prime}}$.
39. In a binomial distribution consisting of 5 independent trials, the probability of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the mean and variance of the random variable.
40. Find the differential equation corresponding to the family of curves represented by the equation $y=\mathrm{A} e^{8 x}+\mathrm{B} e^{-8 x}$, where A and B are arbitrary constants.

PART-IV

Answer the following questions.

41. a) If $A=\frac{1}{7}\left[\begin{array}{ccc}6 & -3 & a \\ b & -2 & 6 \\ 2 & c & 3\end{array}\right]$ is orthogonal, find a, b and c, and hence A^{-1}. (OR)
b) Solve the equation $x^{3}-9 x^{2}+14 x+24=0$ if it is given that two of its roots are in the ratio $3: 2$.
42. a) Find the equations of tangent and normal to the ellipse $x^{2}+4 y^{2}=32$ when $\theta=\frac{\pi}{4}$. (OR)
b) If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=\pi$ and $0<x, y, z<1$, show that $x^{2}+y^{2}+z^{2}+2 x y z=1$
43. a) For the ellipse $4 x^{2}+y^{2}+24 x-2 y+21=0$, find the centre, vertices, and the foci. Also prove that the length of latus rectum is 2 . (OR)
b) Solve the equation $z^{3}+8 i=0$, where $z \in \mathbb{C}$.
44. a) If $w(x, y, z)=\log \left(\frac{5 x^{3} y^{4}+7 y^{2} x z^{4}-75 y^{3} z^{4}}{x^{2}+y^{2}}\right)$, find $x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}+z \frac{\partial w}{\partial z}$. (OR)
b) Solve: $\left(x^{2}+y^{2}\right) d y=x y d x$. It is given that $y(1)=1$ and $y\left(x_{0}\right)=e$. Find the value of x_{0}.
45. a) Evaluate $\int_{1}^{2}\left(4 x^{2}-1\right) d x$ (OR)
b) Find the non-parametric form of vector equation, and Cartesian equation of the plane passing through the point $(2,3,6)$ and parallel to the straight lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-3}{1}$ and $\frac{x+3}{2}=\frac{y-3}{-5}=\frac{z+1}{-3}$
46. a) Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 3,00,000 to $4,00,000$. (OR)
b) A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic $\mathrm{m} / \mathrm{min}$, how fast is the depth of the water increases when the water is 8 metres deep?
47. a) Verify (i) closure property, (ii) commutative property, (iii) associative property,
(iv) existence of identity, and (v) existence of inverse for the operation x_{11} on a subset $A=\{1,3,4,5,9\}$ of the set of remainders $\{0,1,2,3,4,5,6,7,8,9,10\}$.(OR)
b) A retailer purchases a certain kind of electronic device from a manufacturer. The manufacturer indicates that the defective rate of the device is 5%.The inspector of the retailer randomly picks 10 items from a shipment. What is the probability that there will be (i) at least one defective item (ii) exactly two defective items?

SARATH KUMAR.S P.G.ASSISTANT, COIMBATORE-6.

