CENTUM ACHIEVERS' ACADEMY 56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.NO.7667761819 TIME: 2 ½ Hrs XII STD(MATHS) **FULL PORTION – 4** MARKS: 90

PART-I

Choose the correct answer from the given four alternatives:

 $(20 \times 1 = 20)$

1. If
$$x^a y^b = e^m$$
, $x^c y^d = e^n$, $\Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$, then the values of x and y are

(1)
$$e^{(\Delta_2/\Delta_1)}$$
, $e^{(\Delta_3/\Delta_1)}$

(2)
$$\log (\Delta_1/\Delta_3)$$
, $\log (\Delta_2/\Delta_3)$

(3)
$$\log (\Delta_2/\Delta_1)$$
, $\log (\Delta_3/\Delta_1)$

(4))
$$e^{(\Delta_1/\Delta_3)}$$
, $e^{(\Delta_2/\Delta_3)}$

2. Let
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A , then the value of x is

- (4) 1

3. The value of
$$\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$$
 is

(1) cis
$$\frac{2\pi}{3}$$

(2) cis
$$\frac{4\pi}{3}$$

(1)
$$\operatorname{cis} \frac{2\pi}{3}$$
 (2) $\operatorname{cis} \frac{4\pi}{3}$ (3) $-\operatorname{cis} \frac{2\pi}{3}$

$$(4) - \cos \frac{4\pi}{3}$$

4. The principal argument of $\frac{3}{-1+i}$ is

$$(1)\frac{-5\pi}{6} \qquad (2)\frac{-2\pi}{3}$$

$$(2)^{\frac{-2\pi}{3}}$$

$$\frac{1}{i}$$
 is
$$(3)\frac{-3\pi}{4}$$

$$(4)^{\frac{-\pi}{2}}$$

5. If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if

$$(1) a \ge 0$$

(2)
$$a > 0$$

(3)
$$a < 0$$

(4)
$$a \le 0$$

6. If $x = \frac{1}{5}$, the value of $\cos(\cos^{-1} x + 2\sin^{-1} x)$ is

$$(1) - \sqrt{\frac{24}{25}} \qquad (2) \sqrt{\frac{24}{25}} \qquad (3) \frac{1}{5}$$

$$(2)\sqrt{\frac{24}{25}}$$

$$(3)\frac{1}{5}$$

$$(4)-\frac{1}{5}$$

7. If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in R$, the value of $\tan^{-1} x$ is

$$(1)-\frac{\pi}{10}$$

$$(2)\frac{\pi}{5}$$

$$(3)\frac{\pi}{10}$$

$$(4)-\frac{\pi}{5}$$

 $(4) - \frac{1}{5}$ $(2) \frac{\pi}{5} \qquad (3) \frac{\pi}{10} \qquad (4) - \frac{\pi}{5}$ through (1, -2) and touching the axis of (2)(2, -5)8. The circle passing through (1, -2) and touching the axis of x at (3,0) passing through the point

$$(1)(-5,2)$$

$$(2)(2,-5)$$

$$(3)(5,-2)$$

$$(4)(-2,5)$$

9. The length of the diameter of the circle which touches the x-axis at the point (1,0) and passes through the point (2,3).

$$(1)\frac{6}{5}$$

$$(2)\frac{5}{3}$$

$$(2)\frac{5}{3}$$
 $(3)\frac{10}{3}$ $(4)\frac{3}{5}$

$$(4)\frac{3}{5}$$

10. If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then							
	$(1) c = \pm 3$		$(2) c = \pm \sqrt{3}$		(3) $c >$	• 0	(4) $0 < c < 1$
11.	1. If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$, where \vec{a} , \vec{b} , \vec{c} are any three vectors such that $\vec{b} \cdot \vec{c} \neq 0$ and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} are						
	(1) perpendicular		(2) parallel		(3) inclined at	angle $\frac{\pi}{3}$	(4) inclined at angle $\frac{\pi}{6}$
12.	2. The abscissa of the point on the curve $f(x) = \sqrt{8 - 2x}$ at which the slope of the tangent is -0.25 ?						
	(1) -8 $(2) -4$ $(3) -2$ $(4) 0$						
13.	The maximum value of the product of two positive numbers, when their sum of the squares is 200, is						
	(1) 100	(2) 25	√7	(3) 28	(4) 24	$\sqrt{14}$	27
14.	The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{2\pi}{4}\right)^{\frac{\pi}{4}}$	$\frac{2x^7 - 3x^5 + \cos^2 x}{\cos^2 x}$	$\frac{-7x^3 - x + 1}{2x} dx \text{ is}$	3		1	0
	(1) 4	(2) 3	· «	(3) 2		(4) 0	
15.	$If u(x,y) = x^2 + 3.$	xy + y	-2019 , then $\frac{\partial u}{\partial x}$	(4,-5) is	equal to	0	
	(1) -4	(2) -3	(3) - 7		(4) 13		
16.	For any value of $n \in \mathbb{Z}$, $\int_0^{\pi} e^{\cos^2 x} \cos^3 [(2n+1)x] dx$ is						
	$(1)\frac{\pi}{2}$	$(2) \pi$		(3) 0	GEL	(4) 2	
17.	. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi(\frac{y}{x})}{\phi'(\frac{y}{x})}$ is						
	$(1) x\phi\left(\frac{y}{x}\right) = k$	V	$(2) \phi\left(\frac{y}{x}\right) = kx$		$(3) y\phi$	$\left(\frac{y}{x}\right) = k$	$(4) \phi\left(\frac{y}{x}\right) = ky$
18. If the solution of the differential equation $\frac{dy}{dx} = \frac{ax+3}{2y+f}$ represents a circle, then the value of a is							e value of a is
	(1) 2	(2) - 2		(3) 1		(4) -1	60
19.	On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the probability that a						
student will get 4 or more correct answers just by guessing is $(1)\frac{11}{243} \qquad (2)\frac{3}{8} \qquad (3)\frac{1}{243} \qquad (4)\frac{5}{243}$							·0/11
	$(1)\frac{11}{243}$	$(2)\frac{3}{8}$	~ a/	$(3)\frac{1}{243}$		$(4)\frac{5}{243}$	
20.	20. If a compound statement involves 3 simple statements, then the number of rows in the truth table is						
	(1) 9	(2)8	(3) 6		(4) 3		

PART-II

(i) Answer any SEVEN questions.

 $(7 \times 2 = 14)$

(ii) Qn.No.30 is compulsory

21. If
$$F(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$
, show that $[F(\alpha)]^{-1} = F(-\alpha)$.

- 22. Find $\left| \frac{i(2+i)^3}{(1+i)^2} \right|$
- 23. Prove that a straight line and parabola cannot intersect at more than two points.
- 24. Evaluate the limit $\lim_{x\to 0} \left(\frac{\sin x}{x^2}\right)$
- 25. Let V(x, y, z) = xy + yz + zx, $x, y, z \in \mathbb{R}$. Find the differential dV.
- 26. Evaluate $\int_0^{2\pi} \sin^7 \frac{x}{4} dx$
- 27. Show that $y = a \cos b x$ is a solution of the differential equation $\frac{d^2y}{dx^2} + b^2y = 0$.
- 28. The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function $f(x) = \begin{cases} 3e^{-3x} & x > 0 \\ 0 & \text{elsewhere} \end{cases}$ Find the expected life of this electronic equipment.
- 29. Verify the (i) closure property, (ii) commutative property, (iii) associative property (iv) existence of identity and (v) existence of inverse for the arithmetic operation + on \mathbb{Z} .
- 30. Find the centre and radius of the circle $3x^2 + (a+1)y^2 + 6x 9y + a + 4 = 0$.

PART-III

(i) Answer any SEVEN questions.

 $(7 \times 3 = 21)$

- (ii) Qn.No.40 is compulsory
- 31. Solve x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 12z = 0.
- 32. Show that $\cot^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right) = \sec^{-1} x, |x| > 1$.
- 33. Prove that the point of intersection of the tangents at ' t_1 ' and ' t_2 ' on the parabola $y^2 = 4ax$ is $[at_1t_2, a(t_1+t_2)]$.
- 34. Find the image of the point whose position vector is $\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ in the plane $\vec{r} \cdot (\hat{\imath} + 2\hat{\jmath} + 4\hat{k}) = 38$.
- 35. A Show that the two curves $x^2 y^2 = r^2$ and $xy = c^2$ where c, r are constants, cut orthogonally.
- 36. Let $u(x,y)=e^{-2y}\cos{(2x)}$ for all $(x,y)\in\mathbb{R}^2$. Prove that u is a harmonic function in \mathbb{R}^2 .
- 37. Solve the Linear differential equations: $x \frac{dy}{dx} + y = x \log x$
- 38. Find the probability mass function and cumulative distribution function of number of girl child in families with 4 children, assuming equal probabilities for boys and girls.
- 39. Verify (i) closure property (ii) commutative property, and (iii) associative property of the following operation on the given set. $(a*b) = a^b$; $\forall a, b \in \mathbb{N}$ (exponentiation property)
- 40. If p is real, discuss the nature of the roots of the equation $4x^2 + 4px + p + 2 = 0$, in terms of p.

PART-IV

Answer the following questions.

 $(7 \times 5 = 35)$

- 41. a) A boy is walking along the path $y = ax^2 + bx + c$ through the points (-6,8), (-2,-12), and (3,8). He wants to meet his friend at P(7,60). Will he meet his friend? (Use Gaussian elimination method.) **(OR)**
 - b) Determine k and solve the equation $2x^3 6x^2 + 3x + k = 0$ if one of its roots is twice the sum of the other two roots.
- 42. a) Identify the type of conic and find centre, foci, vertices, and directrices

$$18x^2 + 12y^2 - 144x + 48y + 120 = 0$$
 (OR)

b) Determine the values of λ for which the following system of equations

$$(3\lambda - 8)x + 3y + 3z = 0$$
, $3x + (3\lambda - 8)y + 3z = 0$, $3x + 3y + (3\lambda - 8)z = 0$

- 43. a) If z = x + iy and arg $\left(\frac{z-i}{z+2}\right) = \frac{\pi}{4}$, show that $x^2 + y^2 + 3x 3y + 2 = 0$. (OR)
 - b) If $a_1, a_2, a_3, \dots a_n$ is an arithmetic progression with common difference d, prove that

$$\tan \left[\tan^{-1} \left(\frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{d}{1 + a_2 a_3} \right) + \dots + \tan^{-1} \left(\frac{d}{1 + a_n a_{n-1}} \right) \right] = \frac{a_n - a_1}{1 + a_1 a_n}.$$

- 44. a) Solve the differential equations: $\frac{dy}{dx} = \tan^2(x+y)$ (OR)
 - b) Find the parametric form of vector equation, and Cartesian equations of the plane containing the line $\vec{r} = (\hat{\imath} \hat{\jmath} + 3\hat{k}) + t(2\hat{\imath} \hat{\jmath} + 4\hat{k})$ and perpendicular to plane $\vec{r} \cdot (\hat{\imath} + 2\hat{\jmath} + \hat{k}) = 8$.
- 45. a) Evaluate $\int_{0}^{2a} x^{2} \sqrt{2ax x^{2}} dx$. (OR)
 - b) A multiple choice examination has ten questions, each question has four distractors with exactly one correct answer. Suppose a student answers by guessing and if *X* denotes the number of correct answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers (iii) the probability of getting at least one correct answer.
- 46. a) The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
 - (i) Absolute error (ii) Relative error (iii) Percentage error (OR)
 - b) Prove that the ellipse $x^2 + 4y^2 = 8$ and the hyperbola $x^2 2y^2 = 4$ intersect orthogonally.
 - 47. a) Let A be $\mathbb{Q} \setminus \{1\}$. Define * on A by x * y = x + y xy. Is * binary on ? If so, examine the commutative associative and the existence of identity, existence of inverse properties for the operation * on A (OR)
 - b) For the function $f(x, y) = \tan^{-1} \left(\frac{x}{y}\right)$ show that $f_{xy} = f_{yx}$.

SARATH KUMAR.S P.G.ASSISTANT, COIMBATORE-6.