CENTUM ACHIEVERS' ACADEMY 56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.NO.7667761819 TIME: 2 ½ Hrs XII STD(MATHS) **FULL PORTION –6** MARKS: 90

PART-I

Choose the correct answer from the given four alternatives:

 $(20 \times 1 = 20)$

1. If
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 and $A(\text{adj } A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = 0$

- (1)0
- (2) $\sin \theta$
- (3) $\cos \theta$
- (4)1

2. Let
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A , then the value of x is

- (1)2
- (2) 4
- (3)3
- 3. If z = x + iy is a complex number such that |z + 2| = |z 2|, then the locus of z is
 - (1) real axis
- (2) imaginary axis (3) ellipse
- (4) circle

- 4. The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is

- (1) $\operatorname{cis} \frac{2\pi}{3}$ (2) $\operatorname{cis} \frac{4\pi}{3}$ (3) $-\operatorname{cis} \frac{2\pi}{3}$ (4) $-\operatorname{cis} \frac{4\pi}{3}$
- 5. If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if
 - (1) $a \ge 0$ (2) a > 0 (3) a < 0
- $(4) a \leq 0$
- 6. If $\cot^{-1} 2$ and $\cot^{-1} 3$ are two angles of a triangle, then the third angle is

 - $(1)\frac{\pi}{4}$ $(2)\frac{3\pi}{4}$ $(3)\frac{\pi}{6}$ $(4)\frac{\pi}{3}$
- 7. If $\sin^{-1}\frac{x}{5} + \csc^{-1}\frac{5}{4} = \frac{\pi}{2}$, then the value of x is
 - (1) 4 (2) 5 (3) 2 (4) 3

- 8. If the normals of the parabola $y^2 = 4x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^2 + (y+2)^2 = r^2$, then the value of r^2 is $(3) 1 \qquad (4) 4 \qquad omic \qquad 0$

- 9. The locus of a point whose distance from (-2,0) is $\frac{2}{3}$ times its distance from the line $x = \frac{-9}{2}$ is
 - (1) a parabola
- (2) a hyperbola
- (3) an ellipse
- (4) a circle
- 10. If $\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$, $\vec{b} = \hat{\imath} + \hat{\jmath}$, $\vec{c} = \hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then the value of $\lambda + \mu$ is
 - (1) 0
- (2) 1
- (3)6
- (4)3

11. If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1, \lambda > 0$ is $\frac{1}{5}$, then the value										
of λ is	(2) 2 \ <u>2</u>	(2) 0	(4) 1							
$(1) 2\sqrt{3}$	(2) $3\sqrt{2}$	(3) 0	(4) 1							
12. The abscissa of the point on the curve $f(x) = \sqrt{8 - 2x}$ at which the slope of the tangent is -0.25 ?										
(1) -8	(2) -4	(3) -2	(4) 0							
13. The maximum value of the product of two positive numbers, when their sum of the squares is 200, is										
(1) 100	(2) $25\sqrt{7}$	(3) 28 (4) 24	$4\sqrt{14}$							
14. If $w(x, y, z) = x^2$	$y^{2}(y-z) + y^{2}(z-x) + y^{2}(z-x) + y^{2}(z-x) + y^{2}(z-x)$	$z^2(x-y)$, then $\frac{\partial w}{\partial x} + \frac{\partial v}{\partial y}$	$\frac{w}{y} + \frac{\partial w}{\partial z}$ is							
(1) xy + yz + zz	(2) x(y+z)	(3) y(z+x)	(4) 0							
15. The volume of solid of revolution of the region bounded by $y^2 = x(a - x)$ about x-axis is										
(1) πa^3	$(2)\frac{\pi a^3}{4}$	$(3)\frac{\pi a^3}{5}$	$(4)\frac{\pi a^3}{6}$							
$16. \text{ If } \int_0^x f(t)dt = x$	16. If $\int_0^x f(t)dt = x + \int_x^1 tf(t)dt$, then the value of $f(1)$ is									
$(1)\frac{1}{2}$	(2) 2	(3) 1	$(4)\frac{3}{4}$							
17. If $\sin x$ is the int	egrating factor of the lin	near differential equati	$ on \frac{dy}{dx} + Py = Q, \text{ then } P \text{ is} $							
(1) $\log \sin x$	$(2)\cos x$	(3) tan <i>x</i>	(4) cot <i>x</i>							
18. If the solution of the differential equation $\frac{dy}{dx} = \frac{ax+3}{2y+f}$ represents a circle, then the value of a is										
	///	(3) 1	(4) -1							
(1) 2										
(1) 2	(2) -2									
(1) 2 19. If $P(X = 0) = 1$ (1) $\frac{2}{3}$	(2) -2 $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$	$3\text{Var }(X), \text{ then } P(X = 0)$ $(3) \frac{1}{5}$) is							
(1) 2 19. If $P(X = 0) = 1$ (1) $\frac{2}{3}$ 20. In the last column	$(2) -2$ $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$ an of the truth table for	$3Var (X), then P(X = 0)$ $(3) \frac{1}{5}$ $\neg (p \lor \neg q) the number$ $(4) 4$) is $ (4)\frac{1}{3} $ of final outcomes of the truth value ' F ' are							
(1) 2 19. If $P(X = 0) = 1$ (1) $\frac{2}{3}$ 20. In the last column (1) 1 (2) 2	$(2) -2$ $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$ an of the truth table for	$3Var (X), then P(X = 0)$ $(3) \frac{1}{5}$ $\neg (p \lor \neg q) the number$ $(4) 4$) is $ (4)\frac{1}{3} $ of final outcomes of the truth value ' F ' are							
(1) 2 19. If $P(X = 0) = 1$ (1) $\frac{2}{3}$ 20. In the last column (1) 1 (2) 2	$(2) -2$ $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$ an of the truth table for (3) 3	$3Var (X), then P(X = 0)$ $(3) \frac{1}{5}$ $\neg (p \lor \neg q) the number$ $(4) 4$) is $ (4)\frac{1}{3} $ of final outcomes of the truth value ' F ' are							
(1) 2 19. If $P(X = 0) = 1$ (1) $\frac{2}{3}$ 20. In the last column (1) 1 (2) 2 (i) Answer any (ii) Qn.No.30 is	$(2) -2$ $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$ an of the truth table for (3) 3	$3Var (X), then P(X = 0)$ $(3) \frac{1}{5}$ $\neg (p \lor \neg q) the number$ $(4) 4$ $PART-II$	(7×2 = 14)							
 (1) 2 19. If P(X = 0) = 1 (1) ²/₃ 20. In the last column (1) 1 (2) 2 (i) Answer any (ii) Qn.No.30 is 21. Find the rank of 22. Obtain the Cartes 	$(2) -2$ $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$ an of the truth table for (3) 3 SEVEN questions. compulsory the matrix by minor me sian form of the locus of	SVar (X), then $P(X = 0)$ $(3)^{\frac{1}{5}}$ $\neg (p \lor \neg q) \text{ the number}$ $(4) 4$ $PART-II$ $thod \begin{bmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1 \end{bmatrix}$ $f: 2z - 3 - i = 3$	(7×2 = 14)							
 (1) 2 19. If P(X = 0) = 1 (1) ²/₃ 20. In the last column (1) 1 (2) 2 (i) Answer any (ii) Qn.No.30 is 21. Find the rank of 22. Obtain the Cartes 	$(2) -2$ $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$ an of the truth table for (3) 3 SEVEN questions. compulsory the matrix by minor me	SVar (X), then $P(X = 0)$ $(3)^{\frac{1}{5}}$ $\neg (p \lor \neg q) \text{ the number}$ $(4) 4$ $PART-II$ $thod \begin{bmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1 \end{bmatrix}$ $f: 2z - 3 - i = 3$	(7×2 = 14)							
 (1) 2 19. If P(X = 0) = 1 (1) ²/₃ 20. In the last column (1) 1 (2) 2 (i) Answer any (ii) Qn.No.30 is 21. Find the rank of 22. Obtain the Cartes 23. Solve the equation 	$(2) -2$ $-P(X = 1). \text{ If } E(X) = 3$ $(2) \frac{2}{5}$ an of the truth table for (3) 3 SEVEN questions. compulsory the matrix by minor me sian form of the locus of	SVar (X), then $P(X = 0)$ $(3) \frac{1}{5}$ $\neg (p \lor \neg q) \text{ the number}$ $(4) 4$ $PART-II$ $thod \begin{bmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1 \end{bmatrix}$ $f: 2z - 3 - i = 3$	(7×2 = 14)							

26. Prove that the function $f(x) = x^2 + 2$ is strictly increasing in the interval (2,7) and strictly decreasing in

the interval (-2,0).

- 27. Evaluate $\int_{0}^{1} x^{3} (1-x)^{4} dx$
- 28. The mean and variance of a binomial variate X are respectively 2 and 1.5. Find P(X=0)
- 29. Show that $p \rightarrow q$ and $q \rightarrow p$ are not equivalent
- 30. If $u(x,y) = \frac{x^2 + y^2}{\sqrt{x + y}}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$.

PART-III

(i) Answer any SEVEN questions.

 $(7\times 3=21)$

- (ii) Qn.No.40 is compulsory
- 31. If $(x_1 + iy_1)(x_2 + iy_2)(x_3 + iy_3) \cdots (x_n + iy_n) = a + ib$, show that

(i)
$$(x_1^2 + y_1^2)(x_2^2 + y_2^2)(x_3^2 + y_3^2) \cdots (x_n^2 + y_n^2) = a^2 + b^2$$

- (ii) $\sum_{r=1}^{n} \tan^{-1} \left(\frac{y_r}{x_r} \right) = \tan^{-1} \left(\frac{b}{a} \right) + 2k\pi, k \in \mathbb{Z}.$
- 32. Solve : $8x^{\frac{3}{2n}} 8x^{\frac{-3}{2n}} = 63$
- 33. Find the value of $\cos \left[\frac{1}{2} \cos^{-1} \left(\frac{1}{8} \right) \right]$
- 34. The maximum and minimum distances of the Earth from the Sun respectively are 152×10^6 km and 94.5×10^6 km. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.
- 35. Find the equation of the plane passing through the line of intersection of the planes

$$\vec{r} \cdot (2\hat{\imath} - 7\hat{\jmath} + 4\hat{k}) = 3$$
 and $3x - 5y + 4z + 11 = 0$, and the point $(-2,1,3)$.

- 36. Assuming $\log_{10} e = 0.4343$, find an approximate value of $\log_{10} 1003$.
- 37. Show that $y = ax + \frac{b}{x}$, $x \neq 0$ is a solution of the differential equation $x^2y'' + xy' y = 0$.
- 38. If μ and σ^2 are the mean and variance of the discrete random variable X, and E(X+3)=10 and $E(X+3)^2=116$, find μ and σ^2 .
- 39. Show that $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$
- 40. Find the volume of a right-circular cone of base radius r and height

PART-IV

Answer the following questions.

 $(7 \times 5 = 35)$

- 41. a) Find the condition on a, b and c so that the following system of linear equations has one parameter family of solutions: x + y + z = a, x + 2y + 3z = b, 3x + 5y + 7z = c. **(OR)**
 - b) Find the value of $\cos \left(\sin^{-1}\left(\frac{4}{5}\right) \tan^{-1}\left(\frac{3}{4}\right)\right)$.
- 42. a) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution (OR)
 - b) If z_1 , z_2 , and z_3 are three complex numbers such that $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|z_1 + z_2 + z_3| = 1$, show that $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 6$.
- 43. a) Find centre, foci, vertices, and directrices of the conic $9x^2 y^2 36x 6y + 18 = 0$ (OR)
 - b) Find the number of solutions of the equation $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}(3x)$.

www.Padasalai.Net - No.1 Educational Website in Tamilnadu

- 44. a) Show that the two curves $x^2 y^2 = r^2$ and $xy = c^2$ where c, r are constants, cut orthogonally. (OR)
 - b) Find the non-parametric form and cartesian equation of the plane passing through the point (1, -2, 4) and perpendicular to the plane x + 2y 3z = 11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}$.
- 45. a) If $w(x, y) = 6x^3 3xy + 2y^2, x = e^s, y = \cos s, s \in \mathbb{R}$, find $\frac{dw}{ds}$, and evaluate at s = 0, **(OR)**
 - b) Father of a family wishes to divide his square field bounded by x = 0, x = 4, y = 4 and y = 0 along the curve $y^2 = 4x$ and $x^2 = 4y$ into three equal parts for his wife, daughter and son. Is it possible to divide? If so, find the area to be divided among them.
- 46. a) For the function $f(x) = 4x^3 + 3x^2 6x + 1$ find the intervals of monotonicity, local extrema, intervals of concavity and points of inflection. **(OR)**
 - b) Solve the differential equation $(y^2 2xy)dx = (x^2 2xy)dy$
- 47. a) Verify (i) closure property (ii) commutative property, and (iii) associative property of the following operation on the given set. $(a*b) = a^b$; $\forall a, b \in \mathbb{N}$ (**OR**)

exe of acaden

b) Suppose that f(x) given below represents a probability mass function,

E.	x	1	2	3	4	5	6
100 100	f(x)	c^2	$2c^2$	$3c^2$	4 <i>c</i> ²	С	2 <i>c</i>

Find (i) the value of c (ii) Mean and variance.

SARATH KUMAR.S

P.G.ASSISTANT,

COIMBATORE-6.