CENTUM ACHIEVERS' ACADEMY 56,Kasthuri bai 4 th street,ganapathy, cbe-06.ph.no.7667761819				
	VOLUME -2		TIME : 2 ¹ / ₂ Hrs	
AII STANDARD	· · · · · · · · · · · · · · · · · · ·	OLOME -2	MARKS : 100	
		<u> PART – I</u>		
hoose the best answer :			$[20 \times 1 = 20]$	
1. A stone is thrown	up vertically. The heigh	t it reaches at time <i>t</i>	t seconds is given by $x = 80t - 16t^2$. The	
stone reaches the	maximum height in time	e t seconds is given l	oy 🔰	
(1) 2 (2	(3)) 3	(4) 3.5	
2. The tangent to the	$\operatorname{curve} y^2 - xy + 9 = 0$	is vertical when		
(1) $y = 0$	(2) $y = \pm \sqrt{3}$	(3) $y = \frac{1}{2}$	(4) $y = \pm 3$	
3. One of the closest	points on the curve x^2 –	$-y^2 = 4$ to the point	t (6,0) is	
(1) (2,0)	(2) ($\sqrt{5}$, 1)	(3) (3, √5)	$(4)(\sqrt{13},-\sqrt{3})$	
4. The point of inflect	tion of the curve $y = (x$	$(-1)^3$ is		
(1) (0,0)	(2) (0,1)	(3) (1,0)	(4) (1,1)	
5. If $u(x, y) = e^{x^2 + y^2}$, then $\frac{\partial u}{\partial x}$ is equal to	REC		
(1) $e^{x^2+y^2}$	(2) 2 <i>xu</i>	(3) $x^2 u$	(4) $y^2 u$	
6. If we measure the	side of a cube to be 4 cm	n with an error of 0.	1 cm, then the error in our calculation of	
the volume is				
(1) 0.4 cu.cm	(2) 0.45 cu.cm	(3) 2 cu.cm	(4) 4.8 cu.cm	
7. If $f(x, y, z) = xy + $	$-yz + zx$, then $f_x - f_z$ is	equal to		
(1) $z - x$	(2) $y - z$	(3) $x - z$	(4) $y - x$	
8. The value of $\int_0^{\frac{\pi}{6}}$ co	$s^3 3x dx$ is		IL ON	
$(1)\frac{2}{3}$ (2)	$(3)\frac{2}{9}$ (3) $\frac{1}{9}$	$(4)\frac{1}{3}$	alle	
9 The area between	$y^2 - 4x$ and its latus ro	ctum ic	, exce	
(1) $\frac{2}{2}$ (2)	y = 4x and its latus ie	and om	$(4)^{\frac{5}{2}}$	
(1) ₃ (2	3	3		
10. The volume of sc	blid of revolution of the π^{3}	region bounded by y	$y^2 = x(a - x)$ about x-axis is	
(1) πa^3	$(2)\frac{\pi a^{2}}{4}$	$(3)\frac{\pi a^{5}}{5}$	$(4)\frac{\pi a^{-}}{6}$	
11. The general solu	tion of the differential e	quation $\frac{dy}{dx} = \frac{y}{x}$ is		
(1) xy = k	(2) $y = \operatorname{klog} x$	(3) y = kx	$(4)\log y = kx$	

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

12. The integrating factor of the differential equation $\frac{dy}{dx} + y = \frac{1+y}{\lambda}$ is					
(1) $\frac{x}{e^{\lambda}}$ (2) $\frac{e^{\lambda}}{x}$ (3) λe^{x} (4) e^{x}					
13. The solution of $\frac{dy}{dx} = 2^{y-x}$ is					
(1) $2^{x} + 2^{y} = C$ (2) $2^{x} - 2^{y} = C$ (3) $\frac{1}{2^{x}} - \frac{1}{2^{y}} = C$ (4) $x + y = C$					
14. <i>P</i> is the amount of certain substance left in after time <i>t</i> . If the rate of evaporation of the substance is					
proportional to the amount remaining, then					
(1) $P = Ce^{kt}$ (2) $P = Ce^{-kt}$ (3) $P = Ckt$ (4) $Pt = C$					
15. A random variable <i>X</i> has binomial distribution with $n = 25$ and $p = 0.8$ then standard deviation of <i>X</i> is					
(1) 6 (2) 4 (3) 3 (4) 2					
16. If $P(X = 0) = 1 - P(X = 1)$. If $E(X) = 3 \operatorname{Var}(X)$, then $P(X = 0)$ is					
$(1)\frac{2}{3}$ $(2)\frac{2}{5}$ $(3)\frac{1}{5}$ $(4)\frac{1}{3}$					
17. If in 6 trials, X is a binomial variable which follows the relation $9P(X = 4) = P(X = 2)$, then the					
probability of success is					
(1) 0.125(2) 0.25(3) 0.375(4) 0.75					
18. If a compound statement involves 3 simple statements, then the number of rows in the truth table is					
(1) 9 (2) 8 (3) 6 (4) 3					
19. The proposition $p \land (\neg p \lor q)$ is					
(1) a tautology (2) a contradiction	(2) a contradiction				
(3) logically equivalent to $p \land q$ (4) logically equivalent to $p \lor q$	(4) logically equivalent to $p \lor q$				
20. Subtraction is not a binary operation in					
(1) \mathbb{R} (2) \mathbb{Z} (3) \mathbb{N} (4) \mathbb{Q}					
$PADT - II \qquad \qquad [7 \times 2 - 14]$					

Answer the following questions:

- 21. A particle moves so that the distance moved is according to the law $s(t) = \frac{t^3}{3} t^2 + 3$. At what time the velocity and acceleration are zero.
- 22. Suppose f(x) is a differentiable function for all x with $f'(x) \le 29$ and f(2) = 17. What is the maximum value of f(7)?
- **23.** A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the change in the volume.
- 24. Evaluate: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx$.
- 25. Show that $y = ae^{-3x} + b$, where *a* and *b* are arbitrary constants, is a solution of the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = 0$
- **26.** Using binomial distribution find the mean and variance of *X* for a fair coin is tossed 100 times, and *X* denote the number of heads.

27. Check whether the statement $p \rightarrow (q \rightarrow p)$ is a tautology or a contradiction without using the truth table **PART – III** [7 × 3 = 21]

Answer the following questions:

- **28.** Find the equations of the tangents to the curve $y = 1 + x^3$ for which the tangent is orthogonal with the line x + 12y = 12.
- **29.** Assuming $\log_{10} e = 0.4343$, find an approximate value of $\log_{10} 1003$.
- **30.** Evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{4\sin^2 x + 5\cos^2 x}$
- **31.** Find the differential equation of the family of all ellipses having foci on the x-axis and centre at the origin.
- 32. Solve $\frac{dy}{dx} + 2y = e^{-x}$.
- **33.** Two balls are chosen randomly from an urn containing 6 red and 8 black balls. Suppose that we win
- ₹ 15 for each red ball selected and we lose ₹ 10 for each black ball selected. If X denotes the winning amount, find the values of X and number of points in its inverse images.
- **34.** Construct the truth table for $(p \nabla q) \wedge (p \overline{v} \neg q)$.

<u>PART – IV</u>

 $[9 \times 5 = 45]$

Answer the following questions:

- **35.** A ladder 17 metre long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5 m/s. When the base of the ladder is 8 metres from the wall,
 - (i) how fast is the top of the ladder moving down the wall?
 - (ii) at what rate, the area of the triangle formed by the ladder, wall, and the floor, is changing?
- **36.** A hollow cone with base radius *a* cm and height *b* cm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{2}$ times volume of the cone.
- 37. Show that $f_{xy} = f_{yx}$ where, $f(x, y) = \tan^{-1} \left(\frac{x}{y}\right)$.
- **38.** Evaluate $\int_0^{2a} x^2 \sqrt{2ax x^2} dx$.
- **39.** The curve $y = (x 2)^2 + 1$ has a minimum point at *P*. A point *Q* on the curve is such that the slope of *PQ* is 2. Find the area bounded by the curve and the chord *PQ*.

40. Solve
$$(1 + 2e^{x/y})dx + 2e^{x/y}(1 - \frac{x}{y})dy = 0.$$

- 41. A pot of boiling water at 100°C is removed from a stove at time t = 0 and left to cool in the kitchen. After 5 minutes, the water temperature has decreased to 80°C, and another 5 minutes later it has dropped to 65°C. Determine the temperature of the kitchen.
- **42.** On the average, 20% of the products manufactured by ABC Company are found to be defective. If we select 6 of these products at random and *X* denotes the number of defective products find the probability that (i) two products are defective (ii) at most one product is defective (iii) at least two products are defective.
- **43.** Let *A* be $\mathbb{Q} \setminus \{1\}$. Define * on *A* by x * y = x + y xy. Is * binary on ? If so, examine the commutative , associative, the existence of identity, existence of inverse properties for the operation * on *A*

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com