| | | | | | 12505 | | | | |---|--|---------------------------|--|--------------------------|--------------|----------------------------|-----------------|--------| | No. of Printed Pages: 4 | R | egister Number | | | | | | | | 12 SECON | D REVISION EXAMI | NATION - FE | BRU/ | ARY 2 | 023 | ! | Į. | | | | | ART – III | | | | | | | | Time Allowed . 200 He | | IYSICS | ſ Massi | | Anul o | . 7 | ^ | | | Time Allowed : 3.00 Ho | ours j | | [IVIAXI | mum N | larks | : 7 | U | | | Instructions : (1) | Check the question | | - | | | re is | any | lack | | (0) | of fairness, inform the | | | | | | | | | (2) | Use Blue or Black ink to write and underline and pencil to dra | | | | | | drav | | | | diagrams. | | | | | | | | | | PAR | T-I 🔷 | | | | | | | | * * | ver all the questions. | | | | | | x1= | | | ` ' | ose the most appropria
the option code and | | _ | | our alte | ernat | ives | and | | | | | | | | | | | | 1. In India electricity | is supplied for domes | tic use at 220 Y | V. It is | suppli | ed at 1 | ۱ 10 | √ in | | | USA. If the resistar | nce of a 60Wbulb for | use in India is F | R, the i | resista | nce of | a 60 | OW b | ulb | | for use in USA will | be | | | | | | | | | (a) R | (b) $\frac{R}{4}$ | (c) 2R | | $(d)\frac{R}{2}$ | | | | | | 2. The value of Bohr | magneton μ_B is : | | | | | | | | | (a) 9.27x10 ⁻²⁴ Am | | (b) 9.27x10 ²⁴ | Am-1 | | | | | | | (c) 9.27x10 ²⁴ Am ⁻ | (c) 9.27x10 ²⁴ Am ⁻² | | (d) 9.27x10 ⁻²⁴ Am ² | | | | | | | 3. LEDs are available | e in a wide range of co | lours. Which is | indica | ite gre | en Col | our | | | | semiconductor? | | | | | | | | | | (a) AlGaP | (b) GaAsP | (c) SiC | | (d) Ga | alnN | | | | | 4. The BH curve for | a ferromagnetic mate | rial is shown ir | the | | B in tes | la ↑
.0 − | | | | figure. The materi | al is placed inside a l | ong solenoid w | /hich | | | .0 – | | — | | contains 1000 tur | ns/cm. The current tha | at should be pa | ssed | | | .0 - | | Hin | | in the solenoni | d to demagnetize | the ferroma | gnet | ∢ 1 1 −250 −200 − | 150 -100 -50 | | 1 1
50 100 / | 150 20 | | completely is | | | | 200 | -1
-2 | .0 - | | 20 | | (a) 1.00 m A | | (b) 1.25 mA | | _ | -3 | | | | | (c) 1.50 mA | | (d) 1.75 mA | | | -4 | .0 🚽 | | | [Turn Over 12505 2 - 5. For a healthy eye, the distance of the near point is - (a) 30 cm - (b) 20 cm - (c) 35 cm - (d) 25 cm - 6. In a transformer, the number of turns in the primary and the secondary are 410 and 1230 respectively. If the current in primary is 6A, then that in the secondary coil is - (a) 2 A - (b) 18 A - (c) 12 A - (d) 1 A - 7. If the magnetic monopole exists, then which of the Maxwell's equation to be modified? - (a) $\oint \vec{E}.d\vec{A} = \frac{Q_{\text{enclosed}}}{\epsilon_0}$ - (b) $\oint \vec{E} \cdot d\vec{A} = 0$ - (c) $\oint \vec{E} . d\vec{A} = \mu_0 I_{enclosed} + \mu_0 \epsilon_0 \frac{d}{dt} \int \vec{E} . d\vec{A}$ (d) $\vec{E} . d\vec{l} = -k \frac{d}{dt} \phi_B$ - 8. In the given diagram a point charge +q is placed at the origin O. Work done in taking another point charge - Q from point A to point B is: - 9. The ratio of magnetic length and geometrical length is: - (a) 0.833 - (b) 0.633 - (c) 0.933 - (d) 0.733 - 10. Stars twinkle due to, - (a) reflection (b) total internal reflection (c) refraction - (d) polarisation - 11. In a Young's double-slit experiment, the slit separation is doubled. To maintain the same fringe spacing on the screen, the screen-to-slit distance D must be changed to, - (a) 2D - (b) $\frac{D}{2}$ - (c) $\sqrt{2D}$ - $(d) \frac{D}{\sqrt{2}}$ - 12. The work functions for metals A, B and C are 1.92 eV, 2.0 eV and 5.0 eV respectively. The metal/metals which will emit photoelectrons for a radiation of wavelength 4100Å is/are - (a) A only - (b) both A and B - (c) all these metals - (d) none - 13. If the nuclear radius of ²⁷Al is 3.6 fermi, the approximate nuclear radius of ⁶⁴Cu in fermi is - (a) 2.4 - (b) 1.2 - (c) 4.8 - (d) 3.6 - 14. If the input to the NOT gate is A = 1011, its output is - (a) 0100 - (b) 1000 - (c) 1100 - (d) 0011 3 12505 15. The particle size of ZnO material is 30 nm. Based on the dimension it is classified as (a) Bulk material (b) Nanomaterial (c) Soft material (d) Magnetic material ## PART - II Note: Answer any six questions. Question No. 24 is compulsory. 6x2=12 - 16. Define power of a lens and write its SI unit. - 17. State the properties of neutrino. - 18. Define electric dipole moment. Give its unit. - 19. Prove that the expression for power in an electrical circuit is P = VI. - 20. Derive the expression of de Broglie wavelength. - 21. Define Curie's law. - 22. Define RMS value of AC. - 23. What is called modulation? - 24. Light of wavelength of 5000 Å produces diffraction pattern of the single slit of width2.5 μm. What is the maximum order of diffraction possible? ## PART - III Note: Answer any six questions. Question No. 33 is compulsory. 6x3=18 25. The rod given in the figure is made up of two different materials Both have square cross sections of 3 mm side. The resistivity of the first material is 4×10^{-3} Ω m and that of second material has resistivity of 5×10^{-3} Ω m. What is the resistance of rod between its ends? - 26. Explain in detail how charges are distributed in a conductor. - 27. State and explain Biot Savart law. - 28. Explain various energy losses in a transformer. - 29. Write the uses of X –rays and gamma rays. - 30. Define total internal reflection. What are the conditions to achieve total internal reflection? - 31. Distinguish between interference and diffraction. - 32. What are the constituent particles of neutron and proton? - 33. Calculate the de Broglie wavelength of a proton whose kinetic energy is equal to 81.9×10^{-15} J. (Given: mass of proton is 1836 times that of electron). [Turn Over 12505 4 PART - IV **Note:** Answer **all** the questions. 5x5=25 - 34. (i) Write down any six properties of electromagnetic wave. - (ii) Compute the speed of electromagnetic wave in a medium if the amplitudes of electric and magnetic fields in it are $3 \times 10^4 \, \text{NC}^{-1}$ and $2 \times 10^{-4} \, \text{T}$ respectively. (OR) Prove laws of refraction using Huygens' Principle. 35. Explain in detail the construction and working of Van de Graff generator. (OR) Derive the expression for radius and energy of the nth orbit of hydrogen atom using Bohr atom model. 36. Obtain the condition for bridge balance in Wheatstone's bridge. (OR) Describe the Fizeau's method to determine speed of light. 37. Obtain a force between two long parallel current carrying conductors. (OR) Show mathematically that the rotation of a coil in a magnetic field over one rotation induces an alternating emf of one cycle. 38. Obtain Einstein's photoelectric equation with necessary explanation. (OR) Transistor functions as a switch. Explain. -000-