www.Padasalai.Net - No.1 Educational Website in Tamilnadu

CLASS: 12	REV	ISION TE	ST – PHYSI	CS (UNIT	S 1, 2,5,8 AND	9)	MARKS: 70	
TIME: 3 HRS			PART – A				15 X 1 = 15	
CHOOSE TH	HE BEST AN	SWER						
1. Rank the e	Rank the electrostatic potential energies for the given system of charges in increasing order							
Q ₀	-0 -0	-20 0	10	a) 1 = 4	< 2 < 3	b) 2 = 4 < 3	3 < 1	
⊕ ~ ©	è <u>′</u> è ⊝	<u>, ~</u>	$2r^{2r}$	c) 2 = 3	< 1 < 4	d) 3 < 1 < 2	< 4	
2. A PPC sto	ores a charge	e Q at a v	oltage V. Su	ppose the	area of the PPC	c and the dist	ance between	
the plates	the plates are each are doubled then which is the quantity that will change?							
a) capacita	ance	b)	charge	c) v	oltage	d) energy	density	
3. Electric ch	arges are di	istributed	in a small vo	olume. The	flux of the elec	tric field throu	igh a spherical	
Surface of	radius 10 c	m surrour	nding a total	charge is 2	25 V m. The flux	over a conce	entric sphere of	
Radius 20	cm will be	a) 25	Vm	b) 50 V m	c) 100 V	m c	d) 200 V m	
4. Two wires	of A and B	with circu	ılar cross se	ction are m	ade up of the s	ame material	with equal lengths.	
Suppose $R_A = 3 R_B$, then what is the ratio of radius of wire A to that of B?								
a) 3	b)	√3	c) 1 / √3		d) 1 / 3			
5. The tempe	erature coeff	icient of re	esistance of	a wire is 0	00125 per ⁰ C.	At 20 ⁰ C, its r	esistance is 1 Ω .	
The resista	ance of the v	wire will b	e 2 Ω at					
a) 800º C	b) 7	00 ⁰ C	c) 85	0º C	d) 820 ⁰ C			
6. A strip of c	copper and a	another ar	nd another o	f germaniu	m are cooled f	rom room ten	nperature to 80 K.	
The resista	ance of a	a) each of	them increa	ases	b) each of the	m decreases		
c) copper i	increases ar	nd germar	nium decrea	ses c) copper decrea	ases and gerr	manium increases	
7. Which of the	he following	electroma	agnetic radia	ations is us	ed for viewing c	bjects throug	ıh fog?	
a) microwa	ave	b) gam	ma rays	C	X-rays	d) infrar	red	
8. Fraunhofe	r lines are a	n example	e of	Spectrum				
a) line emis	ssion	b) line	absorption	с) band emissior	n d) ba	and absorption	
9. If speeds o	of gamma ra	ays, X-rays	s and microv	wave are V	$_{\rm g},{\rm V}_{\rm x}{\rm and}{\rm V}_{\rm m}$ res	spectively, the	en	
a) $V_g > V_x$:	> V _m ł	b) V _g < V	$V_x < V_m$	c) V _g	$> V_x < V_m$	d) $V_g = V_g$	$_{x} = V_{m}$	
10. Particle lik	e behaviour	of light ar	rises from th	e fact that	each quanta of	light has defi	nitex	
and a fixed	d value of	y	just like a	particle.	Here x and y r	efer to		
a) frequen	cy, energy	b) sh	nape, volume	e c)	energy, freque	ncy d)	energy, momentum	
11. A light sou	irce of wave	length520) nm enuts 1	.04 x 10 ¹⁵	photons per see	cond while the	e second source of	

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

www.Padasalai.Net - No.1 Educational Website in Tamilnadu

	460 nm produces 1.38×10^{15} photons per second. Then the ratio of power of second source to that of							
	of the first source is a) 1.00 b) 1.02 c) 1.5 d) 0.98							
12	When a metallic surface is illuminated with radiation of wavelength λ , the stopping potential is V.							
	If the same surface is illuminated with radiation of 2 $\lambda,$ the stopping potential is V / 4 . The threshold							
	Wavelength for the metallic surface is a) 4 λ b) 5 λ c) 5 λ / 2 d) 3 λ							
13	A radioactive element has N_0 number of nuclei at t = 0. The number of nuclei remaining after half of a							
	Half life (that is, at time t = $\frac{1}{2} T_{1/2}$) a) N ₀ / 2 b) N ₀ $\sqrt{2}$ c) N ₀ /4 d) N ₀ / 8							
14	The ratio between the first three orbits of hydrogen atom is							
	a) 1 : 2 : 3 b) 2 : 4 : 6 c) 1 : 4 : 9 d) 1 : 3 : 5							
15. The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for								
	helium. This implies that helium							
	a) can easily be broken up b) is very stable c) can be used a fissionable material d) is radioactive							
	Answer any 6 qns. Qn.No. 24 is compulsory. PART – B 6 x 2 = 12							
16	Write a note on microwave oven.							
17	A sample of HCl gas is placed in a uniform electric field of magnitude 3 x 10 ⁴ N C ⁻¹ . The dipole moment							
	of each HCI molecule is 3.4 x10 ⁻³⁰ Cm. Calculate the maximum torque experienced by each HCI molecule							
18	18. State Kirchhoff's voltage law. 19. Why are electromagnetic waves non-mechanical?							
20. Define threshold frequency. 21. What is Bremsstraulung? 22. Define atomic mass unit u.								
23	Write the properties of cathode rays.							
24	24. Resistance of a material at 20° C and 40° C are 45 Ω and 85 Ω respectively. Find its temperature							
	co-efficient of resistivity.							
	Answer any 6 qns. Qn.No.33 is compulsory.PART - C $6 \times 3 = 18$							
25	Derive an expression for the equivalent capacitance of capacitors in series.							
26	Obtain an expression for torque acting on an electric dipole in a uniform electric field.							
27	State Seebeck effect. Write its applications.							
28	Derive the relation connecting current and drift velocity.							
29	Explain the importance of Maxwell's correction.							
30. Find the de Broglie wavelength associated with an alpha particle which is accelerated through a P.D.								
	of 400 V. Given that the mass of the proton is 1.67 X 10 ⁻²⁷ kg.							
31	Write a note on characteristic X-ray spectra.							
32	Explain the variation of average binding energy with the mass number using graph and discuss							

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

www.Padasalai.Net - No.1 Educational Website in Tamilnadu

any three features.

33. Half life of two radioactive elements A and B are 20 minutes and 40 minutes respectively. Initially, the samples have equal number of nuclei. Calculate the ratio of decayed numbers of A and B nuclei after 80 minutes.

Answer all questions.PART – D $5 \times 5 = 25$

- 34. Compute the electric field of an electric dipole at a point on its axial line. OR Explain the effect of dielectric placed in a parallel plate capacitor when the capacitor is disconnected from the battery.
- 35. Obtain the condition for bridge balance in Wheatstone network. OR How will you determine internal resistance of a cell using potentiometer.
- 36. Discuss the Hertz experiment. OR

Explain the types of emission spectra in detail.

- 37. Explain how frequency of incident light varies with stopping potential ORDescribe briefly Davisson Germer experiment which demonstrated the wave nature of electrons.
- 38. Discuss the determination of radius of the oil drop and electric charge in Millikan's oil drop experiment

OR

Derive the radius expression for an electron in the hydrogen atom using Bohr atom model.