EDUCATION DEPARTMENT, VILLUPURAM DISTRICT.

Class : X

UNIT TEST

Marks: 50
Subject: Mathematics
UNIT 2 - Numbers and Sequences
Time: $1^{1 ⁄ 2}$ hrs.
I. Choose the correct answer.

1. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $\mathbf{a}=\mathbf{b q}+\mathbf{r}$, where \mathbf{r} must satisfy.
a) $1<r<$ b
b) $0>r>b$
c) $0 \leq r<b$
d) $0<r \leq b$
2. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are
a) $0,1,8$
b) $1,4,8$
c) $0,1,3$
d) $1,3,5$
3. The sum of the exponents of the prime factors in the prime factorization of $\mathbf{1 7 2 9}$ is
a) 1
b) 2
c) 3
d) 4
4. The first term of an arithmetic progression is unity and the common difference is 4 . Which of the following will be a term of this A.P.
a) 4551
b) 10091
c) 7881
d) 13531
5. If 6 times of $\mathbf{6 t h}$ term of an A.P. is equal to 7 times the 7 th term, then the $\mathbf{1 3 t h}$ term of the A.P. is
a) 0
b) 6
c) 7
d) 13
6. The next term of the sequence 3
a) 124
b) 127
c) 23
d) 181
7. If the sequence $t_{1}, t_{2}, t_{3}, \ldots$ are in A.P. then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is
a) a Geometric Progression
b) an Arithmetic Progression
c) neither an Arithmetic Progression nor a Geometric Progression
d) a constant sequence
II. Answer the following questions. (any 5)
8. If the Highest Common Factor of 210 and 55 is expressible in the form $55 \boldsymbol{x}-325$, find \boldsymbol{x}.
9. ' a ' and ' b ' are two positive integers such that $a b \times b=800$. Find ' a ' and ' b '.
10. Find the least positive value of \boldsymbol{x} such that (i) $71 \equiv \boldsymbol{x}(\bmod 8)(i i) 78+\boldsymbol{x} \equiv 3(\bmod 5)$
11. Find a_{8} and a_{15} whose n th term is
$\mathrm{a}_{\mathrm{n}}=\left\{\begin{array}{lll}\frac{n^{2}-1}{n+3} & ; \text { nis even, } & n \in N \\ \frac{n^{2}}{2 n+1} & ; \text { nis odd, } & n \in N\end{array}\right.$
12. If nine times ninth term is equal to the fifteen times fifteenth term, show that six times twenty fourth term is zero.
13. Find the sum to infinity of $9+3+1+$ \qquad
14. Find the sum of the following series: $1+4+9+16+$ \qquad $+225$
III. Answer the following questions. (any 5)
15. Find the HCF of $396,504,636$.
16. In an A.P., sum of four consecutive terms is 28 and their sum of their squares is 276 . Find the four numbers.
17. Determine the general term of an A.P. whose $7^{\text {th }}$ term is -1 and 16 th term is 17 .
18. Find the sum of all natural numbers between 300 and 600 which are divisible by 7 .
19. In a G.P. the product of three consecutive terms is 27 and the sum of the product of two terms taken at a time is $\frac{57}{2}$. Find the three terms.
20. Find the sum to n terms of the series $3+33+333+$ \qquad to n terms.
21. Rekha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}, \ldots, 24 \mathrm{~cm}$. How much area can be decorated with these colour papers?
IV. Answer the following question.
22. a) Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{3}>1$).
(OR)
b) Construct a $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=6.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ}$ and the altitude from P to QR is of length 4.5 cm .
